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Abstract
Against the background of global warming (GW), the distribution of decadal (10–20-year), multidecadal
(20–50-year) and secular (>50-year) variabilities and their causes of surface air temperature (SAT) and
terrestrial precipitation were explored. We applied the singular spectrum analysis method to categorize
the low-frequency variabilities of global SAT and terrestrial precipitation anomalies. Three sea surface
temperature (SST) modes were identi�ed through singular value decomposition that affect the low-
frequency variabilities of global SAT and terrestrial precipitation anomalies—namely, the GW, Interdecadal
Paci�c Oscillation (IPO) and Atlantic Multidecadal Oscillation (AMO) modes. The sensitive regions of SAT
and terrestrial precipitation to GW, IPO and AMO were validated through an information �ow method.
Signi�cant decadal and multidecadal variabilities of SAT were found to exist over the Paci�c and
Northern Atlantic, respectively, because of the IPO and AMO. In terms of terrestrial precipitation, a large
area with a wet trend was found over Eurasia at mid-to-high latitudes, and this trend was especially
remarkable in the boreal winter half-year (November–April), as compared with that in the boreal summer
half-year (May–October). As a result, it could be concluded that GW is the trigger of the wet trend. By
employing arti�cial neutral networks with a self-organized map to cluster the key patterns of vertically
integrated water vapor �ux, we found that the synopitic circulation related to the wet trend is
characterized by westerly �ow that transports water vapor from the northeastern Atlantic to Eurasia,
which is favorable for precipitation there both in the boreal winter and summer half-year.

1 Introduction
The world’s climate becoming warmer and warmer, which we commonly refer to as global warming (GW),
is broadly accepted as a clear fact (Mccrystall et al. 2021). However, the surface air temperature (SAT) is
not increasing at a constant rate; rather, it shows �uctuating growth because of the combination of
external forcing and internal variability of the climate system (Wei et al. 2019). The oceans are a source
of low-frequency variability owing to their higher heat capacity compared to the atmosphere and land,
which also affects the low-frequency variability of precipitation. Some studies have suggested that the
so-called “global warming hiatus” during 1998–2013 was caused by the La Niña-dominated conditions in
the Paci�c (Kosaka and Xie 2013; Meehl et al. 2013; Meehl et al. 2016) a mode called the Paci�c Decadal
Oscillation (PDO; Mantua et al. 1997; Zhang et al. 1997; Minobe 1999; Chen and Wallace 2015) or the
Interdecadal Paci�c Oscillation (IPO; Power et al. 1999; Deser et al. 2004). Meanwhile, Chen and Tung
(2014) illustrated that more heat moves into deeper layers in the Atlantic and the Southern Ocean, which
is related to the warm salt subduction mechanism in the subpolar Atlantic. The contribution of the PDO to
global-mean surface temperature is only 1/10 of that of the Atlantic Multidecadal Oscillation (AMO;
Kushnir 1994; Schlesinger and Ramankutty 1994; Kerr 2000; Knight et al. 2005) because of the offset of
cold and warm SST in the PDO’s pattern (Chen and Tung 2018).

Although the global-mean water vapor increases by approximately 7% for each 1-K increase in
temperature, obeying the Clausius–Clapeyron expression, the global-mean precipitation does not scale
with the Clausius–Clapeyron expression, instead increasing on the order of 2% K− 1 (e.g., Allen and Ingram
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2002; Held and Soden 2006). Moreover, future changes in precipitation with GW are expected to be
spatially variable, following a “warmer-gets-wetter” or “wet-gets-wetter” pattern, based on ocean evidence
(Held and Soden 2006; Xie et al. 2010). Meanwhile, Greve et al. (2014) found that only 10.8% of the
global land area shows a robust “wet-gets-wetter, dry-gets-drier” pattern, based on combinations of
hydrological datasets during 1948–2005. Furthermore, by virtue of the so-called “polar ampli�cation
effect” (Serreze and Francis 2006; IPCC 2007; Screen and Simmonds 2010), at local scales, precipitation
has experienced an unprecedented increase and is projected to intensify throughout the 21st century
along with increased evaporation from expanding open water areas (Bintanja and Selten 2014; Bintanja
and Andry 2017; Mccrystall et al. 2021). And besides anthropogenic climate change (Held et al. 2005), it
is believed that, during the positive (negative) phase of the AMO, the precipitation over the Sahel is
enhanced (suppressed) and suppressed (enhanced) over the Gulf of Guinea (Mohino et al. 2011). Indeed,
climate models have veri�ed a causal link between the AMO and the Sahel summer rainfall (Zhang and
Delworth 2006). In addition, Mccabe et al. (2004) documented that more than half of the drought
frequency in the conterminous U.S. is attributable to the PDO and AMO, and a positive phase of the AMO
in combination with a negative phase of the PDO is associated with a high probability of drought events.
Elsewhere, Li et al. (2010) suggested that El Niño-like warming in the tropical Paci�c can lead to
weakened summer monsoons and thus drier conditions in East China; and in fact, the interdecadal
variability of the global-mean precipitation in the past few decades is relatively stronger than the trend
(Allen and Ingram 2002; Gu and Adler 2013), as well as the tropical-mean precipitation (Gu et al. 2007;
John et al. 2009).

Tao et al. (2021) identi�ed that the dominant modes affecting the interdecadal variability of terrestrial
precipitation differ from season to season. The dominant modes affecting North American precipitation
are the AMO and IPO in summer and the IPO and AMO in winter (Xu et al. 2021), while those affecting
East Asian precipitation are GW and the IPO in both summer and winter (Du et al. 2022). However,
previous studies have not presented the distribution of the relative magnitude of the decadal variability,
multidecadal variability, and secular trend in SAT and terrestrial precipitation anomalies across the globe.
In this study, we addressed this knowledge gap by applying singular spectrum analysis (SSA; Vautard
and Ghil 1989). Furthermore, by employing the information �ow analysis method recently developed by
Liang (2014), we sought to identify the sensitive regions where GW, the IPO or the AMO can signi�cantly
affect the SAT and terrestrial precipitation. In particular, because of a relative dearth of studies, we
focused on Eurasian terrestrial precipitation at mid-to-high latitudes (EAMH). The circulation changes
were investigated by constructing arti�cial neutral networks with a self-organizing map (SOM).

The remainder of the paper is organized as follows: Section 2 describes the data and methods. In section
3, the distributions of the relative magnitudes of the decadal variability, multidecadal variability, and
secular trend in SAT anomalies across the world’s land and oceans, along with their relationships with
GW, the IPO and the AMO, are presented. The same procedure was applied to terrestrial precipitation
anomalies and the results are presented in section 4, in which the mechanisms of the precipitation
secular trend in EAMH in summer and the winter half of the year are further explained. Lastly, conclusions
are given in section 5.



Page 4/33

2 Data And Methods

2.1 Data
The data used in this study were: (1) monthly terrestrial SAT data from the Climate Research Unit (CRU)
Time Series, version 4.05 (Harris et al. 2020); (2) monthly SAT data from the Goddard Institute for Space
Studies (GISS), which also covers the oceans (Hansen et al. 2010); (3) monthly terrestrial precipitation
data from the Global Precipitation Climatology Centre (GPCC; Schneider et al. 2022); (4) daily vertically
integrated water vapor �ux reanalysis data from the �fth major global reanalysis produced by the
European Centre for Medium-Range Weather Forecasts (ERA5; Hersbach et al. 2020); (5) monthly SST
data from the Met O�ce Hardley Center (Rayner et al. 2003); (6) IPO and AMO monthly time series data
from Physical Sciences Laboratory of the National Oceanic and Atmospheric Administration [the IPO time
series is taken from the difference between the SST anomaly (SSTA) averaged over the central equatorial
Paci�c and that averaged over the Northwest and Southwest Paci�c; the AMO time series is estimated as
the detrended-area-weighted SST averaged over the North Atlantic (0°–70°N); and both the AMO and IPO
series were �ltered with a 9-year Lanczos low-pass �lter to remove the high-frequency signals (Fig. 1)];
and (7) the GW time series, de�ned as the trend of the global-mean SST averaged between 45°S and
60°N, obtained by applying ensemble empirical mode decomposition and presents a noticeable nonlinear
upward trend, as shown in Fig. 1.

Because data (1) and (3) over some regions (e.g., the Tibetan Plateau and northern Africa) are set to
climatological monthly means before 1933, the analysis period for those data was set from 1934 to 2020
to ensure data reliability. On the other hand, the time spans of data (2) and (4) were set to the maximum
length available, which was from 1948 and 1950 to 2020, respectively. Meanwhile, all the gridded data
were regridded to a 2° × 2° resolution, and the seasonal cycle was removed from the monthly time series
as a pretreatment. For SAT, we only examined the sensitive regions of annual-mean SAT to GW, the IPO
and the AMO. For the EAMH terrestrial precipitation, we carried out further investigations in different
seasons owing to the fact that the atmospheric circulation in this region causing the precicpitation differs
from season to season. In this study, we separated the seasons into the boreal summer half-year (May–
October) and boreal winter half-year (November–April).

2.2 Methods
a. SSA

At each grid point, we applied SSA (Vautard and Ghil 1989) to seperate the time series into interannual
(2–10-year), decadal (10–20-year), muitidecadal (20–50-year), and secular (> 50-year) components. The
SSA algorithm is analogous to the extended empirical orthogonal function (EOF) algorithm, but the
former analyzes a single time series while the latter analyzes the principle component of meteorological
�elds. SSA performs singular value decomposition on the autocovariance matrix of a single time series
using a speci�ed lag window (M). The original time series is then decomposed into M reconstructed
components (RCs) and M corresponding normalized eigenvalues. Each normalized eigenvalue measures
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the fraction of total variance contributed by the RC. After testing for M, we set M to 15 years and the
results were stable for a range of values between 12 and 30 years. Only the �rst 6 RCs were taken for
analysis, because the high-order components generated by SSA are considered as noise. The dominant
period of each RC was estimated using the Fourier transform (Ault and St. George 2010), and the
cumulative variance of the leading RCs measures the fraction of total variance in each band.

Localized signi�cance tests of the decadal, multidecadal and secular variability were conducted by
comparing the percentage variance in each band against the percentage variance obtained from a Monte
Carlo analysis of 10 000 white noise time series with the same length as the SAT/terrestrial precipitation
time series.

b. Information �ow

Correlation or regression analysis are usually conducted to identify the causality between two time series.
However, correlation analysis lacks directetness or asymmetry and hence does not imply causality. Liang
(2014) derived an information �ow formula from �rst principles in physics, which has been applied
successfully to investigate many cause–response relationships in �elds such as neuroscience, �nance,
and the atmospheric sciences. Information �ow analysis Liang (2014) was employed in this study to
identify the regions where GW, the IPO or the AMO can have a signi�cant effect.

In a linear system, the formula is remarkably simple, involving only the common statistical covariance.
Considering two time series of  and , the information �ow from  to , written as , is

1
,

where  is the sample covariance between  and ,  is the covariance between  and a
derived series using Euler’s forward differencing scheme:

2
.

Ideally, when ,  is not causal to ; otherwise, it is causal. In applications, the statistical
signi�cance should be tested. More details can be referred to in Liang (2014). The unit for  is nats
per unit time.
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During calculating information �ow in the summer half-year, time series of different indices and the
SAT/precipitation �eld in the winter half-year are set to zero, to avoid a large false gradient when
calculating the information �ow. The procedure is the same in the winter half-year.

c. SOM

An SOM was utilized in this study to categorize synoptic-scale patterns dominating the precipitation and
to examine the circulation pattern changes under GW. In doing so, the aim was to understand the physical
mechanisms of precipitation change.

As a relatively new pattern recognition technique or clustering algorithm, the SOM is a kind of arti�cial
neural network with an unsupervised competitive learning mechanism. It can discover the internal laws of
the input data via the adjustment of network parameters and structure to cluster data (Kohonen 1982).
Most common synoptic classi�cations usually involve either a set of variables at a single grid point or a
single variable at a regional spatial level. For the latter, one general shortcoming is that while discrete
realizations of an atmospheric circulation can be represented, they generally cannot be organized into a
continuum, which can be solved in an SOM. Since the successful application reported by Hewitson and
Crane (2002), SOMs have been utilized in many climatological studies (Sheridan and Lee 2011).

Most previous studies usually applied SOMs to the sea level pressure or geopotential height �elds �rst,
and found their key clustering patterns. Then, the corresponding wind �elds, including zonal and
meridional winds, were composited to analyze their circulation. Different to this approach, we clustered
the daily vertically integrated water vapor �ux during 1950–2020, which includes 2D variables and is
closely related to precipitation, to categorize synoptic-scale patterns directly.

The network consists of an input and a competition layer. Given an N-dimensional data space containing
a cloud of input data points, the algorithm then transforms it into a 2D array composed of  nodes.
Referring to previous studies (Zhou and Jiang 2016; Li et al. 2020; Zhou et al. 2020) and comparing
square topological arrays of various sizes, we found that a  array could clearly separate the key
patterns of the vertically integrated water vapor �ux, and so we chose this array for studying the
precipitation trend mechanism. The steps are as follows:

After vector normalization and weight initialization, in the competition layer, the input data vector  is
compared with the reference vector  at the  node, one by one, and the Euclidean distance between
them is calculated. According to the competitive learning rule named “winner takes all”, only one winning
reference vector with the minimum distance between the input vector will be searched; that is, to �nd

Then, the winning node begins to adjust and change the weight for itself and neighboring nodes as
de�ned by the user. The above steps are cycled  times.

a × b

5 × 4

X

Wj jth

Min∥X − Wj∥.

n
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3 Sat
3.1 Decadal variability, multidecadal variability, and secular trend of global SAT

To explore the relative magnitudes of the decadal (10–20-year), multidecadal (20–50-year) and secular
(>50-year) components of annual SAT at each grid point, SSA was applied to the SAT data from CRU
during 1934–2020 and from GISS during 1948–2020. 

As shown in FIG. 2, the decadal and multidecadal variability is relatively small for most grid points,
contributing less than 20% of the total variance, while secular trends have much greater importance.
Throughout most of the land area, the annual SAT does not contain any signi�cant decadal (10–20-year)
variability, but broadly signi�cant regions exist over a large part of the Paci�c, including the central
tropical Paci�c, central North Paci�c, coastal California, the ocean areas near New Zealand, Antarctica
and the southern part of the tropical Atlantic, with the variance accounting for around 30%. For the 20–
50-year variability in FIG. 2c and d, relatively high variability is apparent over the Amazonian plain in
South America. Roughly 60% of the SAT variance there falls within the 20–50-year band, as shown by the
SAT from CRU during 1934–2020, but the signal disappears in GISS during 1948–2020 because of the
locally missing data. Signi�cant multidecadal variability over central Africa, Greenland and northern
Australia can also be identi�ed in the SAT from CRU during 1934–2020, but the contribution is less than
20%. Different from the “warm Arctic–cold continent” patterns (Zhao et al. 2022), no variability within the
20–50-year band is apparent over the region from Lake Balkhash to Lake Baikal. In terms of the oceanic
SAT, there is signi�cant multidecadal variability over the oceans near Hawaii, coastal Canada, the
northern Atlantic, and ocean areas near Antarctica, where the contribution is more than one-third of the
variance.

Most notably, the SAT mainly shows a uni�ed secular trend globally across both land and ocean (FIG. 2e,
f). In particular, the variance of the secular trend over Mexico, the East African Plateau, the Arabian
Peninsula, the Mongolian Plateau, the Tibetan Plateau, and the Great Australian Basin, as well as over
ocean areas such as the Indian Ocean, tropical West Paci�c and Atlantic, accounts for up to 70%. In other
words, the secular trend over the above regions is highly prominent compared to the decadal and
multidecadal variability. In contrast, the realtive varaince of the secular trend is small over the central-
eastern tropical Paci�c, North Paci�c, northern North Atlantic, northern North America, northern Eurasian
continent, and northern Australia. 

3.2 Dominant SST modes related to SAT low-frequency variability

The above analysis identi�ed the signi�cant regions of decadal variability, multidecadal varaibility and
secular trends of SAT globally across both land and ocean. The uni�ed secular trend is the foremost
feature. In this section, the spatial distribution of the coupling between the decadal variability,
multidecadal varaibility, secular trend of SAT and SST is investigated. 
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Empirical orthogonal function (EOF) analysis was performed on the global SAT from GISS for the period
1948–2020 to explore the the spatial distributions of SAT related to GW, the IPO and the AMO. Prior to the
analysis, the interannual variation was removed using a 9-year Lanczos low-pass �lter. 

The �rst three modes and the corresponding principle components (PCs) are shown in FIG. 3. The
variances are 69.2%, 11.2% and 4.4%, respectively. All three modes pass the Mont Carlo test at the 10%
level. 

As shown in FIG. 3a and d, the spatial pattern of the �rst EOF mode shows a nonuniform warming. The
warming rate over land is much higher than over the oceans because of their different heat capacities.
Meanwhile, the warming rate over the Indian Ocean, tropical West Paci�c and Atlantic around northern
Africa and the southern Atlantic is relatively higher than over other oceans, which agrees with previous
research (Mccrystall et al. 2021). PC1 agrees well with the GW index in terms of the increasing trend. The
correlation coe�cient between them is 0.99, although �uctuation of PC1 is visible. That is, the �rst mode
is identi�ed as the GW mode. 

As shown in FIG. 3b and e, the second EOF mode, with 11.2% of the variance, can be easily identi�ed as
the IPO mode. Meanwhile, the correlation coe�cient between PC2 and the IPO index reaches up to 0.88
and is signi�cant at the 1% level. During the positive phase of the IPO, uniform warm anomalies are
apparent over the Indian Ocean, central-eastern tropical Paci�c and southern Atlantic, whereas cold
anomalies exist over the northwestern and southwestern Paci�c and northern Atlantic. During the positive
phase of the IPO, the terrestrial SAT over eastern and southern North America, South Asia and the land
around the Mediterranean become cooler, while the terrestrial SAT over Alaska, western Canada, the
Siberian Plain, the Mongolian Plateau, and Australia, is warm. 

The third EOF mode, with only 4.4% of the variance (FIG. 3c, f), is recognizable as the AMO, based on the
dipole SAT in the northern and southern Atlantic. Meanwhile, the correlation coe�cient between PC3 and
AMO index is 0.53, and signi�cant at the 5% level. During the positive phase of the AMO, the SAT is warm
over northern Lake Baikal, eastern China, western North America, the northern and central Paci�c, and
northern Atlantic, while cooling occurs over the Indian Ocean and Southern Ocean.

To further investigate the spatial distributions of SAT related to GW, the IPO and the AMO, singular value
decomposition (SVD) analysis was applied to the globally terrestrial SAT from CRU and tropical SST
(20°S–45°N) from the Hadley Center during the period 1934–2020. Prior to the analysis, we removed the
interannual variation by applying a 9-year Lanczos low-pass �lter. 

The heterogeneous �elds of the �rst three coupled modes and the related time series are shown in FIG. 4.
Their variances are 96.0%, 2.6% and 0.5%, respectively. Only the �rst two modes passed the Mont Carlo
test at the 10% level. 

For the �rst coupled mode from the SVD analysis, both FIG. 4a and FIG. 4d show a signi�cant warming
trend, except for the SST over the northen Paci�c, which somehow differs from the consistent GW
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conclusion found in previous studies (Xie et al. 2010; Mohino et al. 2011; Gu and Adler 2015). The
implication, therefore, is that this mode is probably mixed with decadal and interdecadal oscillations that
the SVD analysis could not completely separate. The correlation coe�cient between the GW index and
the PC1 of SST reaches up to 0.93, and the PC1 of the terrestrial SAT also reaches a high value, of up to
0.94 (FIG. 4g). A weak downward trend is visible from 1943 to 1970, which may be due to the residual
interdecadal SST signals (Dong and Mcphaden 2017b, a) or related to changes in global-mean
temperature because of the high concentrations of anthropogenic aerosols during that period (e.g.,
Wilcox et al. 2013). Unsurprisingly, the �rst mode is the GW mode and its variance contribution rises from
69.2% based on the EOF analysis to 96.0% based on the SVD analysis.

 For the second coupled mode from the SVD analysis, the IPO mode can be identi�ed, based on the
postive SSTA in the central-eastern tropical Paci�c and negtive SSTA in the Northwest Paci�c (FIG. 4b),
as well as the corresponding time series (FIG. 4h) being highly correlated (correlation coe�cient of 0.93)
with the IPO index. Therefore, the SST pattern in the second mode can be identi�ed as the IPO mode.
However, the variance contribution of the IPO decreases from 11.2% based on EOF analysis to 2.6%
based on SVD analysis. During the positive phase of the IPO, the terrestrial SAT over Alaska, western
Canada, Peru, and northern Australia is warm, while the terrestrial SAT over eastern and southern North
America, southern Greenland, the northern Indian subcontinent, and the land areas around the
Mediterranean become cooler, which is consistent with the EOF analysis. This mode is slightly
contaminated by the AMO, which can be seen from the negtive SSTA in the North Atlantic (Chen and Tung
2018). Acording to FIG. 4b, the negative phase of the AMO is embedded in the positive phase of the IPO
in some periods, which is also re�ected in FIG. 1. 

Although the third SVD mode fails to pass the signi�cance test at the 10% level, the SST in the northern
Atlantic is characterized by positive anomalies, as shown in FIG. 4c, and the correlation coe�cient
between the time series of the SST and AMO in FIG. 4i is 0.56, which is statistically signi�cant at the 5%
level. Thus, it is believed that the third mode is the AMO. During the positive phase of the AMO, the
terrestrial SAT over eastern Europe is cool, while that near the Gulf of Guinea, the high altitudes of the
Andes Mountains, and South China become warm where the GW trend is insigni�cant.  

The above results indicate that the low-frequency variability of SAT is closely related to GW, the IPO and
the AMO, and GW contributes about 96% of the variance. In the following section, we further investigate
the causality via the information �ow method (Liang, 2014). 

3.2 Causality between GW, the IPO, the AMO, and global SAT

Owing to correlation, EOF or SVD analysis lacking directetness or asymmetry and hence not implying
causality, we therefore applied the information �ow method to validate the above results and explore the
impacts of GW, the IPO and the AMO on SAT variation.

FIG. 5a and b show the information �ow from GW to the global SAT from CRU during 1934–2020 and
from GISS during 1948–2020. The patterns from SSA (FIG. 2e, f) are the same as those from information



Page 10/33

�ow (FIG. 5a, b). There is high information �ow from GW to SAT over the regions of Mexico, the East
African Plateau, the Arabian Peninsula, the Mongolian Plateau, the Tibetan Plateau, and the Great
Australian Basin, as well as ocean areas such as the nothern Indian Ocean, tropical West Paci�c, and
some the Atlantic. This is consistent with the percentage variance in the secular trend as shown in Fig. 2e
and f. Therefore, it can be veri�ed that the secular trends of SAT across the globe are caused by GW,
except in the central North Paci�c, central equatorial Paci�c, and northern North Atlantic. This mainly
stems from the local decadal and multidecadal variation modes of SST, i.e., the IPO and AMO, which is
also visible from the SSA results (FIG. 2b, d). 

The information �ow from the IPO to SAT is depicted in FIG. 5c and d. It is clear that over the tropical
Indian, central-eastern tropical Paci�c, central North Paci�c, central South Paci�c, subtropical
northeastern Paci�c, tropical Atlantic, northwestern North America, and southeastern America, the
causality is signi�cant. The spatial pattern of information �ow from the IPO to SAT is similar to the effect
of El Niño-Southern Oscillation (ENSO). This is because the IPO index contains high interannual
varaibility of ENSO (Chen and Tung 2018), which should not be removed as requested by the algorithm of
the information �ow method. 

FIG. 5e and f display the information �ow from the AMO to SAT. Signi�cant causality can be detected
over the northwestern Paci�c and southwestern Paci�c besides the North Atlantic, which is consistent
with the �ndings of Sun et al. (2017), who suggested that the SST varaiblity over the western tropical
Paci�c can largely be explained by the AMO. Wu et al. (2022) demonstrated that the SST varaiblity over
the western tropical Paci�c is controlled by the AMO through the variability of the subtropical mode water.
This is veri�ed in the present study via infromation �ow and further suggests that the SAT not only over
the northwestern Paci�c but also over the southwestern Paci�c can be explained by the AMO, rather than
the IPO. Signi�cant causality from AMO to SAT over southern North America and eastern Australia are
also detected, as shown both in Fig. 5e and f. However, the signi�cant causality over Brazil, Greenland,
Africa, South Asia, the Arabian peninsula are only detected in CRU as shown Fig. 5e, but the signal
disappears in GISS because of the locally missing data (Fig. 5f).

4 Precipitation
4.1 Decadal variability, multidecadal variability, and secular trend of global precipitation

Although Tao et al. (2021) investigated the the relative contributions of GW, the IPO and the AMO to the
terrestrial precipitation variabilities during 1934–2015, they did not present the distribitions of the
signi�cant decadal, multidecadal and secular variabilities across the globe. In this section, we present
these and focus particularly on the change in terrestrial precipitation in EAMH, where the secular trend is
notable but relatively few studies have discussed it. The related circulation change is examined using the
results from the arti�cial neutral networks with the SOM. 

FIG. 6–8 show the distributions of percentage variance in the decadal, multidecadal and secular bands
following the application of SSA to the terrestrial precipitation data from GPCC during 1934–2020. As
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can be seen in these �gures, the decadal and multidecadal components occupy less areas than secular
trend. The contributions of decadal and multidecadal variability are less than 10% of the total variance at
most grid points. It should be noted that the color bars in in FIG. 6–8 are different from the one in FIG. 2,
and the interannual (2–10-year) variability of precipitation carries the most importance (�gure not
shown), which is very different from that of SAT.

The signi�cant decadal (10–20-year) variability of terrestrial precipitation does not cover much of the
globe (FIG. 6), the notable exceptions being southwestern America, northern Canada, the Amazon in
South America, South Africa, and northwestern India, east to the Caspian Sea and eastern Australia. The
signi�cant multidecadal (20–50-year) variability of terrestrial precipitation is identi�ed in northeastern
North America, northwestern South America, the Niger River in Mali, the Congo Basin, Mongolian Plateau,
and northern Siberia Plain, north to the Kamchatka Peninsula and central Australia (FIG. 7).

As shown in FIG. 8, the extremely low-frequency (>50-year) variability is signi�cant across the Sahel, the
high latitudes of Euraisa, the Tibetan Plateau, western Australia, the areas around Hudson Bay, and
southern America. By comparing FIG. 8 and FIG. 2, we conclude that terrestrial precipitation does not
follow the “warmer-gets-wetter” pattern, with the Tibetan Plateau being the only exception. The secular
trends of precipitation are especially prominent in the high latitudes of Euraisa, from which several
important questions emerge: Is there an increase or decrease since 1934? In which season does the trend
occur? Is it related to circulation change? These questions are investigated in the next section.
Considering the circulation affecting on precicpitation differs from season to season, we explored these
questions in the boreal summer half-year (May–October) and boreal winter half-year (November–April),
separately.

4.2 Dominant SST modes and causality related to the low-frequency variability of May–October
precipitation in EAMH

In this section, we focus on the cause of the secular trends in May–October precipitation in EAMH, which
has lacked attention until now. 

We begin by examining the spatial distributions of precipitation in EAMH (25°–76°N, 13°W–189°E) and
the coupling with SST in the tropics (20°S–45°N) during 1934–2020 by analyzing the SVD analysis
results. Before the analysis, the interannual variations of precipitation and SST were removed via a 9-year
Lanczos low-pass �lter. 

The heterogeneous �elds of the �rst three coupled modes and the related time series in May–October are
shown in FIG. 9. Their variances are 71.2%, 12.4% and 3.9%, respectively. All three modes passed the
Monte Carlo test at the 10% level. 

In the summer half-year, the �rst coupled mode of SST is identi�able as the GW mode, based on the SSTA
pattern featuring a positive SSTA covering most of the tropical oceans, especially the tropcial Indian
Ocean, western Paci�c and Atlantic (FIG. 9a), and the prominent upward trend of the time series (FIG. 9g).
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The time series of both SST and precipitation are highly correlated with the GW index, with correlation
coe�cients reaching 0.94. Surprisingly, the variance contribution of GW is very high, at up to 71.2%. The
related precipitation increases with GW over most regions, especially the Scandinavian Peninsula, east to
the Ural Mountains, eastern Siberia, the Tibetan Plateau and Xinjiang of China.

For the second coupled mode from the SVD analysis, the IPO mode can be identi�ed, based on the
postive SSTA in the central-eastern tropical Paci�c and negtive SSTA in the Northwest Paci�c (FIG. 9b),
as well as the corresponding SST time series (FIG. 9h) being highly correlated with the IPO index
(correlation coe�cient: 0.89). The variance contribution from the IPO is 12.4%, which is far less than the
variance contribution from GW. As shown in FIG. 9e, the related precipitation shows a “dry in the
northeast and wet in the southwest” pattern in EAMH during the IPO’s positive phase. In particular, the
land areas around the Volga River, the Altai Mountains, and east to Lake Baikal become wet while the
land over the West Siberian Plain become dry during the IPO’s positive phase.

Although the third SVD mode passes the signi�cance test at the 10% level, the SST in most of the
northern Atlantic is characterized by positive anomalies, as shown in FIG. 9c, but the correlation
coe�cient between the time series of SST and the AMO is nonsigni�cant (FIG. 9i). Thus, the third mode
cannot be recognized as the AMO and does not need to be discussed any further. 

As mentioned in section 3, correlation, EOF or SVD analysis lacks directetness or asymmetry and hence
does not imply causality, leading us to apply the information �ow method to further validate the results of
section 4.2. 

FIG. 10a–c show the information �ow from GW, the IPO and the AMO to the May–October precipitation in
EAMH during 1934–2020, respectively. It is clear that the information �ow map from GW to pecicpitation
(FIG. 10a) is highly similar to the precipitation map of the �rst SVD mode (FIG. 9d). That is, the wet trend
over the Scandinavian Peninsula, east to the Ural Mountains, eastern Siberia, the Tibetan Plateau and
Xinjiang of China, is caused by GW. The IPO is the second largest contributor according to the SVD
analysis; however, there is little information �ow from the IPO to the May–October precipitation in EAMH
(FIG. 10b). Consequently, the IPO cannot be attributed to the variarion in May–October precipitation in
EAMH. Nonetheless, even if the AMO is not an important factor according to the SVD analysis, it does
affect the precipitation north of the Caspian Sea, south of Lake Balkhash, and over the Tibetan Plateau
and central and eastern Siberia, according to the information �ow analysis (FIG. 10c). 

So far, we have identi�ed that GW is the dominant factor for the increase in precipitation in EAMH.
Therefore, we next applied the SOM approach to uncover the synoptic circulation change related to GW
for further exploring the mechanism of the wet trend in EAMH. 

Compared with the wind �eld, the precipitation anomaly can be described more directly from the
perspective of water vapor transport. Besides, water vapor convergence (or divergence) has a signi�cant
effect on precipitation (Starr et al. 1958; Chen and Tzeng 1990; Bosilovich et al. 2015). In short, the
vertically integrated water vapor transport can re�ect both the evolution of low-level circulation and the
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distribution of the water vapor budget. Accordingly, global (56°S–76°N) daily vertically integrated water
vapor �ux data were used in this study to explore the synoptic circulation change related to GW. 

With the vertically integrated water vapor �ux inputs, the SOM produces a  organized map containing 20
representative nodes in total. Each node represents a key pattern of synoptic circulation and the
related time series represents the synoptic circulation frequency anomaly. We calculated the linear trend
of each node’s time series to �nd the synoptic pattern that occurs more and more frequently or less and
less frequently against the background of GW. It should be noted that for convenience of analysis only
the circulation in EAMH is displayed. 

FIG. 11 shows the D5 and A4 patterns from the SOM and the related time series, which represent the more
and more frequent and less and less frequent synoptic circulation against the background of GW,
respectively. As shown in FIG. 11c, a strong cyclone covers northern Europe, with westerly transports of
water vapor from the northeastern Atlantic to the Eastern European Plain. Meawhile, there are easterly
transports of water vapor from the northwestern Paci�c to eastern Siberia. These synopitc circulations
are favorable for precipitation in EAMH, especially over northern Europe and eastern Siberia. The trend of
the synoptic circulation frequency is 0.11  during 1950–2020, which is signi�cant at the 10% level. On the
other hand, the synoptic circulation as shown in FIG. 11d occurs less and less and its signi�cant trend at
the 10% level is −0.26 during 1950–2020 (FIG. 11b). The synoptic circulation in FIG. 11d is almost the
opposite of that in FIG. 11c: an anticyclone covers northern Europe and northeastern Atlantic, with
easterly water vapor transport. Meanwhile, there is a branch of water vapor out�ow from eastern Siberia
to the northwestern Paci�c. Therefore, synopitc circulations are unfavorable for precipitation in EAMH. 

The intensi�ed westerly water vapor transport at 50°N and weakened East Asian summer monsoon in the
last 70 years, as shown in FIG. 11a and c, are consistent with the �ndings of previous studies (Wang
2001; Huang et al. 2004; Ding et al. 2008; Yang et al. 2020; Kanamori et al. 2023).

4.3 Dominant SST modes and causality related to the low-frequency variability of November–April
precipitation in EAMH 

In this section, the same procedures are applied to the November–April precipitation in EAMH to
investigate the cause of the wet trend in this region. 

FIG. 12 shows the �rst three coupled modes from SVD for the November–April precipitation in EAMH and
the tropical SST. Their variances are 72.9%, 11.3% and 5.6%, respectively. All three modes passed the
Monte Carlo test at the 10% level. 

It is apparent that in the winter half-year the �rst coupled mode of SST is also the GW mode, based on the
SSTA pattern featuring a positive SSTA covering most of the tropical oceans, especially the tropcial
Indian Ocean, western Paci�c and Atlantic (FIG. 12a), and the prominent upward trend of the time series
of SST and precipitation (FIG. 12g). Both time series are highly correlated with the GW index, with
correlation coe�cients reaching 0.93. The variance contribution of GW reaches up to 72.9%. The related
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precipitation increases signi�cantly with GW from western Europe north of 50°N to central Siberia Plain
as well as the Tibetan Plateau (FIG. 12d). Meanwhile, the land areas around the Mediterranean Sea
become dry.

The second coupled mode from the SVD analysis is also identi�able as the IPO mode, based on the SSTA
pattern (FIG. 12b) and the corresponding SST time series (FIG. 12h) being highly correlated with the IPO
index (correlation coe�cient: 0.89). The variance contribution from the IPO is only 11.3%. During the IPO’s
postive phase, wet anomalies can be seen over central Siberia and dry anomalies over eastern Sibeira,
Mongolia and North China. For the third mode, the correlation coe�cient between the time series of SST
and the AMO is nonsigni�cant (FIG. 12i). Thus, the third mode cannot be recognized as the AMO and
does not need to be discussed any further.

The information �ow from GW, the IPO and the AMO to the November–April precipitation during 1934–
2020 is shown in FIG. 13. The causality pattern (FIG. 13a) is similar to the wet trend pattern (FIG. 12d).
That is, the increased precipitation in November–April over the East European Plain, West Siberian Plain,
Central Siberian Plateau, and Tibetan Plateau can be explained by GW. Signi�cant causality from the IPO
to precipitation (FIG. 13b) can be detected from the area north of the Black Sea to the northeast of Lake
Balkhash. For the AMO (FIG. 13c), it is the cause of precipitation over northern Siberia and northwestern
and northeastern China.

FIG. 14 shows the synoptic circulation of vertically integrated water �ux from the SOM and the related
time series, which have a signi�cant trend against the background of GW. As shown in FIG. 14a and c, the
synoptic circulation related to the signi�cant increasing wet trend in the winter half-year is characterized
by a strong anticyclone covering the Mediterranean. Meanwhile, there is an elongated cyclone covering
northern Europe and the West Siberian Plain with westerly �ow between them transporting water vapor
from the northeastern Atlantic to the Eastern European Plain and West Siberian Plain, causing water
vapor convergence over central Siberian Plateau. The synoptic circulations are favorable for precipitation
in the East European Plain, West Siberian Plain, and central Siberian Plateau. The trend of the synoptic
circulation frequency is 0.17 during 1950–2020, which is signi�cant at the 10% level. 

On the other hand, the synoptic circulation in the winter half-year, as shown in FIG. 14d, occur less and
less, with a −0.14 trend, during 1950–2020 (FIG. 14b). The synoptic circulations in FIG. 14d are
characterized by an anticyclone covering the East European Plain and West Siberian Plain, cyclones
covering the Mediterranean Sea and northeastern Atlantic, and easterly �ow from Lake Baikal to the
northeastern Atlantic, which are unfavorable for precipitation in EAMH. 

5 Summary
Based on the SSA method, this paper presents the relative magnitudes of the decadal (10–20-year),
multidecadal (20–50-year) and secular (>50-year) components of global SAT and terrestrial precipitation
over EAMH during 1934–2020. Then, SVD analysis was applied to identify the SST modes (GW, the IPO
and the AMO) that have the signi�cant effects on the low-frequency variabilities of SAT and terrestrial
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precipitation. Furthermore, we used the information �ow method to verify the causality of the SST modes
with respect to the SAT and terrestrial precipitation. Finally, arti�cial neural networks with an SOM were
further applied to reveal the synoptic circulation changes from GW that can explain the secular wet trend
over EAMH. The results of the study can be summarized as follows: 

1. GW is the �rst dominant causal factor for SAT. The SAT mainly shows a uni�ed secular trend
globally across both land and ocean. In particular, the variance of the secular trend over the Indian
Ocean, tropical West Paci�c and Atlantic, as well as over land areas such as Mexico, the East African
Plateau, the Arabian Peninsula, Mongolian Plateau, Tibetan Plateau and the Great Australian Basin,
accounts for up to 70%.

2. Although the warming rate over land is much greater than that over the oceans owing to their
different heat capacities (which is visible from the EOF results in FIG. 3), the relative magnitudes of
the secular trends over the Indian Ocean and tropical West Paci�c are higher than those over most
land areas (which is a visible from the SSA results in FIG. 2 and the information �ow results in FIG.
5). The relative magnitude of the secular trend is small in the central North Paci�c, central-eastern
tropical Paci�c, and northern North Atlantic, which mainly stems from the decadal and multidecadal
variation modes of SST, i.e., the IPO and AMO. 

3. The IPO is the second most dominant causal factor for SAT, which affects the SAT variability over
the tropical Indian Ocean, central-eastern tropical Paci�c, central North Paci�c, central South Paci�c,
subtropical northeastern Paci�c, and tropical Atlantic, as well as over northwestern America and
southeastern North America. The AMO is the last dominant causal factor for SAT, which is able to
cause the SAT varaibility over the northwestern Paci�c and southwestern Paci�c besides the North
Atlantic. 

4. GW is the �rst dominant causal factor for the terrestrial precipitation varailiblity in EAMH. A large
area with a wet trend can be identi�ed in this region. Moreover, the area with the wet trend in the
boreal winter half-year is much larger than that in the boreal summer half-year. The synopitic
circulation related to the wet trend is characterized by westerly �ow that transports water vapor from
the northeastern Atlantic to Eurasia, which is favorable for precipitation there. The IPO is the second
dominant causal factor for the terrestrial precipitation varailiblity in EAMH. Howover, its effect could
not be cross-validated on the basis of the SVD analysis and information �ow results.
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Figure 1

Standardized time series of the GW (solid line) and 9-year low-pass �ltered IPO (dotted line) and AMO
(dashed line) indexes during 1934–2020.
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Figure 2

Percentage variance in (a, b) decadal (10–20-year), (c, d) multidecadal (20–50-year) and (e, f) secular
(>50-year) bands by applying SSA to SAT from CRU during 1934–2020 (left column) and GISS during
1948–2020 (right column). The blue lines show the regions where the variability in each band is
statistically signi�cant at the 10% level according to the Monte Carlo test.
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Figure 3

The �rst three EOF modes of the global SAT from GISS during 1948–2020. Panels (a–c) are the �rst three
spatial patterns of SAT. The normalized EOF time series of SAT (red lines) are shown in (d–f). The black
lines in (d–f) are the series of GW, the IPO and the AMO, respectively. The correlation coe�cients (r) with
*, ** and *** are statistically signi�cant at the 10%, 5% and 1% levels, respectively.
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Figure 4

The �rst three SVD modes between the SST (20S°–45°N) from the Hadley Center and the global
terrestrial SAT from CRU during 1934–2020. Panels (a–c) are the �rst three spatial patterns of SST and
panels (d–f) are those of terrestrial SAT. The normalized SVD time series of SST (red lines) and SAT (blue
lines) are shown in (g–i). The black lines in (g–i) are the series of GW, the IPO and the AMO, respectively.
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The correlation coe�cients (r) with *, ** and *** are statistically signi�cant at the 10%, 5% and 1% levels,
respectively. The areas with dots are statistically signi�cant at the 10% level.

Figure 5

Information �ow (nats month−1) from (a, b) GW, (c, d) the IPO, and (e, f) the AMO to SAT from CRU during
1934–2020 (left column) and GISS during 1948–2020 (right column). The areas with dots are
statistically signi�cant at the 10% level.
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Figure 6

Percentage variance in the decadal (10–20-year) band by applying SSA to terrestrial precipitation from
GPCC during 1934–2020. The red lines show the regions where the variability in the decadal band is
statistically signi�cant at the 10% level according to the Monte Carlo test.
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Figure 7

Percentage variance in the multidecadal (20–50-year) band by applying SSA to terrestrial precipitation
from GPCC during 1934–2020. The red lines show the regions where the variability in the multidecadal
band is statistically signi�cant at the 10% level according to the Monte Carlo test.

Figure 8

Percentage variance in the secular (>50-year) band by applying SSA to terrestrial precipitation from GPCC
during 1934–2020. The red lines show the regions where the variability in the secular band is statistically
signi�cant at the 10% level according to the Monte Carlo test.
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Figure 9

The �rst three SVD modes between the SST (20°S–45°N) from the Hadley Center and the precipitation
(25°–76°N, 13°W–189°E) from GPCC in the summer half-year (May–October) during 1934–2020. Panels
(a–c) are the �rst three spatial patterns of SST and panels (d–f) are those of terrestrial precipitation. The
normalized SVD time series of SST (red lines) and SAT (blue lines) are shown in (g–i). The black lines in
(g–i) are the series of GW, the IPO and the AMO, respectively. The correlation coe�cients (r) with *, ** and
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*** are statistically signi�cant at the 10%, 5% and 1% levels, respectively. The areas with dots are
statistically signi�cant at the 10% level.

Figure 10

Information �ow (nats month−1) from (a) GW, (b) the IPO and (c) the AMO to the terrestrial precipitation
from GPCC in the summer half-year (May–October) during 1934–2020. The areas with dots are
statistically signi�cant at the 10% level.
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Figure 11

The D5 (c) and A4 (d) patterns (vectors; unit: 30 kg m−1 s−1) and their percentage of days (a, b) obtained
by the SOM with the global vertically integrated water vapor �ux from ERA5 during 1950–2020 in the
boreal summer half-year (May–October). The bars in (a, b) are the percentage of days anomalies, the
curves are the 9-year low-pass �ltered anomalies, and the dashed lines are the trends, which are
statistically signi�cant at the 10% level.
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Figure 12

The �rst three SVD modes between the SST (20°S–45°N) from the Hadley Center and the precipitation
over EAMH (25°–76°N, 13°W–189°E) from GPCC in the winter half-year (November–April) during 1934–
2020. Panels (a–c) are the �rst three spatial patterns of SST and panels (d–f) are those of terrestrial
precipitation. The normalized SVD time series of SST (red lines) and SAT (blue lines) are shown in (g–i).
The black lines in (g–i) are the series of GW, the IPO and the AMO, respectively. The correlation
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coe�cients (r) with *, ** and *** are statistically signi�cant at the 10%, 5% and 1% levels, respectively. The
areas with dots are statistically signi�cant at the 10% level.

Figure 13

Information �ow (nats month−1) from (a) GW, (b) the IPO and (c) the AMO to the terrestrial precipitation
from GPCC in the winter half-year (November–April) during 1934–2020. The areas with dots are
statistically signi�cant at the 10% level.
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Figure 14

The A3 (c) and D4 (d) patterns (vectors; unit: 30 kg m−1 s−1) and their percentage of days (a, b) obtained
by the SOM with the global vertically integrated water vapor �ux from ERA5 during 1950–2020 in the
boreal winter half-year (November–April). The bars in (a, b) are the percentage of days anomalies, the
curves are the 9-year low-pass �ltered anomalies, and the dashed lines are the trends, which are
statistically signi�cant at the 10% level.


