
Page 1/21

Approximate Q-Learning-based (AQL) Network
Slicing in Mobile Edge-Cloud for Delay-sensitive
Services
Mohsen Khani

Islamic Azad University
Shahram Jamali (jamali@uma.ac.ir)

University of Mohaghegh Ardabil
Mohammad Karim Sohrabi

Islamic Azad University

Research Article

Keywords: Slice acceptance control, 5G, Approximate reinforcement learning, Network slicing, Mobile
Edge-Cloud

Posted Date: March 8th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2645843/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-2645843/v1
mailto:jamali@uma.ac.ir
https://doi.org/10.21203/rs.3.rs-2645843/v1
https://creativecommons.org/licenses/by/4.0/

Page 2/21

Abstract
Network slicing (NS) technology promises to provide a variety of services based on diverse latency-
sensitive over shared infrastructure in Mobile Edge-Cloud (MEC) by creating customized slices for each
application. However, to process users' dynamic slice requests, the infrastructure provider (InP) must be
the online slice acceptance check and scaled if required. Based on a business model, network revenue is
dependent on the acceptance of slices and the provision of infrastructure for them. If an InP does not
provide more resources for an active slice, the network is penalized and its revenues are degraded. A
proper solution to the aforementioned problem is to use reinforcement learning methods. But most of
these methods have challenges in continuous spaces. This work presents a reinforcement learning-based
method called approximate Q-learning (AQL) to intelligently slice acceptance control (SAC) to maximize
utility in MEC for latency-sensitive services. The core idea of AQL is based on Q-learning, so we have
developed some of its functions to adapt to a large area of spaces and actions. We have evaluated the
performance of AQL in terms of coverage, cumulative rewards, resource utilization, and revenue. The
results show the proposed approach has an acceptable performance.

1. Introduction
In recent years, network slicing (NS) has been introduced as a promising novelty to provide scalability
and �exibility for diverse 5G applications that attach to manifold technical, service, and operation
requirements [1]. This technology enabled infrastructure providers (InP) to create many isolated logic
networks (slices) and share them among applications based on the type of service. The services of 5G
are divided into three groups. (1) Ultra-Reliable and Low Latency Communication (URLLC) (i.e. Remote
surgery, automation driving, etc), (2) Enhanced Mobile Brobroadband (MBB) such as high-de�nition video
streaming, and (3) massive Machine Type Communication (mMTC) [2]. So, in order to serve these
services in real-time constraints, Mobile Edge-Cloud (MEC) computing is raised that empowers devices
with computational resources closer to the users [3, 4]. These edge devices, also known as fog nodes, are
capable of hosting virtualized network functions (VNFs), providing the computing capability for small
cells to bring cloud functionalities to the edge of the network [5, 6]. Since the fog nodes have limited
capacity, they can handle slices that are more sensitive to delay. Also, these nodes are connected with the
central o�ce (CO) through a fronthaul link, and slices that can tolerate some delay are referred to there
[7].

Slices are created by InP to gain revenue based on speci�c requirements (i.e., reliability, latency, capability,
etc.)[8]. Also, according to the variety of requirements, the InP should dynamically scale up/down the
provisioned slices. However, If the slices cannot scale up when they are needed, the service will be
degraded and the InP must pay a penalty corresponding priority of the application [8]. Therefore, in order
to maximize revenue, the InP faces two basic challenges. First, accept as many slice requests (S-REQ) as
possible, and second, avoid the imposition of penalty. So, we need a slice acceptance strategy that can
evaluate the acceptance performance of each slice and factor it into future decisions. So, it is inevitable
to use reinforcement learning (RL) methods, more speci�cally Q-learning. It is a branch of ML that takes

Page 3/21

steps to learn the environment without needing a model (model-free) and having prior knowledge and if it
can get enough training makes the best decision in any state [9, 10]. Because the space of the 5G
environment is large (continuous) and full of random parameters, the use of Q-learning poses a serious
challenge. In this paper, we apply to modify some parameters of Q-learning algorithm to adapt to the
continuous state space in order to make intelligent slice acceptance control (SAC) in mobile MEC and
propose approximate Q-learning (AQL). The proposed method decides which S-REQ should be accepted
by learning how to maximize revenue while minimizing the penalty (rejecting requests that degrade
services). The scenario investigated in this work is a MEC, where applications from users are virtualized
over the same resources. Two types of applications are considered: latency-sensitive (LS) and latency-
tolerable (LT). LS has high revenue/penalty and LT is non-strict latency and low penalty/revenue. The
performance of the proposed AQL is compared against two RL methods, and the results show the
proposed approach has an acceptable performance. In short, the primary contributions of this work can
be summarized as follows:

We divide the applications into two classes according to delay sensitivity and their revenue.

Moreover, we design an RL model to discover an optimal SAC policy to maximize InP revenue in the
MEC environment.

In addition, we seizethe complexity of the SAC in MEC by including time-
varying resource situations, various service requirements, and frequency of requests from users’
information in the state of the system. So, endorse model-free solutions for SAC.

Also, we improve the performance of Q-learning by modifying some effective parameters.

Finally, we propose the optimized approach to design the SAC system

The rest of this work is organized as follows. We consider the related works in Section 2. The system
model is described in Section 3. In Section 4, we provide Q-learning, present how to overcome its
weaknesses through AQL, and explain applying the proposed method to our model. The simulation
results are summarized in Section 5. Finally, sec 6 concludes.

2. Related Works
In recent years, the topic of SAC in 5G has attracted a lot of attention. Some of these works focus on
radio access network (RAN) slicing. Article [11] has addressed the opportunities and challenges of RAN
slicing using ML-based techniques. An ensemble learning method-based SAC for adaptive RAN is
proposed in [12]. Its objective is to support communication services. In [13] authors address the issue of
SAC in the RAN by proposing the earliest deadline �rst (EDF) scheduling. Their reason for choosing RAN
slicing is the limited resources compared to the network core. In the article [14], the authors believe that
due to the stochastic nature of the wireless channels and complex resource coupling between slices, RAN
slicing should be considered more than the �xed side of the network. Their objective is the reduction of
resource usage while guaranteeing slice isolation and simultaneously accounting for each slice's average
rate and delay requirements. Like the reported works, most of the other works [15–19] have addressed the

Page 4/21

mentioned challenges in the �eld of radio slicing. In the new 5G network architectures such as Cloud-RAN
and mobile MEC, the computing and storage functions are separated from the base stations and
transferred to small cells, access points, microcells, CO, etc. [20]. For this reason, working on these
sources is not as important as before and most of the new articles have dealt with the issue of SAC on
cloud resources and edge devices. For example, to maximize long-term revenue a multi-agent deep
reinforcement learning (DRL) for SAC in 5G C-RAN is proposed in [20]. The presented DRL method is able
to learn the dynamics of S-REQ tra�c and effectively address these joint issues. In [21], the authors
proposed a two-timescale method for SAC in C-RAN. They formulated the utility maximization as a two-
stage random scheduling problem and for solving this, �rst transformed the random scheduling problem
into a deterministic optimization problem. They also apply semide�nite relaxation to transform the
problem into a mixed integer nonconvex optimization problem, which is able to be solved via composition
branch-and-bound and primal-relaxed dual techniques. To maximize the InP revenue by properly SAC in
the C-RAN, tang et al [22] formulate it as mixed-integer nonlinear programming. In order to solve this
problem, they used successive convex approximation and semide�nite relaxation approaches. However,
the optimization algorithms used in [13, 14] have high computational costs making them impractical in
the real world. The paper [23] presented an optimized multi-class classi�cation resources management
method based on the cooperative evolution of a support vector machine to assign the spectrum
resources of macrocellular users in the C-RAN. The limitation of the presented method is the small
number of provided services and considering only spectrum resources, while we consider computing and
transmission resources. In the article [24], an innovative method was used to prevent service degradation
for IoT applications in the fog environment. Their main goal is to maximize the number of users while we
consider more services and the goals drawn are diverse. The reported works often only focus on the SAC
problem or consider a small number of applications. Our scenario is such that, while dealing with the
issue of SAC, also examine the resources required by the slices in operation. Two works close to our
article are [25] and [8]. According to the authors [25] although an InP generates revenue by accepting an
S-REQ, however, it might need to pay a penalty (proportional to the level of service degradation) if a slice
cannot be scaled up when required. With this background, they have proposed a big data-based method
for SAC in C-RAN. Their method requires knowledge and data that the algorithm must have and as well
mentions in the article [8], it is almost impossible to achieve this knowledge in the real world of the
network, so it is necessary to use methods that do not require this data. For the mentioned reason, in the
next work [8] and the same scenario, they used the RL method that does not require prior knowledge. In
the continuous environment where the number of actions and states are countless, RL has a fundamental
weakness and in their proposed approach, how to overcome the existing weakness has not been
addressed. Also, their scenario examined the core resources without considering the edge devices. While
our proposed method covers most of the mentioned defects. Our contribution to this article is mentioned
in the introduction section and will be described in a later part. A list of the indices, sets, parameters, and
decision variables of the proposed AQL approach can be summarized in Table 1.

Page 5/21

Table 1
Summary of De�nition

RAN Radio access network

AQL Approximate Q-learning

5G Five-generation mobile network

NS Network slicing

SP Service provider

InP Infrastructure provider

F-RAN Fog radio access network

FN Fog nodes

AP Access point

uRLLC ultra-reliable and low-latency communications

eMBB enhanced mobile broadband

mMTC massive machine-type communication

DL deep learning

DRL deep reinforcement learning

RL reinforcement learning

RM Resource management

CO CentAQL o�ce

BPF Baseband processing function

BS Base station

SPP special purpose processors

vPP virtualized packet processor

VNFs virtual network functions

HC Health care

RS Remote surgery

MEC Mobile edge computing

LS latency-sensitive

LT Latency-tolerable

SAC Slice admission control

Page 6/21

3. System Model And Problem Formulation

3.1. System model
As shown in Fig. 1, we consider a three-layer model based on MEC that consists of, devices, fog nodes,
and the CO. Each user device is connected to a fog node in the radio area which is connected to CO via a
fronthaul link (FHL). We indicate the capacity of links with The fog nodes have a limited
computational function and handle services with the delay-sensitive application. Because some
programs can tolerate some delay, require a slice of functions placed at either the CO or fog nodes. In
Table. 2, we have included the sensitivity of the applications and the location of their required functions.
The computing capacities of the nodes can be captured by the set of

where and denote the S-REQ queue and

maximum ability of the Nth node. Also, a controller equipped with an AQL algorithm performs cross-
domain management of radio, transport, and cloud resources. The number of accepted S-REQs must
follow the rules: (1, 2, and 3).

Constraint (1) ensures that the number of accepted requests does not exceed the capacity of the servers.
Where is a time slot and indicates accept S-REQ in time slot t.

Constraint (2) guarantees that when the node’s capacity is full, the number of accepted S-REQ must be
less/equal than and telorable time.

Constraint (3) guarantees that the bandwidth allocated does not exceed the capacity of the fronthaul link.
Where is the binary decision variable that shows whether a node has the capacity or not.

3.2. Revenue model

W.

Cn = (Q1,A(1)
max) , … ,(Qn,A(n)

max)… , QN A
(N)
max

T

∑
t=0

1{at≈accept}=A
(n)
max, (1)

T at

T

∑
t=0

1{S−REQt≈accept}≥Qn, ∀s ≥ Tt (2)

Qn

∑
l∈W

|c|

∑
n=1

UlsUnsc ≤ W∀n ∈ c|Gn = 1 (3)

Gn

Gn = {
1, ifservernisactive

0otherwise
(4)

Page 7/21

We consider the time-slotted framework that has been formed of a long time slot (LTS) and a short time
slot (STL). At the beginning of LTS, the controller has to decide whether to accept/reject the received S-
REQ, and at the start of each STS, the controller generates the beamformers. In this paper, according to
Table. 2, we consider two classes of S-REQ, LS) and LT. We show the LS S-REQ set as

 and LT S-REQ set as , respectively. Also,
assumed that each LTS contains Z equivalent STS and denote the set of all of them in one LTS as

 A to be served if the total service time is less than the maximum amount of

resources it requires during operation and tolerable time . Otherwise, the slice is not served and fails,
formally,

5
The whole service time for a slice contains the remaining time of the slice running in the chosen

node, the transmission time to o�oad the slice to the CO the waiting time in the queue before

service is computing time and is the resource required a slice in operation state. Also, the price of

each unit of computing and transport resources in the layers is represented by
 where indicates the price of the Nth server at time

slot t, and de�ned as the price of the transport link between N nodes at the time slot t. The amount
of resource usage of each and the links available is shown by
which indicates the amount of use of the Nth node from the DC and indicates the
used capacity of the FHL. Each node will earn an income for InP during the period and based on the
duration of the activity. The revenue can be calculated as:

As mentioned earlier, a penalty occurs when a slice fails to scale up during operation. The amount of the
penalty is calculated according to the following formula for each service:

 Table 2 Classi�cation of services

sSL = {1, … , sSL} sLT = {sSL + 1, … , sSL + sLT}

Z ≜ 1, … ,Z}. REQi,j

Ti,j

fs = {
1, ifsrd + sTi,j + s

Q

d + sCi,j ≤ Ti,j, bo,t

0, otherwise

si,j srd
sTi,j , s

Q
n

, sCi,j bo,t

MZ = {Mn1,t, Mn2,t, … , MNn,t, MLn,t} , MDN ,t

Ln,t

UT = {ud1,t,ud2,t, … ,uDn,t,uLn,t}

uDn,t uLn,t, D uLn,t

InPrev =
Z

∑
t=0

MN +
Z

∑
t=0

MLn − (∑srns
T
i,js

Q
n s

C
i,j +

Z

∑
t=0

UT) (6)

InPpen = InPrev × fs (−STS∑ srns
T
i,js

Q
n s

C
i,j + ∑T

t=0 UZ) (7)

Page 8/21

Applications Bandwidth Latency Executor nodes Example

Latency-sensitive (LS) ≤ 5 Mbps ≤ 5 MS Fog nodes Remote surgery

3–7 Mbps ≤ 10 MS Fog nodes Remote driving

Latency-telorable (LT) ≤ 10 Mbps 50 ms-1s Fog nodes & CO Augment reality

15 ~ Mbps ≤ 5 s Fog nodes & CO Smart city

≤ 100 Mbps ≤ 5 s Fog nodes & CO 3D video

3.3. Problem formulation
In the incoming MEC computing �eld, the InP makes an effort to accept as many S-REQs as possible to
maximize long-term revenue. However, a reason to limited resources it, is not possible to accept incoming
S-REQ. For this purpose, the InP has to properly select and accept S-REQ. Besides the analysis from the
last subsection, the LTS revenue from accepted S-REQ is:

s.t.

Problem (8) is NP-hard as it has non-linear and conditional constrain. We use the AQL method to solve
this problem, which will be explained later.

4. Proposed Method
In this part, we explain the Q-learning method and will improve some of its capabilities including the train-
validation phase for adopting SAC.

4.1. Q-learning algorithm
The Q-learning algorithm is one of the most powerful RL algorithms which seeks to �nd the optimal
policy in each state without the need for prior knowledge or data. Similar to all machine learning
algorithms, the Q-learning follows the features of the Markov decision process (MDP) model, which is
de�ned by a tuple (. are possible states and actions respectively, is a probability of
transferring from state to by and is a reward function. In this article, the AQL agent is embedded in
the cloud controller which is a charge for deciding whether to accept or reject S-REQs. On the other hand,
the agent needs a policy that to able maximizing overall rewards as follows:

max
a0,…,aZ−1

Z

∑
t=0

1{at=acceptand min
a0,…,aZ−1

Z

∑
t=0

1{at=reject}

max
N

∑
n=1

InP revand Min
N

∑
n=1

InPpen (8)

fs = 1, (1) , (2) ,and (3)

π*

S,A, p, r) S,A p

S s′ , r

Page 9/21

 s.t.

(9)

Where γ is the discount factor and its amount (0 < γ > 1) and is the expected value. We de�ne the value
function to represent the expected value that is able to be achieved through a policy beginning
from state as below.

The Q-learning effort to learn the value of taking a speci�c for a given , ie. Q-value, through a
sequence updating the Q in a temporal difference (TD) manner as.

Where is the learning rate. Therefore, the Q-learning algorithm is able to obtain the optimal policy when
action-state spaces are discrete. Since the 5G environment is massive and full of stochastic parameters,
using traditional Q-learning leads the Q-value table to explode and lack convergence in the exploration
and exploitation phases. Due to this, we improve this algorithm and introduce the AQL algorithm. The
core idea of the AQL is obtained from a linear combination of features:

Here, we have added parameters which represent a feature and its weight to the algorithm Also,
we have generated features according to the important characteristics of the system and given them a
default value. The agent has to learn and update the weights for each feature from the model states. A
feature is de�ned over the state and action pairs, which yields a vector

. The weights are updated according to the following rule:

13

π∗ = argmax
π

E [∑t≥0 γ
tRtπ] s0 ∼ p (s0) a0 ∼ π (. |s1) at ∼ π (. |st) at+1 ∼ p (. |st,at)

E

V π (s) π

s

V π (s) = E [∑
t≥0

γ tRt s0 = s,π] (10)

a S

Q (s,a) ← Q (s,a)α[R + γmax
a′

Q(s′,a′) − Q (s,a)] (11)

α

Q (s,a)

Q (s,a; w) =
n

∑
i=1

fi (s,a) wi (12)

fandw .

f (s,a) (f0 (s,a) . f1 (s,a) . …

. fi (s,a) … . fn (s,a))

Newsample : (s,a, s′, r)

difference = [r + γmax
a′

Q(s′,a′) =] − Q (s,a)

wi ← wi + α. [difference] × fi(s, a)

wi ← wi + α.(r + γmax
a′

Q (s′,a′) − Q (s,a)) × fi (s,a)

Page 10/21

Algorithm

, shows the learning process of the proposed method by pseudo-code. To use ARL to SAC, �rstly, we must
extract and de�ne the related features and weights. In order to, the capacities of fog nodes, CO and FHL
transfer to a container, and, their values are numbered according to the standardization made. Also, one
counter-deployment into each container represents the resource status. Based on these criteria, we were
able to de�ne 5 proper to improve the performance of the algorithm:

() Accepting S-REQ whenever they arrive

() Reaching the counter to the container roof

() Accepting S-REQ with high pro�t at any time

() The proximity of the counter to the container �oor

(Fairness in accepting different types of class

Therefore, Initial weights are given for the 5 features that are:

f1

f2

f3

f4

f5)

Q (s,a) = −w1f1 (s,a) + w2f2 (s,a) + w3f3 (s,a) − w4f4 (s,a) +w5f5 (s,a) (14)

Page 11/21

Algorithm 1, AQL

1- Set features from the model states

2- Initialize random weights

3- Reward function

4- The agent is chosen with probability epsilon value

5- Learning rate:

6- Discounting factor:

7- Procedure ARL

8- Initialize

9- While weights are not converged do

10-

11- While weights are not converged and terminal

12- Repeat (for each step of the episode):

Update weights

13-

14- Return

15- Update the policy

5. Scenario Description And Simulation Results

5.1. Scenario description
This part explains the evaluation of the proposed AQL. It tests by using custom-built python-based
PyTorch - an open-source ML framework- that accelerates the route from research prototyping to

R : S × A⟶ R

a ϵ;

α ∈ [0,1]

γ ∈ [0,1]

(S,A,T ,α,γ)

Q (s,a) , ∀s ∈ S,a ∈ A (s) , arbitrarily, andQ(terminal − state, .) = 0

wi ← wi + α.(r + γmax

a′

Q (s′,a′) − Q (s,a)) × fi (s,a)

UpdateQ (s,a)

Q

Page 12/21

production deployment. In addition, PyTorch used several RL-speci�c libraries such as TensorFlow, Cras,
etc. to handle RL methods. To evaluate the AQL, a stochastic topology with 10 Fog nodes and 2 CO is
designed. We dedicated 2 types of resources named CPU and bandwidth to physical nodes with 20 units
to each fog node and 50 units to each CO, according to the article [1, 2]. We assume communication
resource is enough. We consider 5 SPs with an average of 100 users related to them and different
sensitivities and a variety of requirements. These requirements include delay tolerance and needed
resources at different levels. The needed resource for each slice follows a uniform distribution between 1
and 15 resource units during each time step of the service. Also, in the proposed scenario, the operation
time of a slice is from 1 to 24 hours with an interval of 1 hour. 2 types of SP are service class 1 and serve
this application in edge device and class 2 that required function provision both edge and CO nodes. The
AQL is compared against three methods including Deep reinforcement learning (DRL) also known as
Deep Q-network (DQN), which is state-of-the-art, and this method has been used in some recent works
[26–28], Q-learning, and random. We have used the Q-learning algorithm to better show the speed of
convergence and the cumulative rewards. Additionally, random uses a �rst-come, �rst-served approach,
and any S-REQ sent to the controller �rst is served. Gamma value, learning rate, and other
hyperparameters are considered the same in all intelligent algorithms, and by changing the parameters in
the proposed algorithm, the same value is set for other methods under test. In addition, to evaluate the
e�ciency of the algorithm, the methods have been evaluated in terms of convergence speed and
cumulative reward, and to check the performance of the methods in the network environment, resource
usage and gaining revenue, and have been tested. Also, in this article, in order to better show the
performance of the approaches, we converted all the tested values into percentages by the normalization
method. To achieve more information about DRL, it is recommended to study articles [29–31].

5.2. Simulation results
In this section, the convergence speed of the algorithms is �rst examined. The convergence of RL
algorithms depends on the repetition of operations (iteration) in the exploration phase. On the other hand,
several tests (episodes) are needed in the training phase so that the algorithm can enter the exploitation
phase. We claim that our algorithm has the capability of fast convergence even in large environments.
This claim is based on extracting features and assigning default weights to them so that instead of
training the actions in each state, the algorithm only learns the weight of the features and performs the
corresponding action based on the weights. Figure 2. shows the performance of the methods in terms of
convergence. In this experiment, we have set the learning rate of the algorithms in three different numbers
0.25, 0.5, and 0.75. The closer the number is to 1, the more weight gives to newer experiences. The test
output under all three numbers set for the learning rate is averaged and shown as a graph in Fig. 2. Also,
5000 episodes were performed during the simulation. For a better understanding of the performances, the
convergence on line 0 is set. As can be seen, the AQL has converged with the adjusted line in the same
initial episodes, and this is because the algorithm has avoided unnecessary actions in each state and
only updated the weights according to the features. Needless to say, the DQN algorithm also has a good
performance due to the use of a target network and mini-batching from that network, but despite the
power of DQN, AQL has a better performance than this method. Because the Q-learning stores all the

Page 13/21

actions/states in the Q-value table and performs the optimal policy after obtaining all the information, it
performs poorly in larger dimensions.

Another important parameter for evaluating RL algorithms is cumulative received rewards. In each action,
if resources are allocated to a slice, a score is added to the rewards. If we cannot add the resource to the
active slices when required, a punishment will be imposed on the agent. Optimal politics are the
maximization of the total rewards. We have tested cumulative rewards to evaluate the e�ciency of the
algorithm and graphed the result in Fig. 3. As shown by the green line, the proposed method seeks to
increase this parameter by receiving rewards greedily, and with the �rst punishment, the greedy
movement stops and collects the rewards intelligently. Also, leaving the CO resource capacity empty while
the edge resources are fully consumed leads to punishment. For simplicity, we set the maximum reward
received on line 1 and compare the methods with each other. However, the AQL reaches the mentioned
line faster than other methods.

The goal of the InP is to make money by renting out resources. This revenue is priced per unit and the
resulting pro�t is estimated in this way. Figure 4, shows the average earned income according to rule (6).
We have mapped the total price of resources in percentage and we show the amount of acquisition with
it. Because the request method is distributed, at the beginning of the slice acceptance process, the
random method due to the lack of a speci�c strategy, has been able to earn 40%. Since the use of the CO
resource depends on the existence of empty capacity in the Fog-node, by accepting each request, the
capacities of the fog devices are completed and it leads to no signi�cant increase in income in the
random method. For the total price of the resources, the proposed method has been able to earn about
93% of the income. Compared to the DRL method, our method performs 14% better this semester.

With the optimal performance of the AQL in the �eld of revenue, the proposed method should work better
in resource usage and prevent them from being idle. The amount of resource consumption is checked at
the edge locations, connections, and CO. The usage of these resources has been tested and the average
consumption of all resources is shown in the form of a linear diagram in Fig. 5. As can be seen, with the
increase in the number of users, the usage of the random method increases to about 40%, and the
majority of this growth is estimated to be due to the consumption of resources at the edge nodes. With
the increase of S-REQ, the number of consumed resources has not grown signi�cantly and this shows
that if smart methods are not used, network resources will be wasted. The proposed method has an
acceptable resource usage rate compared to other smart methods, so with the increase of S-REQ, this rate
has reached about 85%. The DQN method has a high usage rate compared to the proposed method but
considering that the AQL revenue is about 18% better than DQN, we conclude that the proposed method
has a smarter consumption. Also, AQL kept about 15% of the resources for possible requests of slices,
which shows that training the agent based on features 2 and 3 is effective and that the agent has the
necessary intelligence.

6. Conclusion

Page 14/21

In this work, we have proposed an approximate Q-learning-based network slicing that can be used in a
mobile edge-cloud (MEC) where multiple applications ask for resource slices to accommodate service
with different requirements constraints. Based on NFV-enabled resource function virtualization, the
resources of the MEC are sliced among various applications to improve resource utilization and serve
more customers. Our main �nding is that the traditional machine learning method cannot perform well in
MEC environments with continuous space and in�nitive actions. Additionally, we receive that an
intelligent slice acceptance policy can to maximize the overall net pro�t. For this reason, we enhance
reinforcement learning performance by an added extra parameters for the controller agent rapidly
converge between the exploration and exploitation phase and �nd the optimal policy for the slice
acceptance control. The experiment results have shown that the proposed method outperforms the Q-
learning, deep reinforcement learning, and random approaches and can better behave to maximize
resource utilization, convergence speed, cumulative rewards. In future work, researchers can investigate
the resource allocation for delay-sensitive applications in the environment of cloud-RAN 5G networks via
reinforcement learning methods.

Declarations
Funding There are no sponsors or funding sources for this article

Competing interests

The authors whose names are listed immediately below certify that they have NO a�liations with or
involvement in any organization or entity with any �nancial interest (such as honoraria; educational
grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or
other equity interest; and expert testimony or patent-licensing arrangements), or non-�nancial interest
(such as personal or professional relationships, a�liations, knowledge or beliefs) in the subject matter or
materials discussed in this manuscript.

Author names:

Mohsen khani

Shahram jamali

Mohammad karim sohrabil

Availability of data and materials

Because the proposed method does not require a model and previous knowledge, therefore, no data or
datasets have been used.

Ethical Approval

All scienti�c, academic, and policy ethics of the journal are approved.

Page 15/21

Authors' contributions

This article is the result of several months of study and research, which is extracted from the doctoral
thesis. Also, author A is responsible for presenting the research idea, designing the study, collecting data,
and analyzing and interpreting the data. Author B collaborated in writing the initial version of the
manuscript or revising and critically reviewing it in such a way that the text changes and evolves in terms
of scienti�c content. Author C is responsible for reading and approval of the �nal version of the
manuscript before submission

References
1. Rost, P., et al., Network slicing to enable scalability and �exibility in 5G mobile networks. IEEE

Communications magazine, 2017. 55(5): p. 72–79.

2. Salhab, N., R. Langar, and R. Rahim, 5G network slices resource orchestration using Machine
Learning techniques. Computer Networks, 2021. 188: p. 107829.

3. Liu, H., et al., Mobile edge cloud system: Architectures, challenges, and approaches. IEEE Systems
Journal, 2017. 12(3): p. 2495–2508.

4. Shakarami, A., et al., A survey on the computation o�oading approaches in mobile edge/cloud
computing environment: a stochastic-based perspective. Journal of Grid Computing, 2020. 18(4): p.
639–671.

5. Chantre, H.D. and N.L. da Fonseca, Multi-objective optimization for edge device placement and
reliable broadcasting in 5G NFV-based small cell networks. IEEE Journal on Selected Areas in
Communications, 2018. 36(10): p. 2304–2317.

�. Mohammadi, F., S. Jamali, and M. Bekravi, Survey on job scheduling algorithms in cloud computing.
International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 2014. 3(2):
p. 151–154.

7. Xiang, H., et al., Network slicing in fog radio access networks: Issues and challenges. IEEE
Communications Magazine, 2017. 55(12): p. 110–116.

�. Raza, M.R., et al., Reinforcement learning for slicing in a 5G �exible RAN. Journal of Lightwave
Technology, 2019. 37(20): p. 5161–5169.

9. Watkins, C.J. and P. Dayan, Q-learning. Machine learning, 1992. 8(3): p. 279–292.

10. Clifton, J. and E. Laber, Q-learning: theory and applications. Annual Review of Statistics and Its
Application, 2020. 7: p. 279–301.

11. Mazied, E.A., L. Liu, and S.F. Midkiff, Towards Intelligent RAN Slicing for B5G: Opportunities and
Challenges. arXiv preprint arXiv:2103.00227, 2021.

12. Moon, S.I., et al. Ensemble learning method-based slice admission control for adaptive RAN. in 2020
IEEE Globecom Workshops (GC Wkshps. 2020. IEEE.

Page 16/21

13. Guo, T. and A. Suárez, Enabling 5G RAN slicing with EDF slice scheduling. IEEE Transactions on
Vehicular Technology, 2019. 68(3): p. 2865–2877.

14. Papa, A., et al. Optimizing dynamic RAN slicing in programmable 5G networks. in ICC 2019–2019
IEEE International Conference on Communications (ICC). 2019. IEEE.

15. Bakri, S., B. Brik, and A. Ksentini, On using reinforcement learning for network slice admission control
in 5G: O�ine vs. online. International Journal of Communication Systems, 2021. 34(7): p. e4757.

1�. Vila, I., et al. Performance measurements-based estimation of radio resource requirements for slice
admission control. in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall). 2019. IEEE.

17. Pérez-Romero, J. and O. Sallent, Optimization of multitenant radio admission control through a semi-
Markov decision process. IEEE Transactions on Vehicular Technology, 2019. 69(1): p. 862–875.

1�. Yang, J., et al., Joint admission control and routing via approximate dynamic programming for
streaming video over software-de�ned networking. IEEE Transactions on Multimedia, 2016. 19(3): p.
619–631.

19. Kulmar, M., I. Müürsepp, and M.M. Alam. The Impact of RAN Slice Bandwidth Subpartitioning on Slice
Performance. in 2022 International Wireless Communications and Mobile Computing (IWCMC).
2022. IEEE.

20. Sulaiman, M., et al. Multi-Agent Deep Reinforcement Learning for Slicing and Admission Control in
5G C-RAN. in NOMS 2022–2022 IEEE/IFIP Network Operations and Management Symposium. 2022.
IEEE.

21. Zhang, H. and V.W. Wong, A two-timescale approach for network slicing in C-RAN. IEEE Transactions
on Vehicular Technology, 2020. 69(6): p. 6656–6669.

22. Tang, J., B. Shim, and T.Q. Quek, Service multiplexing and revenue maximization in sliced C-RAN
incorporated with URLLC and multicast eMBB. IEEE Journal on Selected Areas in Communications,
2019. 37(4): p. 881–895.

23. Kumar, N. and A. Ahmad, Cooperative evolution of support vector machine empowered knowledge-
based radio resource management for 5G C-RAN. Ad Hoc Networks, 2022. 136: p. 102960.

24. Ai, Y., et al., Joint resource allocation and admission control in sliced fog radio access networks.
China Communications, 2020. 17(8): p. 14–30.

25. Raza, M.R., et al., A slice admission policy based on big data analytics for multi-tenant 5G networks.
Journal of Lightwave Technology, 2019. 37(7): p. 1690–1697.

2�. Li, R., et al., Deep reinforcement learning for resource management in network slicing. IEEE Access,
2018. 6: p. 74429–74441.

27. Wang, H., et al., Data-driven dynamic resource scheduling for network slicing: A deep reinforcement
learning approach. Information Sciences, 2019. 498: p. 106–116.

2�. Qi, C., et al., Deep reinforcement learning with discrete normalized advantage functions for resource
management in network slicing. IEEE Communications Letters, 2019. 23(8): p. 1337–1341.

29. Li, Y., Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

Page 17/21

30. Arulkumaran, K., et al., Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine,
2017. 34(6): p. 26–38.

31. Mousavi, S.S., M. Schukat, and E. Howley. Deep reinforcement learning: an overview. in Proceedings
of SAI Intelligent Systems Conference (IntelliSys) 2016: Volume 2. 2018. Springer.

Figures

Figure 1

Edge computing model

Page 18/21

Figure 2

Convergence speed between exploration and exploitation

Page 19/21

Figure 3

Average cumulative rewards

Page 20/21

Figure 4

Average earned revenue

Page 21/21

Figure 5

The average resource usage

