[1] L. Wang, H.D. Xiong, S.U. Rehman, Q.L. Tan, Y. Chen, L.L. Zhang, J.P. Yang, F.Z. Wu, M.L. Zhong, Z.C. Zhong, Microwave absorbing property enhancement of FeSiCr nanomaterials by regulating nanoparticle size, J. Alloy. Compd. 803 (2019) 631-636.
[2] Y.C. Qing, L.Y. Ma, X.C. Hu, F. Luo, W.C Zhou, NiFe2O4 nanoparticles filled BaTiO3 ceramics for high-performance electromagnetic interference shielding applications, Ceram. Int. 44 (2018) 8706-8709.
[3] F. Wan,J.H. Yan,H.M. Xu, Enhanced microwave absorbance of oxidized SiCf/AlPO4, composites via the formation of a carbon layer on the SiC fibre surface, J. Eur. Ceram. Soc. 38 (2018) 4356-4362.
[4] L.B. Kong, Z.W. Li, L. Liu, R. Huang, M. Abshinova, Z.H. Yang, C.B. Tang, P.K. Tan, C. R. Deng, S. Matitsine, Recent progress in some composite materials and structures for specific electromagnetic applications, Int. Mater. Rev. 58 (2013) 203-259.
[5] Y.C. Qing, Q.L. Wen, F. Luo, W.C. Zhou, Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band, J. Mater. Chem. 4 (2016) 4853-4862.
[6] Y.K. Dou, J.B. Li, X.Y. Fang, H.B. Jin, M.S. Cao, The enhanced polarization relaxation and excellent high-temperature dielectric properties of N-doped SiC, Appl. Phys. Lett. 104 (2014) 052102.
[7] X.Y. Yuan, L.F. Cheng, Y.J. Zhang, S.W. Guo, L.T. Zhang, Fe-doped SiC/SiO2 composites with ordered inter-filled structure for effective high-temperature microwave attenuation, Mater. Design. 92 (2016) 563-570.
[8] J. Yuan, H.J. Yang, Z.L. Hou, W.L. Song, H. Xu, Y.Q. Kang, H.B. Jin, X. Y. Fang, M.S. Cao, Ni-decorated SiC powders: Enhanced high-temperature dielectric properties and microwave absorption performance, Powder Technol. 237 (2013) 309-313.
[9] E. Padmini, K. Ramachandran, M. Muralidharan, Structural, optical, magnetic and dielectric properties of Dy-doped SrTiO3 nano ceramics, J. Mater. Sci-Mater. El. 29 (2018) 17078-17088.
[10] E. Grabowska, Selected perovskite oxides: Characterization, preparation and photocatalytic properties—A review, Appl. Catal. B-Environ. 186 (2016) 97-126.
[11] Q. Zhang, Y. Huang, S.Q. Peng, T.T. Huang, J.J. Cao, W.K. Ho, S.C. Lee, Synthesis of SrFexTi1-xO3-δ nanocubes with tunable oxygen vacancies for selective and efficient photocatalytic NO oxidation, Appl. Catal. B-Environ. 239 (2018) 1-9.
[12] H.D. Choi, HW.W. Shim, K.Y. Cho, H.J. Lee, C.S. Park, H.G. Yoon, Electromagnetic and electromagnetic wave-absorbing properties of the SrTiO3-epoxy composite, J. Appl. Polym. Sci. 72 (1999) 75- 83.
[13] D. Thomas, C. Janardhanan, M.T. Sebastian, Mechanically flexible butyl rubber-SrTiO3 composite dielectrics for microwave applications, Int. J. Appl. Ceram. Technol. 8 (2011) 1099-1107.
[14] V.S. Nisa, S. Rajesh, K.P. Murali, V. Priyadarsini, S.N. Potty, R. Ratheesh, Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications, Compos. Sci. Technol. 68 (2008) 106-112.
[15] T. Luo, X.X. Shan, J.W. Zhao, H.H. Feng, Q. Zhang, H.T. Yu, J.S. Liu, Improvement of quality factor of SrTiO3 dielectric ceramics with high dielectric constant using Sm2O3, J. Am. Ceram. Soc. 102 (2019) 3849-3853.
[16] E. Bellingeri, D. Marré, I. Pallecchi, L. Pellegrino, G. Canu, A. S. Siri, Deposition of ZnO thin films on SrTiO3 single-crystal substrates and field effect experiments, Thin Solid Films, 486 (2005) 186-190.
[17] K. Chandra Babu Naidu, T. Sofi Sarmash, V. Narasimha Reddy, M. Maddaiah, P. Sreenivasula Reddy, T. Subbarao, Structural, dielectric and electrical properties of La2O3 doped SrTiO3 ceramics, J. Aust. Ceram. Soc. 51 (2015) 94-102.
[18] Y.Y. Zhou, Q.L. Wen, Z.W. Ren, H. Xie, S.P. Tao, W.C. Zhou, Gadolinium-doped strontium titanate for high-efficiency electromagnetic interference shielding, J. Alloy. Compd. 733 (2018) 33-39.
[19] M.J. Sayagués, F.J. Cotor, M. Pueyo, R. Poyato, F.J. Garcia-Garcia, Mechanosynthesis of Sr1-xLaxTiO3 anodes for SOFCs: Structure and electrical conductivity, J. Alloy. Compd. 763 (2018) 679-686.
[20] S.L. Chen, L.X. Li, S.H. Yu, H.R. Zheng, Z. Sun, W.J. Luo, The effects of inequivalent La3+ introduction on the structure and dielectric properties of SrTiO3 ceramic at microwave range, Mater. Chem. Phys. 216 (2018) 339-344.
[21] Z.N. Yang, F. Luo, W.C. Zhou, D.M. Zhu, Z.B. Huang, Design of a broadband electromagnetic absorbers based on TiO2/Al2O3 ceramic coatings with metamaterial surfaces, J. Alloy. Compd. 687 (2016) 384-388.
[22] S.K. Sahoo, D.C. Agrawal, D.C. Dube, Microwave dielectric ceramics in the system Al2O3 SrTiO3, Ferroelectrics, 327 (2005) 51-56.
[23] Q.L. Wen, W.C. Zhou, H. Gao, Y.Y. Zhou, F. Luo, D.M. Zhu, Z.B. Huang, Y.C. Qing, High dielectric and microwave absorption properties of ultra-thin (1-x)SrTiO3-δ−xSrAl12O19 films, Ceram. Int. 44 (2018) 12210-12215.
[24] Z.Y. Shen, Q.G. Hu, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Z.X. Xie, R.H. Liao, Structure and dielectric properties of Re0.02Sr0.97TiO3 (Re=La, Sm, Gd, Er) ceramics for high-voltage capacitor applications, J. Am. Ceram. Soc. 96 (2013) 2551-2555.
[25] A. Tkach, T.M. Correia, A. Almeida, J. Agostinho Moreira, M.R. Chaves, O. Okhay, P.M. Vilarinho, I. Gregora, J. Petzelt, Role of trivalent Sr substituents and Sr vacancies in tetragonal and polar states of SrTiO3, Acta Mater. 59 (2011) 5388-5397.
[26] W.Q. Luo, L. Zhang, Z.Y. Shen, Structure and energy storage characteristics of charge self-compensated rare earth doped strontium titanate ceramics, China Ceram. 53 (2017) 31-35.
[27] C.W. Zhong, B. Tang, Y.D. Tan, S.R. Zhang, Impacts of Al2O3 doping on microstructure, phase constitution and microwave dielectric properties of Ca0.61Nd0.26TiO3 ceramics, T. Indian Ceram. Soc. 76 (2017) 97-101.
[28] Q.Z. Jiao, Y.F. Wang, L. Hao, H.S. Li, Y. Zhao, Synthesis of magnetic nickel ferrite microspheres and their microwave absorbing properties, Chem. Res. Chin. Univ. 32 (2016) 678-681.
[29] H.J. Wei, X.W. Yin, Z.X. Hou, F.R. Jiang, H.L. Xu, M.H. Li, L.T. Zhang, L.F. Cheng, A novel SiC-based microwave absorption ceramic with Sc2Si2O7 as transparent matrix, J. Eur. Ceram. Soc. 38 (2018) 4189-4197.
[30] X.Y. Yuan, L.F. Cheng, L.T Zhang, Electromagnetic wave absorbing properties of SiC/SiO2 composites with ordered inter-filled structure, J. Alloy. Compd. 680 (2016) 604-611.
[31] R.W. Shu, G.Y. Zhang, X. Wang, X. Gao, M. Wang, Y. Gan, J.J. Shi, J. He, Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers, Chem. Eng. J. 337 (2018) 242-255.
[32] X.G. Huang, M.J. Zhang, Y.S. Qin, Y.Y. Chen, Bead-like Co-doped ZnO with improved microwave absorption properties, Ceram. Int. 45 (2019) 7789-7796.
[33] Y.C. Qing, W.C. Zhou, S. Jia, F. Luo, D.M. Zhu, Microwave electromagnetic property of SiO2-coated carbonyl iron particles with higher oxidation resistance, Physica B, 406 (2011) 777-780.
[34] C. Pahwa, S.B. Narang, P. Sharma, Interfacial exchange coupling driven magnetic and microwave properties of BaFe12O19/Ni0.5Zn0.5Fe2O4 nanocomposites, J. Magn. Magn. Mater. 484 (2019) 61-66.
[35] J.S. Li, S.C. Wang, C.C. Hwang, Preparation and high-temperature microwave absorbing properties of 6H-SiC/MWCNT/silicon resin composites, Mater. Express, 10 (2020) 1-9.
[36] Y.Q. Zhan, R. Zhao, X. Xiang, S.J. He, S.M. Zhao, W.D. Xue, Hierarchical core/shell bamboo-like polypyrrole nanofibers/Fe3O4 hybrids with superior microwave absorption performance, Compos. Interface. 26 (2019) 1087-1100.
[37] S. Wei, X.X. Wang, B.Q. Zhang, M.X. Yu, Y.W. Zheng, Y. Wang, J.Q. Liu, Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance, Chem. Eng. J. 314 (2017) 477-487.
[38] R.X. Deng, B.B. Chen, H.G. Li, K. Zhang, T. Zhang, Y. Yu, L.X. Song, MXene/Co3O4 composite material: Stable synthesis and its enhanced broadband microwave absorption, Appl. Surf. Sci. 488 (2019) 921-930.
[39] Y.R. Liu, Y. Lin, H.B. Yang, Facile fabrication for core-shell BaFe12O19@C composites with excellent microwave absorption properties, J. Alloy. Compd. 805 (2019) 130-137.
[40] L. Wang, X.F. Yu, X. Li, J. Zhang, M. Wang, R.C. Che, Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe2O3 anchored on multi-wall carbon nanotubes, Carbon, 155 (2019) 298-308.
[41] P. Bhattacharya, S. Sahoo, C.K. Das, Microwave absorption behaviour of MWCNT based nanocomposites in X-band region, Express Polym. Lett. 7 (2013) 212-223.
[42] Q. Yin, H.L. Xing, R.W. Shu, X.L. Ji, D.X. Tan, Y. Gan, Enhanced microwave absorption properties of CeO2 nanoparticles supported on reduced graphene oxide, NANO: Brief Rep. and Rev. 11 (2016) 1650058.
[43] R.C. Hu, G.G. Tan, X.S. Gu, S.W. Chen, C.G. Wu, Q.K. Man, C.T. Chang, X.M. Wang, R.W. Li, S.L. Che, L.Q. Jiang, Electromagnetic and microwave-absorbing properties of Co-based amorphous wire and Ce2Fe17N3-δ composite, J. Alloy. Compd. 730 (2018) 255-260.
[44] Z.Q. Qiao, S.K. Pan, J.L. Xiong, L.C. Cheng, P.H. Lin, J.L. Luo, Electromagnetic and microwave-absorbing properties of plate-like Nd-Ce-Fe powder, J. Electron. Mater. 46 (2017) 660-667.
[45] H.J. Wu, S.H. Qu, K.J. Lin, Y.C. Qing, L.D. Wang, Y.C. Fan, Q.H. Fu, F.L. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite, Powder Technol. 333 (2018) 153-159.
[46] W.D. Zhang, Y. Zheng, X. Zhang,Q. Zhu, H.X. Yan, L.F. Liotta, H.J. Wu, S.H. Qi, Synthesis and mechanism investigation of wide-bandwidth Ni@MnO2 NS foam microwave absorbent, J. Alloy. Compd. 792 (2019) 945-952.
[47] Z. Ma, C.T. Cao, Q.F. Liu, J.B. Wang, A new method to calculate the degree of electromagnetic impedance matching in one-layer microwave absorbers, Chinese Phys. Lett. 29 (2012) 038401.
[48] R. Joshi, C. Singh, J. Singh, D. Kaur, S. Bindra Narang, R.B. Jotania, A study of microwave absorbing properties in Co-Gd doped M-type Ba-Sr hexaferrites prepared using ceramic method, J. Mater. Sci-Mater. El. 28 (2017) 11969-11978.
[49] D. Mandal, A. Gorai, K. Mandal, Electromagnetic wave trapping in NiFe2O4 nano-hollow spheres: An efficient microwave absorber, J. Magn. Magn. Mater. 485 (2019) 43-48.
[50] L. Zhou, J.L. Huang, X.G. Wang, G.X. Su, J.Y. Qiu, Y.L. Dong, Mechanical, dielectric and microwave absorption properties of FeSiAl/Al2O3 composites fabricated by hot-pressed sintering, J. Alloy. Compd. 774 (2019) 813-819.