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Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a highly invasive and metastatic subtype of kidney
malignancy and is correlated with metabolic reprogramming for adaptation to the tumor
microenvironment comprising in�ltrated immune cells and immunomodulatory molecules. The role of
immune cells in the tumor microenvironment (TME) and their association with abnormal fatty acids
metabolism in ccRCC remain poorly understood.

Method: Data from TGCA-KIRC, E-MTAB-1980, CheckMate-025, IMmotion150 and IMmotion151 cohort
were obtained for subsequent analysis. After differential expression genes identi�cation, the signature
was constructed through univariate Cox proportional hazard regression and simultaneously the least
absolute shrinkage and selection operator (Lasso) analysis and the predictive performance of our
signature was assessed by using receiver operating characteristic (ROC), Kaplan–Meier (KM) survival
analysis, nomogram, drug sensitivity analysis, immunotherapeutic effect analysis and enrichment
analysis. Immunohistochemistry (IHC), qPCR and western blot were performed to measure related mRNA
or protein expression. Biological features were evaluated by wound healing, cell migration and invasion
assays and colony formation test and analyzed using coculture assay and �ow cytometry.

Results: Twenty fatty acids metabolism-related mRNA signatures were constructed in TCGA and
possessed a strong predictive performance demonstrated through time-dependent ROC and KM survival
analysis. Notably, the high-risk group exhibited an impaired response to anti-PD-1/ PD-L1(Programmed
death-1 receptor/Programmed death-1 receptor-ligand) therapy compared to the low-risk group. The
overall levels of the immune score were higher in the high-risk group. Additionally, drug sensitivity
analysis observed that the model could effectively predict e�cacy and sensitivity to chemotherapy.
Enrichment analysis revealed that the IL6-JAK-STAT3 signaling pathway was a major pathway. IL4I1
could promote ccRCC cells’ proliferation, migration and invasion through JAK1/STAT3 signaling pathway
and M2-like macrophage polarization.

Conclusion: The study elucidates that targeting fatty acids metabolism can affect the therapeutic effect
of PD-1/PD-L1 in tumor immune microenvironment as well as related signal pathways. The model can
effectively predict the response to several treatment options, underscoring its potential clinical utility.

Introduction
Renal cell carcinoma (RCC) is the most common subtype of primary kidney cancer and results in
numerous cases and deaths worldwide[1]. Immunocheckpoint therapies (ICTs) are the most rapidly
growing clinical strategy for treating RCC and provide durable clinical bene�ts for patients with advanced
ccRCC[2]. Simultaneously, two potential immune targets PD-1/PD-L1 as prognostic markers present in
ccRCC. Antibodies against PD-1, including nivolumab and pembrolizumab, serve as a useful treatment of
metastatic RCC [3, 4]. Nonetheless, unlike other immunotherapy-responsive solid tumors, many RCC
patients show primary or adaptive resistance and adverse events to ICTs and not all patients show
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complete responses[5], suggesting a further understanding of PD-1/PD-L1 mediated immunosuppression
in RCC is needed to enhance treatment e�cacy.

Tumor growth depends on oncogene-driven reprogramming of cell metabolism, which enables cancer
cells to absorb nutrients, build macromolecules, and proliferate[6]. Increasing evidence shows that highly
proliferative cancer cells have been found to increase the number of enzymes that are involved in lipid
and cholesterol biosynthesis[7]. Lipid droplets stored by excess lipids and cholesterol and their quantity is
related to tumor invasiveness [8, 9] . The increase of fatty acids in tumor microenvironment could cause
the accumulation of lipid droplets and reprogramming lipid metabolism could impact indirectly on the
function of immune cells and enhance tumor immunotherapy [10]. ccRCC is prominently featured with
the accumulation of robust lipid as well as glycogen and associated with metabolic reprogramming for
adaptation to the TME [11, 12], and different enzymes in fatty acids metabolism are potential biomarkers
for diagnosis and promise for clinical effect in patients with ccRCC[13]. Due to the existence of a highly
dynamic tumor microenvironment, and due to the glucose and fatty acids metabolism in ccRCC, this
cancer could be accompanied by diverse types of resistance to ICIs. The intricate relationship between
the abnormal fatty acids metabolism and the immune microenvironment in ccRCC has not yet been well
illustrated. Therefore, the exploration of underlying relationships is crucial for future success in designing
combination treatments to improve ccRCC patients’ resistance to ICTs.

In the current study, we established novel fatty-acids-metabolism-related mRNA signatures based on the
TCGA cohort to contribute to the prediction about ccRCC patients’ survival prognosis. Additionally, the
role of the target genes of these mRNAs in related immunotherapy of ccRCC was also clari�ed. The
bioinformatics insights from this study will be valuable for future therapeutic development in ccRCC.

Materials and Methods
Data acquisition.

TCGA-KIRC datasets and clinical data of ccRCC (n = 526) and normal (n = 72) samples were retrieved
from TGCA and were processed for subsequent analyses. The E-MTAB-1980 cohort was available on the
ArrayExpress website (https://www.ebi.ac.uk/arrayexpress/). Normalized transcriptome and clinical
matrix �les of ccRCC patients treated with Nivolumab in the CheckMate-025 (CM-025) cohort were
collected from published articles [14]. Other normalized gene expression pro�les and clinic datasets of
ccRCC patients from a randomized phase II trial (IMmotion150[15]) and a randomized phase III trial
(IMmotion151[16]) were selected for analysis.

309 genes of fatty acids metabolism were acquired and collected from fatty acids metabolic pathways in
KEGG, fatty acids metabolic genes in Hallmark and the speci�c genes associated fatty acids
metabolism[17]. These fatty acids metabolism-related genes are provided in Table S1.

Differential expression genes identi�cation
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309 genes expression between ccRCC and normal samples in TCGA-KIRC cohort was assessed with the
“limma” R package. To further visualize differentially expressed fatty acids metabolism-related genes, the
heatmap as well as volcano map were drawn. The thresholds of DEG were as follows: the fold change
(FC) of differential expression of mRNAs was |log2 Fold Change| ≥ 1 and False Discovery Rate (FDR) <
0.05.

Signature construction

Totally 526 ccRCC patients in TCGA-KIRC dataset included in the analysis were randomly divided into the
train set (n = 395) and the test set (n = 131) by 3:1 ratio. Based upon the train set, the fatty acids
metabolism-related DEGs were further analyzed through univariate Cox proportional hazard regression
and simultaneously the least absolute shrinkage and selection operator (Lasso) analysis (through the
"glmnet" R package[18]) to avoid over�tting. Multivariate cox proportional hazard regression analysis was
applied to construct the prognosis model. The risk scores of each of the patients were established with
the score determined as: Risk score = ∑ (expression of signature genes * corresponding coe�cient).
According to the median risk score, patients from datasets were assigned to high-risk or low-risk groups.

Prognostic signature validation

Datasets including internal and external test sets were subsequently evaluated and used for calculating
risk scores. The predictive capability of the signature was veri�ed using ROC curves as well as KM
survival curves (R packages “survival” and “survminer”). The individuals in the testing sets were allocated
to groups by the same method as the training set. Furthermore, we also explored the predictive accuracy
of nomograms through time-dependent ROC curves.

Drug sensitivity analysis

To estimate the drug sensitivity in different risk groups, we performed drug sensitivity analysis utilizing
the R package ("ggpubr") and calculated the IC50 through the R package ("pRRophetic")[19]. We therefore
calculated the risk score of ccRCC cell lines through CCLE and drug sensitivity data in GDSC. Pearson
correlation analysis was applied to identify the relationship between the risk score in ccRCC cell lines and
the drug IC50 value.

Immunotherapeutic effect analysis

Response to anti-PD-1/PD-L1 therapy in ccRCC patients was examined on three Immune-related cohorts
(CheckMate-025, IMmotion150 and IMmotion151). The comparson was different risk scores in the stable
disease/partial disease (SD/PD) as well as complete response/partial response (CR/PR) groups (R
packages “ggsignif”, “ggplot2” and “ggpubr”). To predict the immunotherapeutic effect in different risk
groups, the tumor immune dysfunction and exclusion (TIDE) (http://tide.dfci.harvard.edu/) was
conducted and visualized through a violin plot.

Enrichment analysis
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Gene Ontology (GO) enrichment as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis (R packages “clusterpro�ler”) were utilized in this study and were further visualized by R
package “ggplot2”. Gene set enrichment analysis (GSEA) was applied in this study and the “GSVA” R
package was utilized to explore remarkably correlated pathways. Two annotated gene set �le
(“c2.cp.kegg.v7.4.symbols.gmt” as well as “c5.go.v7.5.1.symbols.gmt”) from the MSigDB database
(https://www.gsea-msigdb.org/gsea/msigdb/) were chosen as the reference. 

Immunohistochemistry (IHC)

Para�n sections of ccRCC tissues and normal tissues were depara�nized and hydrated. Then, we
performed antigen retrieval through microwave with citrate buffer (pH 9.0). To avoid the endogenous
peroxidase activity, the sections were incubated in the slides in 0.3% H2O2 for 10min. Then, sections were
manipulated with primary antibody at 4 °C for 12h and subsequently incubated with secondary antibody
at room temperature for 1 h. After performing by peroxidase and 3,3-Diaminobenzidinetetrahydrochloride
(DAB), sections were developed with hematoxylin and subsequently mounted in nonaqueous mounting
medium. Images were captured with KF-PRO-020 Digital Slice Scanner. Two quali�ed pathologists
evaluated and scored pathological samples separately. The anti-IL4I1 antibody (1:200, Abcam,
ab176588) and anti-CD206 (1:1000, Proteintech, China) were respectively utilized to detect expression
levels of IL4I1 and CD206 in different tissues. 

Cell culture and siRNA interference assay

Human renal proximal tubular epithelial cell line (HK2) and Human RCC cell lines (786-O, 769-P, ACHN,
A498, CAKI-1, CAKI-2 and OSRC2) sprang from the American Type Culture Collection (ATCC). All cells
were maintained in appropriate medium with 10% FBS and incubated with 5% CO 2 at 37°C. One
scrambled siRNA (negative control) and three IL4I1 siRNAs were synthesized by (RiboBio, China) (Table
S2). 786-O or 769-P was transfected with siRNAs through jetPRIME (Polyplus, French) on the basis of
the manufacturer’s instructions. At 48 h after transfection, Functional assays were performed and protein
and RNA were harvested.

RNA expression

We extracted total RNAs from ccRCC cell lines and si-IL4I1-transfected 786-O or 769-P, as well as the
ccRCC and adjacent normal samples of 10 KIRC patients using EZ-press RNA Puri�cation Kit
(EZBioscience, USA) and PrimeScript RT reagent kit (EZBioscience, China). The level of the mRNA IL4I1
was further examined through qRT-PCR with SYBR Green PCR reagent (EZBioscience, China) on Applied
Biosystems™ QuantStudio™ 5 Real-Time PCR System in triplicate. Each mRNA expression was calculated
with the 2-ΔΔCt method. All speci�c primers used in quantitative real-time PCR (qRT-PCR) are shown in
Table S3. Human participants in these studies were reviewed and approved by the Institutional Ethics
Committee for Clinical Research and Animal Trials of the First A�liated Hospital of Sun Yat-sen
University [(2021)144] and conformed to the standards set by the Declaration of Helsinki.
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Wound healing, cell migration and invasion assays

Cells were scratched with a pipette after cellular fusion into a six-well plate. Photos were taken at 0h and
24h after scratching. To evaluate the invasion and migration capability, 786O or 769P were starved in
serum-free RPMI 1640 medium for 8 h. Then, 5×104 in 100 μl 786O or 769P in serum-free RPMI 1640
medium was added to transwell inserts (Corning, USA). The lower chamber of transwell assays was
supplemented by serum-free RPMI 1640 medium with 10% FBS as a nutritional attractant. Lower surface
cells after 8 h for migration assay and 16 h for invasion assay were respectively �xed with 4%
polyformaldehyde (Beyotime, China) for 30 min, and stained with 0.4% crystalviolet (Beyotime, China) for
30 min. Invaded/migrated cells on the upper surface were wiped out with a cotton swab and those on the
lower surface were counted under the microscope.

Colony formation test

At 24 h after transfection, we inoculated 1000 786-O or 769-P cells into each well of the six-well plates,
which were cultured for 2 weeks, then the colony was counted and analyzed.

Coculture assay

THP-1 monocytes were induced and differentiated into M0 macrophages by PMA (Phorbol 12-myristate
13-acetate). Once differentiated (M0 macrophages), they were incubated respectively with cell
supernatant of ccRCC cell line (786O or 769P) transfected with IL4I1 siRNA for 48 hours. The impact of
the knock-down of IL4I1 on macrophage polarization was assessed by western blot for CD206 protein
and �ow cytometry of the proportion of M2 macrophage.

Flow cytometry

Expression of M2 macrophage maker CD206 was examined through �ow cytometry. The cells were
detached with trypsin, washed and blocked with PBS + 1%BSA solution, and then incubated with CD206
(321104, Biolegend, California, USA). The cells were then analyzed by a Beckman CytoFlex LX instrument
and analyzed by FlowJo software.

Western blot

RIPA lysis buffer (ThermoFisher, USA) containing protease and phosphatase inhibitors (MCE) was utilized
to extract total proteins incubated on ice for 15 min. Then, after centrifuged for 2 min (12,000 g, 4 °C) and
supernatants collected, protein concentration was measured with a BCA protein assay kit (ThermoFisher,
USA). After denaturation with 5x SDS-PAGE gels, the proteins were electrophoresed in 12% SDS-
polyacrylamide gels (Bio-Rad) and transferred onto 0.2um PVDF membranes (Millipore) blocked in skim
milk for 1h. Then, membranes were incubated for 12h with the primary antibody at 4 °C, and
subsequently with the secondary antibody at room temperature for 1 h. Antibodies for western blots were
as follows: IL4I1 (1:200, Abcam, ab176588), CD206 (1:1000, Proteintech, China).
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Statistical Analysis

Pearson or Spearman coe�cients were used to analyze correlations between variables. R language
v4.0.2 (https://www.r-project.org/) and GraphPad Prism 8.0 software were conducted for data analysis.
The evaluation of the difference between two groups was analyzed with the Wilcoxon rank-sum test. The
signi�cance of the two group differences was P<0.05.

Results
Construction of the prognostic model

A total of 309 genes related with fatty acids metabolism were included in this study. After TCGA datasets
�ltering, quality assessment and data processing, 96 DEGs were �nally extracted through the “limma” R
package and the results indicated that 62 DEGs were downregulated and 34 DEGs were upregulated. The
heatmap and volcano map was used to visualize DEGs (Figures 1b, 1c). The prognostic model was
developed based on univariate and multivariate Cox regression analysis as well as LASSO analysis
(Figures 1d, 1e). Ultimately, the prognostic model was visualized by “forest” (Figure 1f) consisting of 20
genes: HACD1, HPGD, ALOX15B, ABCD1, HMGCS2, CPT1B, TDO2, SCD5, PCCA, DPEP1, ALAD, ACADM,
ACADSB, ACAT1, PLA2G4A, ALOX12B, IL4I1, ACAD11, HIBCH, LTC4S. Risk score= (0.319240 * HACD1) +
(-0.084391 * HPGD) + (-0.180228 * ALOX15B) + (0.459381 * ABCD1) + (-0.063391 * HMGCS2) +
(0.325758 * CPT1B) + (0.140669 * TDO2) + (-0.029671 * SCD5) +(0.127550 * PCCA) + (-0.067707 *
DPEP1) + (-0.342020 * ALAD) + (-0.040588 * ACADM) + (0.131207 * ACADSB) + (-0.110134 * ACAT1) +
(-0.161595 * PLA2G4A) + (-0.407284 * ALOX12B) + (0.280250 * IL4I1) + (-0.028668 * ACAD11) +
(-0.158444 * HIBCH) + (-0.766512 * LTC4S).

Prognostic model validation

The ROC curves and the KM curves were utilized to explore the predictive power of the prognostic model
on the internal and external test sets. The area under the ROC curve (AUC) of the 3-, 5-, and 7-year in
TCGA-KIRC train and test cohort as well as E-MTAB-1980 cohort presented good prediction performance
(Figures 2a-2c). Using the same prognostic model, we classi�ed the remaining patients in all the test sets
into different risk groups based on the median of all risk scores. The risk score of the prognostic model in
TCGA-KIRC train and test as well as E-MTAB-1980 cohort was an independent protective factor of overall
survival (OS). Patients with high-risk scores exhibited signi�cantly lower OS compared to those in the low-
risk group (P 0.05, Figures 2d, 2e). K-M analysis further revealed that ccRCC patients with high-risk score
had lower progression-free-survival (PFS) in TCGA-KIRC cohort (P 0.05, Figures S1a-S1d).

The clinicopathological characteristics in TCGA-KIRC cohort

As shown in Figure 3a, a clinical correlation analysis was performed, demonstrating that grade and stage
levels increased with the risk score of the prognostic model (P 0.05, Figure 3a). Moreover, the risk score
exhibited superior predictive power, with the largest area under the ROC curve compared to age, gender,
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grade, and stage (Figure 3b). Furthermore, the AUC values of the 3-, 5-, and 7-year in TCGA-KIRC total
cohort were 0.745, 0.765, and 0.742 respectively (Figure 3c). Subsequently, based on the clinical features
and risk score, a nomogram for OS prediction was conducted and composed of age, stage as well as risk
score as the independent prognostic factors (P 0.05) (see Figure 3d). In the calibration diagram (Figure
3e), the 1-, 3-, and 5-year OS for ccRCC individuals had a good predictive performance of this
personalized nomogram model (C-index = 0.779).

The immune landscape of the prognostic model and response to anti-PD-1/ PD-L1 therapy

The response to anti-PD-1/ PD-L1 therapy was examined based on the immune-related cohorts
(CheckMate-025, IMmotion150 and IMmotion151), and results indicated that different risk groups
between SD/PD and CR/PR possessed a statistically signi�cant difference. Not surprisingly, results from
the immune-related databases revealed that the high-risk group processes a signi�cantly lower response
to anti-PD-1/ PD-L1 therapy (Figure 3f). Further, through the TIDE algorithm, high-risk group in the TCGA-
KIRC database had a high potential of immune escape with a worse effect of immunotherapy (Figure 3g).
Applying the ESTIMATE algorithm, we calculated the overall levels of the immune score. The immune
score of the high-risk group was higher than low-risk group (Figures 3h).Moreover, as expected, in
IMmotion150 and IMmotion151 cohorts, the low-risk group for survival was linked to higher PFS (P 0.05,
Figure 3i). We then performed a hierarchically K-M analysis of the CheckMate-025 study. The results
indicated there was a signi�cant difference in the survival rate between different risk groups in the ccRCC
patients with Nivolumab monotherapy from the CheckMate-025 cohort while there was no signi�cant
difference in those treated with Everolimus (a mammalian target of mTOR inhibitor) (Figures S1d,1e),
suggesting that our model is more effective and suitable for anti-PD-1/ PD-L1 therapy in the ccRCC
patients. Subsequently, in the comparison of several immune signatures, in�ammation-promoting, T cell
co-stimulation, checkpoint, antigen-presenting cell (APC) co-stimulation, chemokine receptors (CCR), and
Type I IFN response were found to be higher in the high-risk group than the low-risk group, while type II
IFN response was obviously downregulated (see Figure 3j). Additionally, TME cell composition and
fraction of individual immune cell types in three Immune-related cohorts were computed and generated
with CIBERSORT (http://cibersort.stanford.edu/). We observed that the high-risk groups presented a
higher fraction of M0 macrophages than the low-risk group (P 0.05, see Figures S2a-2c), thus
highlighting the risk score of our model could predict clinical response to ICI-based immunotherapy.

Risk scores and drug sensitivity analysis

We conducted drug sensitivity analysis based on the different risk groups through the “pRRophetic”
package and the IC50 value was utilized to measure the sensitivity to drugs (Figure 4a). The high-risk
group possessed signi�cantly higher IC50 values but was less sensitive to the drugs than the group with
low-risk (P 0.05). For quantifying the individual patients, the correlations between risk score of prognostic
model and targeted drugs was assessed through the “ggplot” package and identi�ed that Sorafenib,
Erlotinib, Saracatinib and Crizotinib had high degree of correlation with risk score of prognostic model,
suggesting that the constructed model could effectively predict e�cacy and sensitivity to
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chemotherapy (Figures 4b). We further evaluated the risk score of ccRCC cell lines through CCLE and
drug sensitivity data from GDSC. The results indicated that A498 had the highest risk score while BFTC-
909 had the lowest risk score, which implied that higher malignancy existed in A498 compared with other
cell lines (Figure S3a). Pearson correlation analysis suggested that the risk score had a positive
correlation with IC50 of C-75 (an inhibitor of fatty acids synthase), while was negatively correlated with
IC50 of PD0325901 (an oral potent ERK inhibitor) (Figure S3b). These revealed that the higher risk score
was more sensitive to PD0325901 and less to C-75, which might be an effective targeted therapy of
ccRCC.

Identifying related pathways and immune checkpoints

We utilized ssGSEA to examine the correlations between the risk score and the enrichment scores of
related pathways or immune checkpoints to explore the immune-related functional processes. Our
�ndings revealed a positive correlation between the risk score and JAK-STAT3 signaling, as well as major
immune checkpoints (Figures 4c, 4d). These implied that fatty acids metabolism in ccRCC was
associated with JAK-STAT3 signaling and the risk score levels could re�ect the therapeutic effect of
ccRCC patients treated with anti-PD-1/ PD-L1.

Enrichment analysis and GSEA hallmark visualization

To con�rm the underlying mechanism of JAK-STAT3 signaling and fatty acids metabolism in ccRCC
progression, we performed GSEA on TCGA-KIRC cohort. The results based on GSEA analysis indicated
that differentially expressed target genes are enriched in immune and metabolism-related functional
pathways. The upregulated DEGs groups, in particular, were enriched in JAK-STAT3 signaling. Meanwhile,
fatty acids metabolism was observed in the downregulated DEGs groups (see Figure 4e). KEGG
enrichment analysis was developed for tumorigenic pathways enrichment analysis in TCGA-KIRC cohort
which demonstrated an association with cytokine-cytokine receptor interaction, fatty acids metabolism
and complement and coagulation cascades (Figure 4f). GO analysis was performed to further explore the
potential biological processes of DEGs and revealed that most immune responses and associated
activities were signi�cantly enriched in these genes (Figure 4g). Thus, these results indicated that the
fatty acids metabolism might contribute to ccRCC development mainly concentrated on immune
response.

Evaluation of joint indicators and multi model comparison

To establish the superiority of our model, we conducted a comparison of the accuracy of several immune
indicators and previous studies in the TCGA-KIRC cohort. [20]. The ROC curve indicated that the AUC of
the risk score is signi�cantly higher than other indicators and other fatty acids metabolism-related model,
suggesting that our model was more accurate(Figure 4h). Overall, the constructed model demonstrated
greater representativeness in fatty acids metabolism compared to other network models or
indicators.Validation of mRNA expression
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To analyze the mRNA expression pro�les, we explored the expression levels of 6 fatty acids metabolism-
related genes in our risk model in tumor and normal tissues as well as ccRCC cell lines. The qPCR results
indicated that the expression levels of ABCD1, ALOX12B, ALOX15B, HACD1, IL4I1 signi�cantly
upregulated in tumor samples, while the expression of CPT1B was low in RCC tissues (Figures 5a, 5b).
Similarly, the expression patterns of these six genes were also observed in ccRCC cell lines (Figure 5c).
Additionally, oligo sequences in the qPCR were displayed in Supplementary Table S2.

Silencing IL4I1 suppresses the growth and invasion of ccRCC cells

To elucidate the role of IL4I1 in ccRCC migration and invasion in vitro, three siRNA speci�cally targeting
IL4I1 (si-IL4I1-1, si-IL4I1-2 and si-IL4I1-3) were constructed respectively (Figure 5d). Transwell assays
revealed that the migration and invasion capabilities of 786-O and 769-P were inhibited after the silence
of IL4I1 (Figure 6a). Furthermore, in accordance with the above results, colony formation assays and
wound healing demonstrated that silencing IL4I1 signi�cantly suppresses the proliferation of 786-O and
769-P (Figures 6b, 6c). Altogether these results collectively elucidated that IL4I1 could promote the growth
and invasion of ccRCC cells.

Silencing IL4I1 impacts JAK1/STAT3 signaling pathway

Based on the above analysis about our model, GSEA suggested that our model strongly associated with
JAK1/STAT3 signaling pathway (Figure 5e). To further clarify the effects of IL4I1 on JAK1/STAT3
signaling pathway, western blot was assessed to test IL4I1’s contribution to the functional outcomes of
JAK1/STAT3 signaling pathway. The result showed that silencing IL4I1 downgrades the expression of
phosphorylated JAK1 and phosphorylated STAT3 (Figure 5f), suggesting that IL4I1 could modulate
JAK1/STAT3 signaling pathway and lead to JAK1/STAT3 phosphorylation.

Silencing IL4I1 inhibits M2-like macrophages polarization

To investigate whether IL4I1 signaling to Chemokine ligand 2 (CCL2) could mediate macrophages
polarization, an indirect co-culture condition between si-IL4I1-transfected 786-O and 769-P as well as M0-
like macrophages was conducted. Flow cytometry results revealed that silencing IL4I1 inhibited M2-like
macrophages polarization (Figures 7b,7c). Additionally, western blot also implied that silencing IL4I1
could suppress the level of CD206 (M2 macrophage surface marker) (see Figure 7d) and even CCL2
expression of si-IL4I1-transfected ccRCC cells (786-O and 769-P) (Figure 5f). Moreover, IHC staining
validated that the high expression of IL4I1 and CD206 in tumor samples were simultaneously higher than
that in adjacent normal tissues (Figure 7a). In summary, these results proved that the knockdown of IL4I1
in si-IL4I1-transfected 786-O and 769-P inhibited M2-like macrophage polarization engaged by the
regulation of CCL2.

Discussion
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The dynamic fatty acids metabolism disorder of malignant cells has a profound in�uence on tumor-
targeting immune responses in TME. Dysregulated fatty acids metabolism can lead to the accumulation
of lipids, which in turn can modulate the activity of tumor-associated macrophages (TAMs) and suppress
immune surveillance [12] [21]. In particular, high expression of fatty acids synthase (FAS) serves as an
adverse predictive marker for survival prognosis[22].. Correspondingly, the JAK/STAT signaling pathway
is essential in M1 and M2 macrophage polarization[23], with upregulated fatty acids oxidation enhancing
phosphorylation of JAK1 as well as STAT6 activation to regulate the generation of M2-like TAM[24].
While a previous report has constructed a prognosis model for fatty acids metabolism in ccRCC[20], it
lacks satisfactory predictive abilities, and is unable to associate tumor immune microenvironment with
fatty acids metabolism through a well-de�ned method, lacking the corresponding immune validation set
and experimental evidence.

In the study, we constructed a fatty acids metabolism-related prognosis model and explored mechanisms
that fatty acids metabolism impacts on the therapeutic effect of anti-PD-1/PD-L1 in tumor immune
microenvironment in ccRCC. Based on related fatty-acids-metabolism-related genes in TCGA-KIRC train
cohort, an e�cient prognostic model for ccRCC patients consisting of 20 genes was constructed through
univariate and multivariate Cox regression analysis as well as LASSO analysis. We further explore the
prognostic value of model on the internal and external test sets through ROC curves and KM curves by
the median of all risk scores. The AUC of the TCGA-KIRC train, and test cohort as well as E-MTAB-1980
cohort demonstrated a good prognostic e�ciency. Additionally, ccRCC patients with high-risk score in all
cohorts had signi�cantly lower survival probability. High-risk groups were found to be correlated with
higher tumor grade and advanced pathologic stage in the TCGA-KIRC cohort.. Subsequently, a new
nomogram was conducted including independent prognostic factors (age, stage, and risk score) and had
a good predictive performance. For the purpose of promotion in immunotherapy in ccRCC patients, based
on three Immune-related cohorts (CheckMate-025, IMmotion150 and IMmotion151), results indicated that
high-risk group had a signi�cantly lower response to anti-PD-1/ PD-L1 therapy. Further investigation
revealed that a high potential of immune escape phenotype existed in the high-risk group in the TCGA-
KIRC cohort through the TIDE algorithm, implying that high risk score in this model predicts poor
prognosis in ccRCC patients treated with immunotherapy. In addition, we also found that the higher
immune score occurred in the high-risk group. Therefore, our �ndings provide a model to identify which
type of ccRCC patients are more suitable for immunotherapy and achieve a better curative effect. ccRCC
is more frequently known as a proin�ammatory neoplasia and can recruit polyclonal CD8+T cells through
cytokines production[25-28]. However, high densities of CD8+T cells are involved in the poor clinical
prognosis of ccRCC patients[29]. Consistent with these �ndings, immune signatures analysis in TCGA-
KIRC cohort suggested that in�ammation-promoting, T cell co-stimulation, checkpoint, CCR, and Type I
IFN response were found to be higher in the high-risk group than the low-risk group. Our �ndings also
observed that the high-risk group presented signi�cantly higher IC50 values and was less sensitive to the
agents than the low-risk group. To aid in clinical decision-making, drug sensitivity, Pearson correlation
analysis were performed and indicated that the risk score had positive correlation with IC50 of C-75.
Interestingly, C75 is an inhibitor of fatty acids synthase (FAS) which triggers apoptosis during S phase
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and inhibits fatty acids synthesis in liver cancer[30, 31], which might be an effective targeted therapy of
ccRCC. To analyze if the model could provide new indications for immunotherapy, it was noteworthy that
the related functional pathways or immune checkpoints were recognized to be positively correlated with
IL6-JAK-STAT3 signaling and prominent immune checkpoints (including PD-1, PD-L1, LAG-3, and CTLA4).
We compared the accuracy of several associated immune indicators and previous studies in the TCGA-
KIRC cohort and found that the risk score had a signi�cantly higher area under the ROC curve (AUC) than
other indicators and previous models related to fatty acids metabolism. Additionally, we performed RT-
qPCR to consistently evaluated the expression levels of ABCD1, ALOX12B, ALOX15B, HACD1, IL4I1,
CPT1B by RT-qPCR. Among the 20 genes, ATP-binding-cassette transporter subfamily D member 1
(ABCD1) was shown to transport very long chain fatty acyl-CoAs from cytosol to peroxisome for β-
oxidation[32], and mutations of the ABCD1 might cause X-linked adrenoleukodystrophy[33]. Arachidonate
12-lipoxygenase, 12R type (ALOX12B) can convert arachidonic acids to 12R-hydroxyeicosatetraenoic
acids 8 and is responsible for immune activity blocking the uptake of apoptotic cells through
in�ammatory monocytes which reduces antigen presentation to T cells in tumor[34]. Arachidonate 15-
lipoxygenase, type B (ALOX15B) upregulated in RCC-in�ltrating macrophages, mediates lipid metabolism
in TAMs and contributes to tumor progression as well as tumor immunity[35, 36]. 3-hydroxyacyl-CoA
dehydratase 1 (HACD1) has been implicated as a regulator in the membrane composition and �uidity and
elongate the very long chain fatty acids[37]. Carnitine palmitoyltransferase 1B (CPT1B) exerts rate-
controlling-enzyme roles in fatty acids β-oxidation, could be inhibited by Inhibiting JAK/STAT3 promoting
breast cancer cells to re-sensitize to chemotherapy [38]. More importantly, Interleukin-4-induced-1 (IL4I1)
as a metabolic immune checkpoint, activates the Aryl hydrocarbon receptor (AHR), circumvents Immune
Checkpoint Blockade (ICB) and further elicits major effects in immunosuppression shaping tumor
microenvironment [39]. In addition, the expression of IL4I1 by tumor cells related to immune regulatory
mechanisms determines T-lymphocyte inhibition in the tumor microenvironment. IL4I1 is involved in
different in�ltrating lymphocytes to enhance tumor malignancy [40]. The above observations highlighted
that IL4I1 processes promote effects on tumor occurrence, and pleaded for scrutiny in the role of IL4I1 as
a prognosis factor in the crosstalk of fatty acids metabolic reprogramming and immune regulatory
functions in ccRCC. Simultaneously, considering that IL4I1 as a prognosis predictive gene engages in our
constructed model, we scrutinized the role of IL4I1 involved in tumor immune escape in ccRCC. Here, we
noted that the proliferation, migration and invasion capability of ccRCC cells silencing IL4I1 were
decreased. Beyond its correlations with immune processes, the results based on GSEA analysis revealed
that IL4I1 was enriched in the following activated pathways, containing IL6-JAK-STAT3 signaling. GO
functional enrichment analysis exhibited that most immune responses and associated activities were
mainly enriched in these genes. KEGG indicated its association with fatty acids metabolism. In addition,
arachidonic acids alters lipid raft structures to inhibit JAK1and STAT3 phosphorylation in the ovarian
cancer microenvironment where high CD206 expression is in TAMs[41].To further clarify the effects of
IL4I1 on JAK1/STAT3 signaling pathway, western blot was assessed to test IL4I1’s contributions to the
functional outcomes of JAK1/STAT3 signaling pathway. Together, these �ndings implied that IL4I1 could
modulate JAK1/STAT3 signaling pathway and lead to JAK1/STAT3 phosphorylation. Metabolism
regulates macrophage polarization through cytokines and other signaling mediators modulating the
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immune response in TME [42]. Additionally, CCL2 is a chemokine that is secreted by tumor cells to recruit
and activate immune cells and further facilitate anti-tumor activities in TME [43]. To explore if IL4I1
signaling to CCL2 could mediate macrophages polarization, an indirect co-culture condition between si-
IL4I1-transfected ccRCC cells (786-O and 769-P) and M0-like macrophages was conducted and revealed
that silencing IL4I1 inhibited M2-like macrophages polarization associated with JAK1/STAT3
phosphorylation and CCL2 expression.   

To summarize, we describe a novel mechanism underlying fatty acids metabolism that promotes the
crosstalk within and across cancer cells and immune cells in ccRCC tumor microenvironment. However,
several limitations still exist.  Firstly, the optimal cut-off value of risk score was not determined and the
median risk score was used as a surrogate. Furthermore, additional in vivo and in vitro experiments are
required to further elucidate the comprehensive role of the fatty acids metabolism-related prognostic
model in ccRCC.. However, this study represents the most systematical and comprehensive investigation
that elucidates how the fatty acids metabolism in�uences resistance to immunotherapy in ccRCC, which
could serve as potentially a potent orientation to evaluate low immune responses in ccRCC patients.

Conclusion
This study demonstrated that fatty acids metabolism affects alternative polarization of immune cells
correlated with JAK1/STAT3 signaling pathway and CCL2, further in�uencing the therapeutic effect of
PD-1/PD-L1 to ccRCC in tumor immune microenvironment.
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Figures

Figure 1

Overview of the study design and construction of the prognostic model. (a)Flow-chart of bioinformatics.
(b) Heatmap of the differentially expressed fatty acids metabolism genes in KIRC. (c)Volcano plot of the
downregulated and upregulated fatty acids metabolism-related DEGS. (d) Prognostic model construction
by LASSO Cox analysis. (e)Cross-validation for the minimum lambda value in the LASSO regression
model. (f) Forest plot of the prognostic model in multivariate cox analysis.
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Figure 2

The predictive accuracy of the prognostic model. (a-c) ROC curves analysis of the 3-, 5-, and 7-year in
TCGA-KIRC train and test cohort as well as E-MTAB-1980 cohort respectively. (d-f) KM survival analysis of
different risk groups in TCGA-KIRC train, test cohort and E-MTAB-1980 respectively



Page 22/27

Figure 3

Clinical features and a new nomogram as well as immunological characteristics. (a) Clinical correlation
analysis in different risk groups of TCGA-KIRC. (b) ROC curves analysis of risk score and clinical
information in TCGA-KIRC cohort. (c) ROC curves of OS in TCGA-KIRC cohort at 3 year, 5 years, and 7
years. (d) The nomogram to predict 1-, 3-, and 5-year OS in TCGA-KIRC cohort based on risk scores and
clinical factors. (e) The Calibration chart for the evaluation of nomogram accuracy. (f) Differences of risk
scores between CR/PR and SD/PD in the antiPD-L1/PD-1 overall response. (g) The violin plot for TIDE
score in different risk groups. (h)The comparison of immune scores in different risk groups. (i) Role of the
risk score in the immune function of TCGA-KIRC cohort.
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Figure 4

Drug sensitivity analysis and identifying related pathways. (a) Identi�cation of drug sensitivity between
high-risk group and low-risk group. (b) Correlation of drug targets and risk score in TCGA-KIRC cohort. (c)
Pearman’s correlation analysis of functional pathways and risk score in TCGA-KIRC cohort. (d)
Correlations between risk score and immune checkpoints. (e) Comparison of the enrichment of functional
pathways by GSEA analysis of different related risk score. (f) KEGG enrichment of DEGs. (g)GO
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enrichment analysis of the top 30 pathways in different risk groups. (h) The ROC curve of joint indicators
and multi-model comparison.

Figure 5

Prediction and veri�cation of expression levels of mRNA and protein. (a-c) mRNA expression of ABCD1,
ALOX12B, ALOX15B, CPT1B, HACD1 and IL4I1 in different cell lines and normal as well as tumor
samples. (d) Levels of the mRNA expression in si-IL4I1-transfected ccRCC cells (786-O and 769-P). (e)
Protein expression of IL4I1 in ccRCC tumor tissue and normal tissues (f) Protein expression of IL4I1,
JAK1, pJAK1, STAT3, pSTAT3, and CCL2 in si-IL4I1-transfected ccRCC cells (786-O and 769-P). *P < 0.05;
** P < 0.01; *** P< 0.001; **** P< 0.001.
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Figure 6

Veri�cation of IL4I1 for proliferation, migration, and invasion in ccRCC. (a) Transwell migration/invasion
assay to analyse migration and invasion of ccRCC cell. (b-c) colony formation assays and wound healing
to detect ccRCC cell proliferation. *P < 0.05; ** P < 0.01; *** P< 0.001; **** P< 0.001.
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Figure 7

Immunohistochemistry and Coculture assay. (a) Expression of IL4I1and CD206 in ccRCC tumor tissue
and normal tissues by IHC. (b-c) Flow cytometry to detect M2-like macrophage polarization. (d) M2-like
macrophage polarization after coculture assay conducted by western blot. *P < 0.05; ** P < 0.01; *** P<
0.001; **** P< 0.001.
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