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Abstract

Achieving safe collaboration between humans and robots in an indus-
trial work-cell requires effective communication. This can be achieved
through a robot perception system developed using data-driven machine
learning. The challenge for human-robot communication is the availabil-
ity of extensive, labelled datasets for training. Due to the variations in
human behaviour and the impact of environmental conditions on the
performance of perception models, models trained on standard, publicly
available datasets fail to generalize well to domain and application-
specific scenarios. Thus, model personalization involving the adaptation
of such models to the individual humans involved in the task in the given
environment would lead to better model performance. A novel framework
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is presented that leverages robust modes of communication and gathers
feedback from the human partner to auto-label the mode with the sparse
dataset. The strength of the contribution lies in using in-commensurable
multimodes of inputs for personalizing models with user-specific data.
The personalization through feedback-enabled human-robot communi-
cation (PF-HRCom) framework is implemented on the use of facial
expression recognition as a safety feature to ensure that the human part-
ner is engaged in the collaborative task with the robot. Additionally,
PF-HRCom has been applied to a real-time human-robot handover task
with a robotic manipulator. The perception module of the manipulator
adapts to the user’s facial expressions and personalizes the model using
feedback. Having said that, the framework is applicable to other combi-
nations of multimodal inputs in human-robot collaboration applications.

Keywords: human-robot collaboration; human-robot communication;
multimodal communication; personalized machine learning; human feedback;
robot perception; facial expression recognition; model personalization

1 Introduction

Researchers envisage an industrial work-cell in which in the truest sense of
collaboration, the human partner contributes their versatility, precision, and
dexterity in carrying out tasks while the robot partner tackles repetitive, non-
ergonomic and physically taxing tasks. Named aptly, the field of human-robot
collaboration (HRC), aims to bring in a dramatic transformation in manu-
facturing. In order to carry out tasks in dynamic environments such as in
industries, the robot partner, much like the human one must be aware of its
environment, the status of the human and the shared task. This understand-
ing of the robot’s environment can be tackled through effective communication
between the human and robot partners.

Perception is the process of selection, organisation, and categorization or
interpretation of data to understand the environment or the agent’s internal
state. Sorting and organising of information is carried out through learnt cog-
nitive patterns. While perception for humans is a psychological and cognitive
process, the outcome of the operations influence human communication. For
robots collaborating with humans too, the first step to communication is robot
perception.

With the aim to develop a communication system for collaboration that
is as close to “natural” communication as possible, researchers are looking to
incorporate multiple modes of input from the human partner into the robot
perception system. These multimodal inputs include voluntary modes such
as hand gestures and voice commands and involuntary ones such as facial
expressions, gaze, and body language (Mukherjee et al. 2022a; Skantze et al.
2014). The involuntary modes are indicative of the internal state of the humans
(Ekman and Friesen 2003) while the voluntary modes can be used in the
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imperative sense. Thus, a typical HRC system in an industrial setting that
serves to mimic the ease with which humans collaborate must necessarily allow
for robot perception the means to understand both lines of communication in
order to ensure both physical as well as psychological safety of the involved
human partner.

Currently, multimodal inputs are detected and classified by machine learn-
ing (ML) models by learning a generic feature representation using a large
dataset such as Imagenet (Russakovsky et al. 2015) or MS COCO (Lin et al.
2014) with over a million labelled images and then fine-tuning based on the
required specific application. This framework is followed for almost all aspects
of supervised learning such as semantic segmentation (Long et al. 2014),
object detection (Girshick et al. 2013) and pose estimation (Tulsiani and Malik
2014). Neural network architectures have been developed to leverage these fea-
tures (Krizhevsky et al. 2012),(Simonyan and Zisserman 2014),(Chatfield et al.
2014) and achieve high accuracies but with the bottleneck that these require
extensive datasets for learning.

The fulfillment of requirement for large, labelled datasets proves challeng-
ing for HRC applications. Human behaviour in its natural, intuitive state may
be highly personalized, and while industrial commands may be “standardised”,
some aspects may still be atypical and idiosyncratic to the human partner. For
example, from a human’s visual perspective, say a hand gesture in a variety of
settings, under different lighting conditions, from different gesturing humans
with their characteristic ways may be similar, but to the robot perception sys-
tem, will invariably lead to domain shifts in the incoming data. Most existing
ML models are trained with the assumption of being operated in a closed-
world scenario i.e., the test data is drawn from the same distribution as the
training data. Such a case is known as the data being in-distribution (ID).
However, on being deployed in the real-world, with the dynamics and uncer-
tainties attached to the continually changing environment, test data are often
sourced from a distribution different than that of the source. Such shifted data
lead to poor performance of the model, even though the latter may be well-
trained on ID data. Instead of rejecting these observations, the perception
model must be updated. This is especially significant for recognizing affect
data such as emotions through facial expressions and body language. Hence,
the models must be ”personalized” to the behaviour of the human partner for
a more humanistic design of industrial systems.

On that note, in order to ensure the safety of the human partner during an
HRC task, the former’s focus on the task gauged through ”positive” commu-
nication signals must be continuously gathered and recognized. A particular
scenario has been examined in this paper built upon the general framework
presented in a previous work (Mukherjee et al. 2022b) particularly on whether
the human partner is ”engaged” in the task. Here ”engaged” refers to the lex-
ical meaning of having one’s interest or attention occupied. Emotions through
facial expressions are utilized to provide an indication of the focus of the human
partner on the collaborative task. In an online operation, the robot would read
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the human’s facial expressions and if the human is found to be expressing
“not engaged” expression perhaps due to surprise, anger, fear or confusion, the
robot would pause operation and wait for further instruction in order to ensure
safety. On the other hand, if the expression was found to be “engaged” in the
task i.e., showing signs of “happiness” or simply being “neutral”, then the
robot operation would continue. In this way, the affective state of the human
would be taken into consideration to ensure their complete focus and safety.

The key difference however between facial expression recognition (FER)
and other modes such as voice commands and hand gestures is the lack of large
publicly available annotated datasets of the former. Voice commands can be
learned using the Google Speech Commands dataset (Warden 2018) (65,000
seconds of recorded and annotated data) or Mozilla’s Common Speech dataset
(Mozilla 2022) (more than 14,000 hours of validated data in 93 languages).
FER is learned on datasets such as which are based on socio-affective human
behaviours. Some publicly available ones are AffectNet (440,000 annotated
images sourced from the internet through search engine querying) (Mollahos-
seini et al. 2019) , CK+ (Extended Cohn-Kanade dataset) (593 video sequences
under laboratory conditions) (Lucey et al. 2010), FER2013 (30,000 images)
(Goodfellow et al. 2013) and JAFFE (213 images of only Japanese female
participants) (Zhao and Zhang 2011). Most of the images portray exagger-
ated expressions that are a consequence of being acted out and may not be
representative of “real-world” expressions in a given setting. Recent work in
ascertaining the labelling quality of AffectNet has shown that only 13% man-
ual votes retained the label of images from a portion of the original AffectNet
dataset (Kim and Wallraven 2021). Indeed, participants in the aforementioned
study preferred to label images as “neutral” expression without knowledge
of the context of the expression. This highlights a second challenge of using
affective data – the variability of expression for a given emotion in humans
(Barrett et al. 2019). Naturally, models trained with limited, lab-recorded data
would fail to capture the diversity of humans’ expressions without significantly
expanding the dataset. Studies have corroborated this limitation wherein FER
in real-time generated lower accuracies as compared to pre-defined datasets
(Rawal and Stock-Homburg 2022). Even if the hefty endeavour of collecting
and labelling individualized data were to be taken, labelling expressions out of
context may end up with an unusable dataset that could be detrimental to the
safety of the human working with the robot. Finally, the vagaries of expressions
in humans are coupled with the change in lighting conditions, background,
properties of the data (dimensions, relative positioning of the human from the
robot) that trip up computer vision models.

In order to deploy an industry-ready perception model that recognizes
expressions with sufficient accuracy, the models trained with standard datasets
need to be re-trained on the job with application-specific ones. These datasets
involving humans will naturally be much more sparse as compared to the pub-
licly available ones. Thus the emphasis of the proposed framework in this paper
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is on utilising as small batches of user data as possible to generate personalized
models that can ensure accurate recognition of the user data.

2 Related Works

2.1 Related Human-Robot Communication Concepts

Facial Expression Recognition in HRC:
The recognition of human emotions through their facial expressions has been
studied for human-robot communication (HRCom) in order to endow robots
with emotional intelligence. This is due to human emotions having a signif-
icant impact on their decisions and actions. The reader is directed towards
the review covering FER and other modes of emotion recognition (Spezialetti
et al. 2020), emotion recognition for HRC (Mohammed and Hassan 2020), and
FER applied to human-robot interaction (Mukherjee et al. 2022a; Rawal and
Stock-Homburg 2022). A facial expression emotion recognition-based human-
robot interaction (FEER-HRI) system was proposed. It enabled the robot to
recognize human emotions and then generate facial expressions using symbols
on an LED screen to respond to them (Liu et al. 2017). Images from JAFFE
dataset were preprocessed using face detection and segmentation. Regions of
interest were created and features were extracted. FER was carried out using
2D-Gabor, uniform local binary pattern operator, and multi-class extreme
learning machine (ELM) classifier. Similarly, in (Hsu et al. 2017), Gabor
filters followed by support vector machine was used to obtain action units
which were applied to random forest classifiers to recognize facial expressions
for an interaction task. KDEF dataset (Kale et al. 2022) was used in an
interaction scenario where the robot responded based on the recognized emo-
tion of the human (Faria et al. 2017). Dynamic Bayesian Mixture Model and
feature-based ML classifiers were employed to detect and recognize affective
facial expressions. The highest accuracy achieved was around 85% on KDEF
and 80% on data collected from human participants involved in the study.
While there has been much success with traditional ML algorithms, the field
of FER is increasingly employing deep learning algorithms that involve lesser
preprocessing of data (Rawal and Stock-Homburg 2022).
Multimodal Communication in HRC:
A multimodal emotional communication-based human-robot interaction
system was presented (Liu et al. 2017). It consisted of cameras to record real-
time images of facial expressions and body gestures, a microphone to capture
speech signals, and an eye tracker to study interaction in four scenarios: guid-
ing, entertainment, home service, and scene simulation. Other multimodes
such as hand gestures and speech are also widely used as communication
for HRC operations. Pointing gestures and voice commands are utilized to
provide information for the processing of requests from the robot (Maurtua
et al. 2016,1). The information from the two modes is fused. Contradictory
information is handled by semantic technologies to construct a command for
the robot. Directional hand gestures and corresponding voice commands were
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used to guide a human-robot handover task in (Mukherjee et al. 2022b). The
fusion architecture was designed using a fuzzy inference system and Dempster
Shafer theory to handle conflicting, complementary, and ambiguous com-
mands from multimodal communication. Simulations in virtual reality were
executed to design a safe human-robot collaborative nut-screwing task (Shu
et al. 2019). Multimodal inputs were gathered through a GUI for examining
use cases and identifying the most efficient manner of communication for the
task. Additionally, multimodal inputs have been developed in tandem using
fusion systems (Rossi et al. 2013), (Liu et al. 2018), (Reddy and Basir 2010)
as well as individually (Chen et al. 2018; Drawdy and Yanik 2015; Nuzzi et al.
2021; Rautiainen et al. 2022; Wang et al. 2019).
Feedback in HRC:
Taking a cue from human communication, feedback serves as a powerful tool
to provide guidance to the collaborative robot in a variety of tasks. Com-
munication in a collaborative scenario should include a means of feedback
from the human partner regarding the status of the task, deviations in the
expected behaviour of the robot, and the general condition of the human in
the work-cell (Kardos et al. 2018). In terms of the usage of human-on-the-loop
feedback in HRC scenario, the work cited in (Wilde et al. 2018) presented
robot path planning using human feedback. The methodology was used to
learn the human’s preferences for spatial and simple temporal constraints in
solving a shortest-path problem. Feedback was gathered by presenting the
user with alternate paths. In the field of affective computing, an approach
was developed for learning user preferences of the robotic sculpture’s motion
during on-line human-robot interaction (Kumagai et al. 2018). The human
partner’s facial expressions were detected and recognized during the interac-
tion based on which reward function was formulated. The robot was rewarded
when the human’s positive affect was observed through their expressions.
This led to adapting the action parameters to maximise the reward function
during reinforcement learning. This allowed the system to be customized to
the users’ preferences.

2.2 Personalization of ML models for HRC

Outside of HRC, personalization of ML models through the use of integrated,
individualized patient datasets and application of ML algorithms in clinical
workflows are increasingly being used to inform better healthcare e.g., in the
dermatology (Wongvibulsin et al. 2022), determining which candidates would
be suitable for cognitive training (Shani et al. 2021), and spine care (Khan
et al. 2020). In the realm of human-computer interaction, speech emotion
recognition (SER) using personal voice data was studied in (Kim and Park
2016). Personalized SER was achieved through adaptation using maximum
likelihood linear regression. It was developed utilizing voice data collected from
personal handheld communication devices such as smartphones. The approach
selected useful emotionally discriminative acoustic characteristics. An iterative
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unsupervised scheme was developed for the automatic labelling of SER data
leading to higher accuracy and reduced recognition errors. Intelligent agent
technologies, also known as chatbots were examined through 57,000 interac-
tions to determine if human-computer interactions could be more personalized
by matching the inferred personality of the human to the learnt personality of
the machine. This matching of personalities had a positive impact on consumer
engagement and purchasing (Shumanov and Johnson 2021).

Active learning based on computer vision was used to recognize humans,
profile them and then personalize the robot behaviour. Humans were identified
using Intel-face-detection-retail-004 and FaceNet for face recognition and other
information was obtained using interactions with the robot (Maroto-Gómez
et al. 2023). Indeed, several studies have demonstrated that adaptation and
personalization of robot perception systems and in turn behaviour to that
of the human improves the quality of interaction and leads to greater user
acceptance (Caleb-Solly et al. 2018; Churamani et al. 2017; Di Napoli et al.
2018). Apart from that, researchers found that gesture personalization during
a collaborative task reduced the mental and physical workload of the humans
and was thus increasingly preferred by the participants (Rautiainen et al.
2022).

Emotion recognition is being used to check driver impairment and person-
alize the driving experience by numerous companies like Affectiva (Affectiva
2018). From a research perspective, reliable driver state recognition was stud-
ied in (Yi et al. 2019) as a precursor to driver safety monitoring systems and
adaptive driving assistive systems. A personalized driving state recognition
system dedicated to individual drivers was developed for higher accuracy of
state (normal, drowsy, and aggressive) recognition, and expected improvement
in road safety. Individual drivers’ feature data were analysed and compared
to generic models. If significant differences were detected, personalized models
were developed for predicting those drivers’ states. While the study demon-
strated improved accuracy as compared to using the generic model, the dataset
used was manually labelled and learning was carried out offline. For continu-
ous adaptation and personalization in safety-critical operations, there is a need
for the inclusion of online operation of such algorithms as well as a means for
automatic labelling.

2.3 Adaptation of Shifted Data

Re-training of models for adapting to shifted data has been explored exten-
sively using knowledge distillation and more particularly cross-modal knowl-
edge distillation. A model updating framework was presented based on lifelong
ML to counter calibration drifts in prediction models using soft labels for
knowledge distillation (Chi et al. 2022). Researchers developed a scheme named
’supervision transfer’ in which a large set of unlabeled paired RGB and depth
images of the same objects (NYUD2 dataset) were used for transferring the
ImageNet supervision on RGB images to depth images (Gupta et al. 2015). A
key aspect of the scheme developed is that the modalities were ”paired” i.e.,
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they represent the same object(s) to be detected within the same setting and
with the lighting conditions consistent throughout. Also, a major assumption
was the accessibility of a large unannotated dataset containing paired data.
In a similar vein, in (Wang et al. 2021), cross-modal knowledge distillation for
Cued Speech (CS) was presented which consisted of lip movements along with
synchronized hand movements. In order to tackle the limited size of CS data,
researchers developed a novel system to transfer and preserve knowledge across
the modalities. A large amount of open-source audio speech data was used to
pre-train a teacher model. Then the speech knowledge was distilled into the
small student model through two strategies- frame-level and sequence-level.
Although the two modalities considered are from audio and video sources,
the two modalities contain the same phoneme semantics due to both being
synchronous and phoneme-level coding. Synchronised RF signals and camera
images were used to transfer the knowledge across modalities for pose estima-
tion in (Zhao et al. 2018) and in (Thoker and Gall 2019), the teacher model was
trained on RGB videos and the student model on 3D human pose sequences
paired with the videos.

Another approach that has been gaining ground is the Domain Adaptive
Knowledge Distillation method developed in (Kothandaraman et al. 2020)
contributes to the field of Unsupervised Domain Adaptation (UDA) wherein
the goal is to align features and reduce the gap between the labelled source
domain and the unlabelled target domains to boost model performance in both
domains. The methodology was developed on RGB images in both the source
as well as target domains. Thus, while literature exists for “paired” sources
of data, more innovative methodologies must be looked into in fields such as
FER wherein such extensive and synchronized labelled data is not available.
Not only that, multimodal data can often be incommensurable such as in the
case of facial expressions and voice commands. In such cases, an off-the-shelf
application of knowledge distillation or domain adaptation techniques may not
be feasible. The framework proposed in this paper thus takes inspiration from
UDA and uses transfer learning as a means of adapting and personalizing the
FER model to an industrial collaborative task.

3 Contributions

In order to develop a personalized ML system, one must take advantage of the
existence of publicly available large datasets that can provide feedback dur-
ing continuous operation so that new data from the user can be labelled using
that feedback. This mimics a key component of natural human communica-
tion wherein feedback is used to continually update the knowledge and status
associated with the shared task (Mukherjee et al. 2022c). The present docu-
ment proposes a framework for such a continuous re-training leading to the
development of personalized ML models for HRCom. Personalization is to be
achieved for the environment and the human collaborating with the robot, thus
requiring greater specificity than a generic model trained on publicly available
standard datasets.
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The specific application considered is the FER system that is trained with a
standard publicly available dataset and then iteratively re-trained with users’
images with both clean, uncluttered background and also with more complex,
cluttered background of the same subject(s). Since these are unlabelled data
and a fraction of size of the original dataset (which itself is typically a small
dataset), the feedback from voice commands from the user is used to assign
labels to these data. Once trained with the data of the user the robot or
more generally, the system would encounter in its collaborative work, the re-
training would slow down until new users are added to the work-cell. The
personalization through feedback-enabled human-robot communication (PF-
HRCom) framework has been developed in Section 4 with ablation tests in
Section 6. Finally, PF-HRCom has been applied to a real-time human-robot
handover task between a 6 degree of freedom (DoF) manipulator: Kinova arm
in Section 7. The FER model associated with the perception module of the
manipulator adapts to the user’s facial expressions and personalizes the model
when unsure of the new user’s state of engagement.

The contributions of the paper lie in leveraging the feedback from high-
accuracy ML models which have been built upon large datasets (in this case
voice commands), to automatically label specialized human data (in this case
FER data) for personalizing the latter to the behaviours of the human partner
and the environment in which it has been deployed. The modes of commu-
nication used are incommensurable since paired data are challenging to find.
Human feedback eliminates the possibility of mislabelling that is encountered
when a third-party labels images of participants taken in a laboratory and
acted out in a setting vastly different from the purported setting of deployment.

Emotions through facial expression recognition (FER) were selected for
this study due to the additional complexities inherent to the adaptation task.
While the framework would benefit all aspects of HRCom that use ML and
need continuous learning (thus rendering it mode agnostic), affect data in par-
ticular would be far better recognized with correct labels generated from user
feedback. Personalizing HRCom is, ipso facto, a promising effort towards safer
systems. Additionally, the framework is an add-on created and deployed based
on application-specific heuristics. There is no alteration of model architecture
involved, thus making it model architecture agnostic.

4 Methodology

In an industrial setting, even for an all-human team, there are rarely a discern-
ably large variety of emotions that are shown by humans; neutral expressions
are the most common during task execution (Chiurco et al. 2022). That sets
the application of FER system considered in this work apart from what may
be required from a social human-robot interaction scenario. Having said that,
the inclusion of negative emotions signifying the state of not being engaged is
essential for safety.
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As an implementation of the proposed framework that forms the contribu-
tion of the paper, a FER model is considered that has to detect whether the
human is engaged in the task with their collaborative robot partner using RGB
images. Inception v3 was selected to train the dataset of face images since it
has demonstrated good performance in training for tasks involving learning
human facial data (Chiurco et al. 2022; Tio 2019). The accuracy of ML mod-
els on FER is dependent on the angle of the face in images; models produce
erroneous predictions if the entire face is not visible (Chiurco et al. 2022). This
is a challenge due to the dynamic nature of working on a shop floor. Thus, it
would be advantageous to train the model with a dynamic view of the face.

The facial expressions dataset used was a modified version of the Karolin-
ska Directed Emotional Faces (KDEF) dataset (Kale et al. 2022). The KDEF
dataset is a set of 4900 pictures of human facial expressions. The set of pic-
tures contains 70 individuals displaying seven different emotional expressions.
Each expression is viewed from five different angles (−90, −45, 0, +45, +90
degrees). The individuals are aged between 20 and 30 years and have no
beards, mustaches, earrings, or eyeglasses. For the purpose of this study, the
classes ‘happy’ and ‘neutral’ were considered as Engaged while ‘anger’, ‘sur-
prise’, ‘sad’, ‘afraid’, and ‘disgust’ were considered as Not Engaged. The data
was reorganized into train and test sets and balanced between the classes using
data augmentation techniques. These augmentations included – lateral shifts
so as to not overfit the model to expecting the human to be at the centre of
the scene, zoom to mimic the varying distance of the human from the camera
in a dynamic environment, and image rotations between −30 and 30 degrees
to add some variance to the orientation of the head. In addition to that, since
the lighting of all images was uniform, brightness shifts with delta between 0
and 0.8 were randomly added to the image pixels to allow for more variations
in lighting conditions. The final modified dataset contained 7006 images. The
advantage of using KDEF was the availability of the five viewpoints of the face
that is expected to be representative of the dynamic nature of the work-cell
wherein the human may not always be positioned at the centre of the camera
that is capturing the images for FER.

As compared to the previously cited work (Faria et al. 2017) which also used
KDEF but excluded images with the faces at 90 and −90 degrees due to the
inadequate performance of facial landmark detection and geometrical feature
detection algorithms, the model developed in this work using deep learning
achieved an accuracy of 96.63% as compared to 85% of that work. A point to
be clarified here is that while the models of (Faria et al. 2017) classified the
dataset into seven classes, in this work, only two consolidated classes are used.

For the purposes of testing the framework for adaptation, a portion of user
data was labelled by the user who participated in creating the dataset as test
dataset, the images from which were not encountered by the models during
training. The user (one of the authors) emoted in a way that seemed most nat-
ural to them instead of copying the posed expression from the KDEF dataset.
Hence, the user data is believed to be more representative of their potential
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behaviour in a collaborative scenario. As preprocessing, the images captured
were cropped to contain some inches above the head, and some below the chin
in a square image since rotations and small variations in the head and face
were captured that needed some space laterally. These steps are heuristics and
application-specific; the background may be blurred or the face detected before
FER. Additionally, as mentioned in Section 2.1, segmentation of the face for
better expression recognition may be applied. Conversely, if the collaboration
task requires the model to be ”aware” of the background of the human, then
blurring may be unsafe. Thus, the specific preprocessing is up to the engineer,
while the focus of this work is the framework that is generic.

The ML model trained on the KDEF dataset (model0 ) performed well on
the KDEF test data (refer to Figure 1 (a)). But on testing (model0 ), on the
two user datasets: ‘Uncluttered User DS’ (DS1) with the user’s face and a
clean background and ‘Cluttered User DS’ (DS2) with the same user but with
noisy background, it was found to show accuracy scores of 76.44% and 81.19%
(Figure 1 (b) and (c)). The high accuracy is due to the model bias towards
Not Engaged class and due to the test datasets being unbalanced with the
Not Engaged having more images than Engaged, thus skewing the accuracy
measure and failing to recognize the other class images. The numbers of images
in the test set in each were as follows.

• KDEF: Engaged : 700, Not Engaged : 698
• DS1: Engaged : 624, Not Engaged : 1647
• DS2: Engaged : 772, Not Engaged : 3332

The user images are out-of-distribution from the original KDEF dataset
(Hendrycks and Gimpel 2016). From trivial human observation, the lighting
conditions, the background are of course vastly different from the original. In
a more non-trivial sense, the user data showcases expressions idiosyncratic of
that person’s behaviour and do not completely match with the posed ones in
KDEF wherein every individual has expressed uniformly, something that is
not representative of the real-world. Indeed, this strengthens the need to fine-
tune the FER model based on the user data. Figure 2 contains a sample of
images from KDEF, DS1 and DS2 grouped by labels.

Fig. 1 Performance of base model, model0, trained on KDEF only and tested on: (a)
unseen KDEF data, (b) user data with cluttered background (DS2) and (b) user data with
uncluttered background (DS1)
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Fig. 2 Images sampled from the three datasets considered: (a) images with Engaged label
from KDEF, (b) images with Engaged label from user data with uncluttered background
(DS1), (c) images with Engaged label from user data with cluttered background (DS2), (d)
images with Not Engaged label from KDEF,(e) images with Not Engaged label DS1, (f)
images with Not Engaged label DS2

The mode selected for generating labels of unannotated user data was
voice command (VC). The ML model used for implementing VC classification
was adapted from (Gajhede et al. 2016) with four convolution layers instead
of three for better accuracy and a dropout layer to prevent overfitting. The
dataset used was the speech commands dataset version 2 (Warden 2018). The
two classes used were yes and no. The accuracy was 100% because the model
was trained on a sufficiently large amount of data and the tests involved sim-
ple single-word commands of the user. Apart from voice commands, buttons
on user interfaces or application-specific modes may also be used for gener-
ating feedback. In noisy factories, a graphical interface or hand gestures may
be more suitable than voice commands, while voice commands may be more
useful if the user’s hands are otherwise occupied with the task or obscured.
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On encountering shifted (user) data for the first time, verbal feedback was
requested using VC classification through a direct question to the user, “Are
you engaged in the task?”. An answer of ‘yes’ generated label Engaged while
‘no’ generated Not Engaged, thus avoiding the labour-intensive task of hand
labelling. model0 was re-trained with the dataset of user images and gener-
ated labels to adapt or personalize to the user data without ‘forgetting’ the
knowledge of the original dataset.

The first experiment was carried out to re-train the model with DS2 images
from only one class along with images of KDEF of both classes. model0 was
trained using transfer learning with 20 images of Engaged class from DS2, 80 of
Engaged from KDEF and 100 images of Not Engaged from KDEF to generate
model1. All layers till the average pooling layer were frozen. The learning rate
was 0.01 with the mini-batch size of 10, optimizer: stochastic gradient descent,
the number of epochs of 2 for DS1 and 5 for DS2. model1 was subsequently
re-trained with 20 images from DS2 and 80 from KDEF of Non Engaged class
and 100 from KDEF of Engaged class.

These two steps were repeated with new user data and the subsequent
models were re-trained. On testing on the remaining DS2 dataset after each re-
training, it was found that the newly generated model was completely biased
towards the label from DS2 it had been trained on in that step (Figure 3). Odd
numbered confusion matrices in (Figure 3) were generated on training with
just label Engaged as described above while even-numbered ones were using
the other label. Each model was built upon the previous one and was named
to denote the cumulative process. In Figure 3, the numbering is as follows:

• 1,3,5,7: Engaged :20 DS2+ 80 KDEF, Not Engaged :100 KDEF generating
model1, model3, model5, model7 respectively

• 2,4,6,8: Engaged :100 KDEF, Not Engaged :20 DS2+ 80 KDEF generating
model2, model4, model6, model8 respectively

The new models, however, retained the knowledge of KDEF even after
eight re-trainings with new data mixed in with the original data. It is posited
that since the final fully connected layers contain only trainable parameters,
and they are re-trained in every iteration, the generated models were unable
to learn the features of images from both classes from the new dataset when
data from only one class was passed for training. Since the models trained
in the above-mentioned format were unable to learn both labels at once and
showed bias during testing, the framework developed is based on iteratively
re-training with small batches of new user data from both classes along with
larger batches of old data. Re-Training in this document refers to transfer
learning and not training from scratch
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Fig. 3 Confusion matrices generated from training on KDEF and subsequent re-training
on DS2 with 20 images from only one label at a time from DS2, 80 of the same label from
KDEF and 100 images from the other label from KDEF, and tested on unseen test images
from DS2. Each model builds upon the previous one are named to denote the cumulative
process. Note that models are biased towards whichever labels they were trained on with
the user images.
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Referring to the confusion matrix of Figure 1, it is to be noted that false
positives (true class: Not Engaged, predicted class: Engaged) are undesirable
since they can lead to safety issues, while false negatives (true class: Engaged,
predicted class: Not Engaged) lead to lower efficiency. In order to balance
both aspects of a collaborative scenario, F1-scores were tracked throughout
the process.

4.1 Iterative Re-training PF-HRcom

Figure 4 presents a flowchart of PF-HRCom which consists of training with
standard dataset(s) to generate the base model. The perception scene of the
robot may be conceived as composed of two parts – the collaborating human
and the setting or environment which includes the light(s), the sensor(s) for
capturing communication, other interacting object(s) and artifacts such as
walls, floor, ceiling, their colours and so on. A change in any component of
the scene leads to a domain shift. Tracking the change of scene is a heuristic
and practical process, e.g., if a new user is employed to work with the robot
in the work-cell or the robot is placed in a different work-cell with the same
human or both components change. The assumption is that the commands
are common in all scenarios. This shifted data is collected in intervals of time
that are specific to the application, stored in memory and then auto-labelled
using feedback from a more robust communication mode. Subsequently, the
model is re-trained with the small batch of ”labelled” data and this process
is repeated until the model learns the user data. This number of re-trainings
needed will be specific to the application and domain of data.

The implementation presented in this paper consists of the case of the addi-
tion of a new user in the same environment and the change of the background
environment of the work-cell along with the addition of a new user. The par-
ticular steps of the implemented PF-HRCom based on the flowchart are as
follows:

1. Train an ML model with a standard, publicly-available dataset such that it
performs well on ID data: base model (model0 trained on KDEF).

2. If no component of the scene changes, deploy model.
3. If there is any change, to tackle the shift in data, collect the new user data

and store in memory. This data is unlabelled since it gets generated in
real-time by the user interacting with the robot.

4. Endeavouring to keep dataset size low, 20 images of the expression are then
auto-labelled by the robot asking for verbal feedback from the user. A batch
of 40 images, 20 of each class are stored in the memory that are then used
to re-train the current model. The current model would be the base model
in the first iteration.

5. The model is iteratively re-trained with the new batch of shifted user
images. This was done to ensure effective learning of the model with a
minimal amount of new data. The metrics are tracked and this process of
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Fig. 4 framework for leveraging multimodal input as feedback for tuning human-robot
communication system using user-specific data
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recording data, auto-labelling through verbal feedback using VC and re-
training on the previous FER model is repeated till the threshold for a
pre-set test metric is met or exceeded. In this implementation, testing of
whether the newly generated model has learnt the features of the shifted
data is tested using the F1 score, specifically, if the F1-score reaches above
0.8 or not.

The PF-HRCom was tested with both DS1 and DS2. DS2 was found to
reach the requisite F1-score faster (and with a lesser amount of data) if trained
on both DS1 and KDEF than if it was trained on just the base model. Since
the batches of generated user data are so small, validation sets were not used,
instead all the data were used for training. While the number of images from
the user dataset was initially determined through trial and error of combina-
tions for the purpose of implementation of the PF, ablation studies have been
carried out in Section 6.

The other aspect to be noted is that this study used labelled DS1 and DS2
test sets to validate the framework in terms of if the newly generated model
has learnt the features of the user data. F1 and accuracy scores were obtained
on testing with those test sets. In real-world applications, such test sets would
not be available and the process would have to be carried out in some other
manner. Another way of understanding is that once a model has learnt the
new data, it will not detect any shift in it. This brings us to the related aspect
of the step for detection of change in scene. This is to be understood as the
perception system being ”unsure” of the engaged status of the human. An
”engagement measure” using average of softmax probabilities have been used
in the handover application in Section 7 as an automatic indication of whether
the model has encountered shifted data. Once the model encounters such data,
it pauses the robot operation and asks feedback for labelling and re-training.

5 Results and Discussion

For the purpose of testing the models and the framework, labelled datasets for
both cluttered and uncluttered user data were created but the models were
trained on images not in the test set. Table 1 contains the naming convention
of the models generated through the experiments carried out. Table 2 and
Figure 5 (a) contain the model evaluation metrics of iteratively labelling and
re-trainingmodel0 up tomodel4 with uncluttered user data (DS1). Table 3 and
Figure 5 (b) present the metrics of the re-training process with just cluttered
one (DS2).

From Table 2, the row for model0 shows the metrics of classification of DS1
with the base model0 which has not been trained for DS1. It can be observed
thatmodel0 is biased towards the Not Engaged class. This could be because the
Not Engaged class contains images from five sub labels as mentioned earlier.
Thus, it contains a higher variety of facial features. It seems reasonable that
on encountering out-of-distribution faces and expressions (of the user), model0
classifies them to Not Engaged. A similar behaviour is shown by model0 tested
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on DS2 as well (model0 row of Table 3). The successive rows of Table 2 show
a decrease in that bias after each model is generated from the earlier model
along with an overall increase in F1-score and accuracy. This trend is followed
in Table 3 as well for DS2 trained on the base model. This favourable behaviour
is very dataset, domain, and application-specific and further bolsters the need
for personalizing base models. The generation of new user data and re-training
were stopped for DS1 and model4 was used to test DS2. Table 4 presents the
classification evaluation metrics on DS2 tested on model0 and model4 of DS1.
It can be observed that although accuracy is similar for both models but higher
F1-score and recall and overall lower number of false negatives render model4
better than model0. This may be inferred to be because the same user was in
both datasets, small as they may be.

To simulate the case in which the user has been included in the work-
cell and the model has been adapted or personalized to that user and then
the work-cell changes, model4 from DS1 was used to train on DS2 with the
same iterations as mentioned above. Through trial-and-error it was found that
a combination of (20 DS2 + 40 DS1 + 40 KDEF) images for each class for
iterative re-training yielded the best results (refer to Table 5). model4 re-
trained on DS2 with the given combination showcased 0.76 F1-score at an
earlier stage than if it were to be trained just on KDEF. Without the KDEF
data or without the samples from DS1, the re-trainings fared poorly, thus
raising a need to keep the deployed FER model updated on the user data but
slowly reducing the “standard” data as time of operation increases without
becoming completely zero as ablation studies have demonstrated in Section 6.
As more users get added to the work-cell the steps of PF-HRCom would need
to be repeated for them for a more specific or personalized robot perception
system.

Throughout the process, it was ensured through testing the generated
models that the base knowledge i.e., of KDEF was not “forgotten” since
that dataset contains much more variability in faces than the user data
sets can. Thus, through the framework presented, the ensuing model con-
tained less bias towards the Not Engaged class than the base model (refer to
Table 5)) and showed higher classification accuracy and F1-score on sparse,
out-of-distribution, unannotated user data with cluttered backgrounds.

As compared to the previously cited work (Faria et al. 2017) which also
used KDEF the final personalized models trained with KDEF and user data
developed in this work using PF-HRCom achieved higher accuracy scores than
that of the models developed in the cited work which achieved accuracy score
of around of 80% on user data outside of the dataset. To re-iterate, while the
models of (Faria et al. 2017) classified the dataset into seven classes, in this
work, only two consolidated classes are used.
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Table 1 Naming convention of models generated using the framework presented

Model Transfer Learning using Model Dataset

model0 - standard dataset (KDEF)
model1 (for user dataset DSx)
x=1 for uncluttered dataset,
x=2 for cluttered dataset

model0 DSx batch 1 + KDEF

model2 model1 DSx batch 2 + KDEF
modeln model(n-1) DSx batch n + KDEF

Table 2 Iterative re-training of model0 (trained on KDEF) on small batches of user data with uncluttered background (DS1) and testing on
unseen DS1 images

Model Precision Recall F1-Score Accuracy(%) False Positives False Negatives

model0 1 0.14 0.25 76.44 0 535
model1 0.49 1.00 0.66 71.60 643 2
model2 0.71 0.97 0.82 88.42 246 17
model3 0.66 0.99 0.79 85.60 321 6
model4 0.88 0.95 0.91 95.07 83 29
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Table 3 Iterative re-training of model0 (trained on KDEF) on small batches of user data with cluttered background (DS2) and testing on unseen
DS2 images

Model Precision Recall F1-Score Accuracy(%) False Positives False Negatives

model0 0 81.19 0 772
model1 0.91 0.26 0.40 85.58 21 571
model2 0.90 0.58 0.71 90.86 51 324
model3 0.87 0.72 0.79 92.67 87 214
model4 0.81 0.82 0.81 92.96 153 136

Fig. 5 Plot of trends of metrics of (a)Classification Tests on DS1 of models trained on KDEF and only Images from DS1 and (b) Classification Tests
on DS2 of models trained on KDEF and only Images from DS2
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Table 4 Testing of user data with cluttered background (DS2) on model trained with only KDEF (model0 ) and one trained on KDEF and
iteraively on uncluttered user data (DS1) (model4 )

Model Precision Recall F1-Score Accuracy(%) False Positives False Negatives

model0 0 81.19 0 772
model4 0.57 0.01 0.02 81.24 6 764

Table 5 Iterative re-training of model4 (trained on KDEF and uncluttered user data (DS1)) on small batches of user data with cluttered
background (DS2) + KDEF + DS1 and testing on unseen DS2 images

Model Precision Recall F1-Score Accuracy(%) False Positives False Negatives

model4 0.57 0.01 0.02 81.24 6 764
model5 0.55 0.79 0.65 83.92 497 163
model6 0.67 0.89 0.77 89.84 331 86
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6 Ablation Studies on Cluttered and
Uncluttered User Datasets

While the implementation of the framework has been carried out with 20
images per label from the user dataset and 80 from KDEF, this section contains
experiments of iterative re-training with the following combinations of images.

• Number of images per class from user dataset (either DS1 or DS2 depending
on the experiment being carried out) = m

m ∈ {10, 20, 30} for DS1 and m ∈ {10, 20, 30, 40} for DS2

• Number of images per class from KDEF (standard) dataset = n

n ∈ {10n, 0 ≤ n ≤ 10∀n ∈ N}

The three cases covered for this paper include the following:

1. Re-training model trained on KDEF with DS1 (uncluttered user dataset)
only with the above-mentioned combinations of m and n

2. Re-training model trained on KDEF with DS2 (cluttered user dataset) only
with the above-mentioned combinations of m and n

3. The conclusions from the ablation experiments carried out under 1 and
2 dictated the constitution of images per class for the experiments on re-
training with DS2 on models already iteratively re-trained on DS1 and
KDEF.

The rationale for selection of the number of images for user data stems from
Paul Ekman’s work that postulated that expressions last from 0.5-4 seconds
(Ekman 2003). So, with our 20-fps camera, and in order to design a frame-
work that would work with small batches of images, the number of images
were selected starting from (0.5s ∗ 20fps = 10 images) up to 40 for the more
complex dataset (DS2). Combinations of user data and KDEF were carried
out including case studies where no KDEF images were used for re-training
and tuning.

6.1 Re-training model trained on KDEF with
Uncluttered User Dataset (DS1) only

After the first iteration, for DS1, as number of images per class from KDEF
(n) decreased, F1-scores also decreased for each case of m (refer to Figure 6
(a), (d), and (g)). F1-scores with m = 20 were higher in most cases till n = 40.
While the models retained learned features of KDEF in all combinations (as
evidenced from high accuracy values on KDEF test set), the accuracy values
on DS1 test set decreased with decrease in n for all values of m across all
three iterations (Figure 6. (c), (f), and (i)). This may be because the variance
in KDEF features allowed recognition of features in the Not Engaged class of
DS1 which typically has the highest number of different expressions (‘anger’,



Springer Nature 2021 LATEX template

Personalization Human-Robot Communication based on User Feedback 23

‘surprise’, ‘sad’, ‘afraid’, and ‘disgust’). This may also explain the trend of
lower F1-scores as n was lowered across the experiments.

As n decreased, accuracy values on the test set of KDEF also decreased
(Figure 6 (d), (e), and (f)). This is an important consideration for re-training
and tuning because excessive tuning of the model to a particular human
would bias it and reduce the generalizability. This would negatively impact
its practicality as more users get added to the work-cell or the environment
changes.

For DS1, entries 12, 13, 23 and 25 in Table 6 with (m, n) combinations
as (20, 100), (20, 90), (30, 100), (30, 80) reached the required F1-scores of
≥ 0.8 with first iteration itself. These are highlighted in green while entries
highlighted in blue are close (0.77≤ F1-scores < 0.8). In subsequent iterations,
entries 37, 38 with just 20 total user images per class (10 per class in each
iteration) and for entries 67, 70 and 71 with 30 total images (10+10+10) per
class achieved the required metric. For higher accuracy values on DS1 and
comparable or slightly better F1-scores, entries 78- 82 with m = 20 may also
be considered which performed as well as using m=30. Indeed, the highest F1-
scores were observed with (m,n): (20, 100) and (20, 80). Thus, values higher
than 30 were not considered for m in the case of DS1.

In general, the recommendation for similar datasets to DS1 (user data as
close as possible to the standard data i.e., clean, solid colour background, no
glasses or moustaches or other accessories and placement of the human in the
image like the original) is to have higher number of images from the standard
dataset (n ∈ {50, 60, 70,80, 90,100}) and m = 20 although higher values (30)
and lower (10) would also be effective.

A point to be made here is that in the training setup, images were sampled
randomly from a training set. This random sampling leads to stochasticity in
test accuracy of the model trained on the sampled images. Thus, there are
minimal variances in classification metrics for each run. While this random
sampling has less of a discernible effect on DS1 experiments because of the
simpler background and face, it shows a higher impact on DS2 because of the
cluttered background and the presence or absence of user accessories such as
glasses. Iterative re-training would lessen the impact on classification metrics
as more data is added to train the model.

6.2 Re-training model trained on KDEF with Cluttered
User Dataset (DS2) only

Accuracy scores on DS2 improved significantly after first re-training for all
combinations of data (Table 7). The F1-scores were still below the target value
of 0.8 hence, a second round of re-training was carried out using the models
generated in the first round following the framework described in the previous
sections. After first re-training, entries 127, 133-135, and 137-139 demonstrated
F1-scores close to 0.7 highlighted in blue in Table 7. After second iteration,
entries 155, 161, 162, 165, 171, 173-176, all combinations of m = 40 except
entry 185 had F1-scores ≥ 0.7. Out of these, entries 165, 176, and 187 have n =
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Fig. 6 Plot of trends of classification metrics of models generated from iterative re-training
with uncluttered user dataset (DS1) with various combinations of DS1 and KDEF data
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Table 6 Classification metrics of models generated after iterative re-training with
uncluttered user dataset (DS1) with various combinations of DS1 and KDEF over three
iterations

0 i.e., no images of KDEF were used for re-training. These particular cases of n
= 0 seemed to have lost significant knowledge of features learned from KDEF
(Figure 7 (a)). As mentioned earlier, this indicates a decrease in variance that
can be handled by the model and is evident from the lower accuracy values on
tests on KDEF data. Hence, these entries are not considered as viable options
for implementation of the framework.

The lack of increase of F1-scores for (m, n): (20, 10), (30, 40), (30, 70), and
(30, 80) may possibly be explained by the stochasticity in the sampling process
as mentioned earlier. In contrast, an increase in F1-scores can be observed
for all other cases from iteration 1 to 2. Overall accuracy values on DS2 test
images were higher for m = 40 while combinations with m = 20 and 30 were
similar when accounting for stochasticity while the same for combinations with
m = 10 were lowest. This follows since increase of training data will naturally
lead to increase in accuracy if the sampled data is representative of the data
to be learned. Even with a second and third re-training (entries 144-154 and
188-198), combinations with m = 10 showed slow increase in accuracy and
F1-score values.
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Fig. 7 Plot of trends of classification metrics of models generated from iterative re-training
with cluttered user dataset (DS2) with various combinations of DS2 and KDEF data
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Table 7 Classification metrics of models generated after iterative re-training with cluttered
user dataset (DS2) with various combinations of DS2 and KDEF over three iterations

While combinations of m = 40 and n ∈ { 100,90,80,60,50, 40,0 } in the first
iteration (entries 133-142) reached F1-scores > 0.7, after the second iteration,
almost all combinations of n withm = 40 reached the same metric with (m, n):
(40, 100), (40, 90) and (40, 60) F1-scores > 0.8 which is the target for stopping
tuning. With three iterative re-trainings, value of n was independent when m
= 40 for achieving the required criterion of F1-score > 0.8. The combination
of (40, 0) is not viable since it lost the KDEF knowledge to a large extent.
Similar results were obtained for batches with m = 20 (entries 155 and 161)
which reached similarly high accuracy values with half the number of user
images by the second iteration as compared to the combinations (40, 90) and
(40, 60). Similarly for m = 30 with respect to entry 175. The third iteration
yielded almost similar results for m = 30 and m = 40 (Table 7). With m
= 20, the combinations of (20, 90) and (20, 30) were viable while most other
combinations had F1-scores > 0.7 (highlighted in blue). From Figure 7, (c)
the trends in the accuracy values on DS2 can be noted. The plot lines for m =
30 and 40 do not show as much variation as for m = 20, similar for (b) which
are for F1-scores.
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Overall, for a complex dataset such as DS2 which is quite different from the
standard one used to train the original model, three or more iterations would
be required with best results (high values of accuracy and F1-score) with small
batches of m = 30 and independent of the number of KDEF images provided
it is a non-zero value. Certain combinations with m = 20 may also work for
this purpose, but they were subjected to stochasticity.

The n = 0 case displays very different behaviour for DS1 and DS2. The
impact of the lack of standard data for re-training even over three iterations
is quite minimal as compared to that for DS2 where accuracy on KDEF test
set plummeted to 0.39 for m = 40 (entry 231, Table 7). This could perhaps
indicate the similarity of DS1 to KDEF and could be an indicator of a means
to expand datasets of this nature if the original dataset is not available for
re-training of the model.

The attempt has been to keep the framework as close to a realistic scenario
as possible. Hence, the collection and voice command feedback-based annota-
tion of the user data has been undertaken in stages: of addition of a new user
(within the same environment) and/or a change of environment. Change of
environment with the same user could be considered as a superset of dataset
of the scenario wherein the user is newly added to the old environment. The
experiments in the presented paper have been demonstrated for this particular
scenario. Thus, to present the methodology that uses as small batches of data
as is feasible and realistic to generate within the application scenario, models
for the new environment have been trained with only data generated in that
environment and not a mixture of images from both scenarios. A final set of
experiments have been carried out in subsection 6.3 wherein models already
trained with DS1 were re-trained with DS2. As mentioned in Section 5, these
models performed better than if only DS2 were used. The framework is flexible
and if data is available, then the datasets from both scenarios may be merged
as per the practitioner’s discretion.

6.3 Model trained on DS1 used to iteratively re-train on
DS2

From tests with combinations of DS1 (Section 6.1), it was found that m(DS1)
= 20 and a high number of KDEF obtained best results, while m(DS2) = 30
and any non-zero number of KDEF images fared well (Section 6.2). DS1 is sim-
ilar to KDEF while DS2 is more similar to DS1 (same human in the images)
as compared to KDEF. Therefore, if models trained on DS1 (by transfer learn-
ing on the model trained with KDEF) were to be used to do transfer learning
with DS2, a similar logic could be applied in formulating the combinations of
images from the three datasets.

In case of DS2, m ∈ { 10, 20, 30 } were considered for tests and as per
findings from Section 6.1, n1 (images per class from DS1) ∈ { 30, 40, 50 } were
used so as to keep high quantity of the more ‘similar’ dataset. Since results on
DS2 were independent of the number of KDEF images used (Section 6.2), lower
number of KDEF were used, n2 (KDEF) ∈ {0,10,20,30,40 }. The combinations



Springer Nature 2021 LATEX template

Personalization Human-Robot Communication based on User Feedback 29

arising from these values of m, n1, and n2 were used to generate datasets for
training for two iterations and then tested on test sets of DS2 and KDEF. Two
iterations were run to test the hypothesis that models trained with KDEF,
then DS1 would reach the requisite target F1-scores on DS2 through lesser
re-training steps.

From Table 8 (entries 232-321), it can be observed that the combination of
(m, n1, and n2 ): (30, 40, 20) in the first iteration and majority of combinations
with m=30 after the second iteration reach F1-score ≥ 0.8 (entries 278-280,
284, 290-291, highlighted in green). The remaining (277, 282, 285, 286, 289)
have F1-scores ≥ 0.77 (highlighted in blue) which are higher than with just
DS2 and KDEF as covered in Section 6.2. The combination (20, 40, 40) also
reaches the required target while (20, 40, 10) and (20, 40, 0) are close. (20, 40,
0) has no KDEF data during re-training, the effect of which is reflected in the
lower accuracy of KDEF test set.

Outside of the combinations discussed above, m = 30, n1 (DS2) ∈ { 0,
10, 20 } and n2 (KDEF) ∈ { 10, 20 } were run as well, the results of which
are captured in Table 8 (entries 322-333). Only entries 330 and 331 had F1-
scores ≥ 0.77 after two iterations. From the table, it may be observed that
combinations with m = 30 and n1 ≥ 40 would be the ideal combination that
reaches the required F1-score and accuracy on DS2 after lesser iterations than
just using DS2 on KDEF and requires lesser number of images than certain
cases discussed in Table 7 and Section 6.2 with m=40. The case of n1=0
does not seem to have a drastic impact on the classification metrics, but the
long-term effects could be the subject of further study.

7 Application of PF-HRcom to a
Manufacturing Task

The PF-HRCom framework was applied for a handover task from the robot
to the human worker which is one of the common collaborative tasks in the
industrial manufacturing site. The example process is designed to have a 6-
DoF robot manipulator to hand over a tool to the human worker and a 20-fps
stationary camera to capture the facial expression of the worker to ensure the
engagement of the human.

The flow of the process is shown in Figure 8. When the process began, the
robot received information from the manufacturing execution system about
the current task such as product ID and determined the required tool. Then,
the robot picked up the tool and moved it to the handover position following
the pre-programmed sequence. During this sequence, the engagement of the
human worker was simultaneously and continuously measured for each image
frame with the current FER model. When the robot reached the handover
position, FER is stopped and the system determines whether the worker is
engaged or not throughout the robot’s motion. If the human was Engaged, the
robot completed the handover task by opening the gripper. If Not Engaged,
the task was stopped and the robot put the tool back in its original position.
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Table 8 Classification metrics of models generated after iterative re-training with
uncluttered user dataset (DS1) and then with cluttered user dataset (DS2)
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In case the perception system encountered shifted data due to any change in
scene, the system would be ”unsure” of the human being either Engaged or
Not Engaged, the operation paused. The system then asked for user feedback
and the PF-HRCom framework was executed to update the FER model using
the newly achieved information.

Fig. 8 The flowchart of the example collaborative task for robot-human tool handover
scenario using PF-HRCom framework.
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In this application, the softmax probabilities for Engaged class PEngaged

across the image frames are averaged to determine the engagement score(E-
Score):

E − Score =
1

N

N∑

i

PEngaged,i

where N is the number of image frames. The threshold of the E-Score for
Engaged is set to E − Score ≥ 0.6, whereas the threshold for Not Engaged is
set to E−Score < 0.4. If 0.4 < E−Score ≤ 0.6, the FER is considered unsure
of facial expression because of scene changes out of the distribution from the
previous FER model(e.g. a new worker is captured). These thresholds are the
heuristic values and can be adjusted by the system designer. Also, other metrics
for E-Score other than the average of softmax probabilities can be applied to
a further extent in this scheme to identify the unsure cases in a safer manner.

The application consisted of two participants (authors of this work) who
will now be referred to as User1 and User2 (workers in the industrial task) in
this industrial scenario. User2 was not a part of the FER analysis presented in
Sections 4 and 5. The initial model (model1 ) was trained with KDEF (stan-
dard) dataset and data of User1. The data for User1 was captured in the same
environment on-site and with the robot in the work-cell. During the application
of PF-HRCom, the following cases arose:

Case1 User1 was engaged in the handover task, verified by E-Score. model1
which was trained with User1 data recognized the Engaged label and the
handover task was successfully completed.
Case2 User1 was not engaged in the handover task, verified by E-Score.
model1 which was trained with User1 data recognized the Not Engaged label
and the handover task was stopped for the safety of the worker.
Case3 User2 was engaged in the handover task. But model1 which was not
trained with User2 data was unable to come to a decision on the Engaged
status label. For safety, the task was paused and a GUI shown on the screen
asked the worker, ”Are you engaged”? The feedback of ”yes” or ”no” would
be used to label the data for re-training. model2 was generated by training on
User2 data in addition to User1 and KDEF, thus personalizing to the second
user as well.

After generating a more personalized model: model2, the setup was run
again and the following cases arose:

Case4 User1 was engaged in the handover task, verified by E-Score. model2
recognized the Engaged label and the handover task was completed.
Case5 User1 was not engaged in the handover task, verified by E-Score.
model2 recognized the Not Engaged label and the handover task was stopped
for the safety of the worker.
Case6 User2 was engaged in the handover task, verified by E-Score. model2
was able to recognize the Engaged label and the handover task was successfully
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completed, thus showcasing the adapted behaviour of the robot perception
system to the new worker.
Case7 User2 was not engaged in the handover task, verified by E-Score.
model2 recognized the Not Engaged label and the handover task was stopped
for the safety of the worker.

The case of User2 in a not engaged state was not carried out
since as mentioned earlier, the FER model is biased towards the
Not Engaged label and was thus considered redundant. A video of
the application can be accessed from: https://drive.google.com/file/d/
1P4sad2GW-OeAqt7bKdkoAJ9WlfIACCcF/view?usp=share link. Figure 9
contains screenshots of the video organized under the seven cases.

8 Conclusions and Further Work

This paper presents a novel framework – PF-HRCom for the development
of a personalized robot perception system. It has been validated upon facial
expression recognition (FER) with sparse data from the human partner. An
in-commensurable mode of communication, the voice command from the user
was leveraged to annotate the user data and iteratively re-train the FER model
without having to hand-label the datasets. PF-HRCom is further applied to a
human-robot handover task that takes facial expressions as indications of the
focus of the human in the task. The process highlighted the need to analyze
application and domain-specific data and the need to customize machine learn-
ing models to the user and the requirement. The high classification metrics of
the trained model tested on user data were better than the model trained with
the publicly available “standard” dataset. This was demonstrated on datasets
with both clean as well as noisy, cluttered backgrounds.

The framework has been demonstrated and presented using voice com-
mands to provide feedback, but it is mode agnostic that is to say, physiological
signals or body language recognition models may also be used for feedback.
Indeed, the use of the said modalities may generate higher accuracy and lesser
time of detection of the human’s internal states. Also, instead of RGB images,
videos may also be used for recognition of ’engagement’ of the human in the
task. In addition to that, hand gestures or body poses specific to certain appli-
cations that also suffer from the absence of large, labelled datasets may be
generated and models trained using this framework, the applicability of which
is not just limited to affect data.

While E-Score was an easy-to-use metric that was used to test the model
performance in the application section, it is to be noted that a similar approach
may not be suitable for a multiclass classification model. This is because neural
network classifiers tend to classify OODs with high confidence resulting from
the use of SoftMax function. This is because the probabilities are computed
using exponential functions which lead to a large increase in output for a
minor increase in input (Gal and Ghahramani 2016). Thus, more involved
confidence or domain shift quantification measures may be required for such

https://drive.google.com/file/d/1P4sad2GW-OeAqt7bKdkoAJ9WlfIACCcF/view?usp=share_link
https://drive.google.com/file/d/1P4sad2GW-OeAqt7bKdkoAJ9WlfIACCcF/view?usp=share_link
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Fig. 9 Application of Personalization through Feedback enabled Human-Robot Communi-
cation (PF-HRCom) framework to a manufacturing task
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cases. Statistically driven unsupervised approaches to gauge model learning
may be a lucrative future work.

The complexity of human emotions may be tackled to provide greater
nuance to HRCom. Intensity or arousal of emotions (Citron et al. 2014) can
be used to increase the specificity of the model to the human by means of the
framework. With personalized baselines of intensity of emotions for each user,
any change in emotion during the task that can distract the human can be bet-
ter recognised by the system. Furthermore, checkpoints may be added while
implementing PF-HRCom to take feedback and re-train if negative interactions
are being recognised. This would reduce the downtime of the robot and enable
better personalization and higher efficiency. Implementing such scenarios is an
interesting future work from the perspective of affective computing.

The case of misclassification by the model may be a safety issue. This has
not been tackled in this work since it would be a rare occurrence because
the FER models were biased towards Not Engaged classes, thus would stop
operation even due to misclassification, and due to the high accuracy of said
models. Future work in other modes of communication could be more suscep-
tible to misclassification. Fusion of multiple modes of communication may be
used instead of just one model to tackle this issue.

Finally, human-robot collaboration and more generally, human-machine
interaction systems designed to carry out complex manipulation tasks must
also involve a robot perception system that can adapt itself to the human.
The latter will support communication and lead to higher safety and more
efficiency in communication.
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