[1] Chen Z, Li Z, Li J, Liu C, Liu C, Li Y, Wang P, Yi H, Lao C, Yuelong F (2019) 3D printing of ceramics: A review. European Ceramic Society. doi.org/10.1016/j.jeurceramsoc.2018.11.013.10.1016/j.jeurceramsoc.2018.11.013.
[2] ISO/ASTM 52900:2015(en), Additive manufacturing — General principles — Terminology. https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-1:v1:en (Accessed Mai 20, 2020).
[3] Faes M, Valkenaers H, Vogeler F, Vleugels J, Ferraris E (2015) Extrusion-based 3D Printing of Ceramic Components. Procedia CIRP. doi: 10.1016/j.procir.2015.04.028.
[4] Buj-Corral I, Petit-Rojo O, Bagheri A, Minguella-Canela J (2017) Modelling of porosity of 3D printed ceramic prostheses with grid structure. Procedia Manufacturing. doi: 10.1016/j.promfg.2017.09.183.
[5] Ventola CL (2014) Medical Applications for 3D Printing: Current and Projected Uses. MediMedia USA, Inc 39: 704-711.
[6] Paul GM, Rezaienia A, Wen P, Condoor S, Parkar N, King W (2018) Medical Applications for 3D Printing: Recent Developments. Missouri State Medical Association 115: 75-81.
[7] Yan Q, Dong H, Su J, Han H, Song B, Wei Q, Shi (2018) A Review of 3D Printing Technology for Medical Applications. Engineering. doi:10.1016/j.eng.2018.07.021.
[8] Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of NiTi implants: A review. Progress in Materials Science. doi:10.1016/j.pmatsci.2011.11.001.
[9] Ho CMB, Ng SH, Yoon YJ (2015) A review on 3D printed bioimplants. International Journal of Precision Engineering and Manufacturing. doi: 10.1007/s12541-015-0134-x.
[10] Fahmy MD, Jazayeri HE, Razavi M, Masri R, Tayebi L (2016) Three-Dimensional Bioprinting Materials with Potential Application in Preprosthetic Surgery: 3D Printing Materials in Preprosthetic Surgery. Journal of Prosthodontics. doi: 10.1111/jopr.12431.
[11] Arslan-Yildiz A, Assal RE, Chen P, Guven S, Inci F, Demirci U (2016). Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication. doi: 10.1088/1758-5090/8/1/014103.
[12] Marro A, Bandukwala T, Mak W (2016) Three-Dimensional Printing and Medical Imaging: A Review of the Methods and Applications. Current Problems in Diagnostic Radiology. doi: 10.1067/j.cpradiol.2015.07.009.
[13] Ebert J, Özkol E, Zeichner A, Uibel K, Weiss Ö, Koops U, Telle R, Fischer H (2009) Direct Inkjet Printing of Dental Prostheses Made of Zirconia. Journal of Dental Research. doi: 10.1177/0022034509339988.
[14] van Noort R (2012) The future of dental devices is digital. Dental Materials. doi: 10.1016/j.dental.2011.10.014.
[15] Kulwicki BM Ceramic sensors and transducers (1984) Journal of Physics and Chemistry of Solids. doi: 10.1016/0022-3697(84)90046-5.
[16] Izu N, Shin W, Matsubara I, Murayama N (2006) Evaluation of response characteristics of resistive oxygen sensors based on porous cerium oxide thick film using pressure modulation method. Sensors and Actuators B: Chemical. doi: 10.1016/j.snb.2005.02.049.
[17] Zanchetta E, Cattaldo M, Franchin G, Schwentenwein M, Homa J, Brusatin G, Colombo, P (2016) Stereolithography of SiOC Ceramic Microcomponents. Advanced Materials. doi: 10.1002/adma.201503470.
[18] Knitter R, Bauer W, Göhring D, Haußelt J (2001) Manufacturing of Ceramic Microcomponents by a Rapid Prototyping Process Chain. Advanced Engineering Materials. doi: 10.1002/1527-2648(200101)3:1/2<49::AID-ADEM49>3.0.CO;2-H.
[19] Derby B (2015) Additive Manufacture of Ceramics Components by Inkjet Printing. Engineering. doi: 10.15302/J-ENG-2015014.
[20] Zhou Z, Cunningham E, Lennon A, McCarthy HO, Buchanan F, Dunne N (2018) Development of three-dimensional printing polymer-ceramic scaffolds with enhanced compressive properties and tuneable resorption. Materials Science and Engineering: C. doi: 10.1016/j.msec.2018.08.048.
[21] Qian B, Shen Z (2013) Laser sintering of ceramics. Journal of Asian Ceramic Societies. doi: 10.1016/j.jascer.2013.08.004.
[22] Shahzad K, Deckers J, Kruth JP, Vleugels J (2013) Additive manufacturing of alumina parts by indirect selective laser sintering and post processing. Journal of Materials Processing Technology. doi: 10.1016/j.jmatprotec.2013.03.014.
[23] Gu D, Wang H, Chang F, Dai D, Yuan P, Hagedorn YC, Meiners W (2016) Selective Laser Melting Additive Manufacturing of TiC/AlSi10Mg Bulk-form Nanocomposites with Tailored Microstructures and Properties. Physics Procedia. doi: 10.1016/j.phpro.2014.08.153.
[24] Sing SL, Yeong WY, Wiria FE, Tay BY, Zhao Z, Zhao L, Zhao ZT, Yang S (2017) Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyping Journal. doi: 10.1108/RPJ-11-2015-0178.
[25] Chartier T, Chaput C, Doreau F, Loiseau (2002) Stereolithography of structural complex ceramic parts. Journal of Materials Science. doi: 10.1023/A:1016102210277.
[26] Hatzenbichler M, Geppert M, Seemann R, Stampfl J (2013) Additive manufacturing of photopolymers using the Texas Instruments DLP lightcrafter. San Francisco, California, USA. doi: 10.1117/12.2001651.
[27] Huang T, Mason MS, Hilmas GE, Leu MC (2006) Freeze-form extrusion fabrication of ceramic parts. Virtual and Physical Prototyping. doi: 10.1080/17452750600649609.
[28] Agarwala MK, Weeren RV, Bandyopadhyayl A, Whalen PJ, Safari A, Danforth SC (1996) Fused Deposition of Ceramics and Metals: An Overview. International Solid Freeform Fabrication Symposium.
[29] Cesarano J, Segalman R, Calvert P (1998) Robocasting provides moldles fabrication from slurry deposition. Ceramic industry, 148.
[30] Ghazanfari A, Li W, Leu MC, Hilmas GE (2016) A Novel Extrusion-Based Additive Manufacturing Process for Ceramic Parts. Proceedings of the SFF Symposium, Austin, TX 1509-1529.
[31] Fan T, Liao G, Yeh CP, Chen J (2017) Direct Ink Writing Extruders for Biomedical Applications. ASEE Annual Conference & Exposition, Columbus, Ohio. doi: 10.18260/1-2--28184.
[32] Händle F, (Ed.), (2007), Extrusion in Ceramics, Engineering Materials and Processes. doi:10.1007/978-3-540-27102-4.
[33] Li W, Ghazanfari A, Leu MC, Landers RG (2017) Extrusion-on-demand methods for high solids loading ceramic paste in freeform extrusion fabrication. Virtual and Physical Prototyping. doi: 10.1080/17452759.2017.1312735.
[34] BioBot 1 Desktop 3D Bioprinter Set to Officially Launch at 2015 TERMIS Next Week - 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing. https://3dprint.com/93992/biobot-1-desktop-3d-bioprinter. Accessed 27 Mai 2020.
[35] The 3D-Bioplotter Family Archives | EnvisionTEC. https://envisiontec.com/3d-printers/3d-bioplotter. Accessed 27 Mai 2020.
[36] VormVrij LUTUM - imprimante 3D céramique professionnelle », Aniwaa. https://www.aniwaa.fr/produit/imprimantes-3d/vormvrij-lutum. Accessed 27 Mai 2020.
[37] REVIEW: ZMorph VX, a strong 3D printer with multi tool capabilities (2018) 3D Printing Industry. https://3dprintingindustry.com/news/review-zmorph-vx-a-strong-3d-printer-with-multi-tool-capabilities-145113. Accessed 27 Mai 2020.
[38] Tytan 3D Gaia Multitool review - versatile desktop 3D printer. Aniwaa. https://www.aniwaa.com/product/3d-printers/tytan-3d-gaja-multitool. Accessed 27 Mai 2020. [39] « Delta printer | Delta WASP 2040 | 3D Printers | WASP ». https://www.3dwasp.com/en/delta-printer-delta-wasp-2040/ (consulté le mai 27, 2020).
[40] Fab@Home », Creative Machines Lab - Columbia University. https://www.creativemachineslab.com/fabhome.html. Accessed 27 Mai 2020.
[41] Wittbrodt BT, Glover AG, Laureto J, Anzalone GC, Oppliger D, Irwin JL, Pearce JM (2013) Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers. Mechatronics. doi: 10.1016/j.mechatronics.2013.06.002.
[42] Universal Paste Extruder for 3D printers by RichRap - Thingiverse. https://www.thingiverse.com/thing:20733. Accessed 27 Mai 2020.
[43] BCN3D Technologies: Impressores 3D profesionals d’escriptori », BCN3D Technologies. https://www.bcn3d.com/ca. Accessed 27 Mai 2020.
[44] EL Mesbahi J, Rechia A, EL Mesbahi A, Kojmane A (2018) proposed design process of a customized educational hybrid prototyping machine, Proceeding of 5th International IEEE Congress on Information Science and Technology, Marrakech, Morocco 342-347
[45] Cordeiro EC, Barbosa GF, Trabasso LG (2016) A customized QFD (quality function deployment) applied to management of automation projects. The International Journal of Advanced Manufacturing Technology. doi: 10.1007/s00170-016-8626-0.
[46] Sousa Zomer TT, Miguel PAC (2017) A QFD-based approach to support sustainable product-service systems conceptual design. The International Journal of Advanced Manufacturing Technology. doi: 10.1007/s00170-016-8809-8.
[47] Ulrich KT, Eppinger SD. Product Design and Development, fifth ed., McGraw-Hill Education (2011).
[48] Kasaei A, Abedian A, Milani AS (2014) An application of Quality Function Deployment method in engineering materials selection. Materials & Design. doi: 10.1016/j.matdes.2013.10.061.
[49] Arciszewski T (2018) Morphological Analysis in Inventive Engineering. Technological Forecasting and Social Change. doi: 10.1016/j.techfore.2017.10.013.
[50] Pugh S, Total design : integrated methods for successful product engineering, Addison-Wesley Publishing Company, Wokingham, England (1991).
[51] Kim SW, Jang H (2018) Impact localization on a composite plate based on error outliers with Pugh’s concept selection. Composite Structures. doi: 10.1016/j.compstruct.2018.05.141.
[52] Bahill AT, Chapman WL (1993) A Tutorial on Quality Function Deployment, Engineering Management Journal. doi: 10.1080/10429247.1993.11414742.
[53] Akao Y (1900) Quality Function Deployment: Integrating Customer Requirements into Product Design-International Economy, first ed. Productivity Press.
[54] Woolley M, Scanlan J, Eveson W (2000) The use of Formal Design Techniques in the Development of a Medical Device.
[55] Seperamaniam T, Jalil NAA, Zulkefli ZA (2017) Hydrostatic Bearing Design Selection for Automotive Application Using Pugh Controlled Convergence Method. Procedia Engineering. doi: 10.1016/j.proeng.2017.03.068.
[56] Nixon JD, Dey PK, Davies PA (2013) Design of a novel solar thermal collector using a multi-criteria decision-making methodology. Journal of Cleaner Production. doi: 10.1016/j.jclepro.2013.06.027.
[57] Thakker A, Jarvis J, Buggy M, Sahed A (2009) 3DCAD conceptual design of the next-generation impulse turbine using the Pugh decision-matrix. Materials & Design. doi: 10.1016/j.matdes.2008.10.011.
[58] EL Mesbahi J, Buj-Corral I, EL Mesbahi A (2020) Use of the QFD method to redesign a new extrusion system for a printing machine for ceramics. The International Journal of Advanced Manufacturing Technology. doi: 10.1007/s00170-020-05874-x.
[59] Pugh S, Total design : integrated methods for successful product engineering, Addison-Wesley Publishing Company, Wokingham, England (1991).
[60] Pugh Concept Selection.pdf. http://edge.rit.edu/edge/P10505/public/Pugh%20Concept%20Selection.pdf. Accessed 27 Mai 2020.
[61] Frey DD, Herder PM, Wijnia Y, Subrahmanian E, Katsikopoulos K, Clausing DP (2007) An Evaluation of the Pugh Controlled Convergence Method. 19th International Conference on Design Theory and Methodology; 1st International Conference on Micro- and Nanosystems; and 9th International Conference on Advanced Vehicle Tire Technologies, Parts A and B, Las Vegas, Nevada, USA. doi: 10.1115/DETC2007-34758.
[62] Frey DD, Herder PM, Wijnia Y, Subrahmanian E, Katsikopoulos K, Clausing DP (2009) The Pugh Controlled Convergence method: model-based evaluation and implications for design theory. Research in Engineering Design. doi: 10.1007/s00163-008-0056-z.
[63] Ullman DG, The Mechanical Design Process, Fourth Ed., Engineering Books, (2010).
[64] Fargnoli M, Rovida EGM, Troisi R (2006) The morphological matrix: tool for the development of innovative design solutions.(2006).
[65] Thakker A, Jarvis J, Buggy M, Sahed A (2009) 3DCAD conceptual design of the next-generation impulse turbine using the Pugh decision-matrix. Materials & Design. doi: 10.1016/j.matdes.2008.10.011.
[66] Nixon JD, Dey PK, Davies PA (2013) Design of a novel solar thermal collector using a multi-criteria decision-making methodology. Journal of Cleaner Production. doi: 10.1016/j.jclepro.2013.06.027.
[67] Talaba D, Amditis A, Éd., Product Engineering: Tools and Methods Based on Virtual Reality. Springer Netherlands, (2008).