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Abstract
Histopathology for tumor margin assessment is time-consuming and expensive. High-resolution full-�eld optical coherence
tomography (FF-OCT) images fresh tissues rapidly at cellular resolution and potentially facilitates evaluation. Here, we de�ne
FF-OCT features of normal and neoplastic skin lesions in fresh ex vivo tissues and assess its diagnostic accuracy for
malignancies. For this, normal and neoplastic tissues were obtained from Mohs surgery, imaged using FF-OCT, and their
features were described. Two expert OCT readers conducted a blinded analysis to evaluate their diagnostic accuracies, using
histopathology as the ground truth. A convolutional neural network was built to distinguish and outline normal structures and
tumors. Of the 113 tissues imaged, 95 (84%) had a tumor (75 BCCs and 17 SCCs). The average reader diagnostic accuracy was
88.1%, with, a sensitivity of 93.7%, and a speci�city of 58.3%. The AI model achieved a diagnostic accuracy of 87.6%±5.9%,
sensitivity of 93.2%±2.1%, and speci�city of 81.2%±9.2%. A mean intersection-over-union of 60.3%±10.1% was achieved when
delineating the nodular BCC from normal structures. Limitation of the study was the small sample size for all tumors, especially
SCCs. However, based on our preliminary results, we envision FF-OCT to rapidly image fresh tissues, facilitating surgical margin
assessment. AI algorithms can aid in automated tumor detection, enabling widespread adoption of this technique.

Introduction
Non-melanocytic skin cancer (NMSC) is the most prevalent cancer worldwide, accounting for ~ 5.4 million cases diagnosed and
treated annually in the US alone1. Among all NMSCs, basal cell carcinoma (BCC) is the most common type (~ 4.3 million
cases), followed by squamous cell carcinoma (SCC; ~1 million cases)1. NMSCs are rarely fatal and seldom metastatic, but they
can be highly in�ltrative and aggressive and have a high recurrence rate2.

Surgical excision and Mohs micrographic surgery are widely accepted procedures for the margin assessment and complete
removal of the NMSC with a high cure rate of 95–99% respectively3. To achieve a high cure rate and preserve healthy skin,
histopathological examination of the excised tissue is the gold standard. However, histopathology evaluations require time-
consuming tissue preparation, extensive laboratory facilities, and well-trained technicians4,5.

Ex vivo optical imaging devices including confocal microscopes and optical coherence tomography (OCT) have been developed
for the rapid evaluation of fresh tissues to obviate tissue processing5–11. In this article, we describe the utility of a novel full-
�eld OCT (FF-OCT) microscope (ApolloVue® B100 image system, Apollo Medical Optics, Ltd.) device. OCT relies on a low
coherence interferometer and the light scattering properties of skin structures to construct cross-sectional images of tissue12.
However, the existing OCT devices have a low resolution (3–10 µm axial and 3-7.5 µm lateral resolution), which hinders the
differentiation of normal skin structures from tumors and tumor subtyping12,13. In contrast, the novel FF-OCT microscope has
an axial resolution of 1.5 µm and a lateral resolution of 1.1 µm, which is far superior to the existing OCT devices. Wang et al
demonstrated that even a novice (without OCT experience) can read these images with 93–100% sensitivity and 21–54%
speci�city. However, this study was performed on para�n-embedded thick tissue sections, which doesn’t equate to the
evaluation of freshly excised tissues14.

Although the emergent cellular-resolution optical coherence tomography (OCT) could signi�cantly accelerate the clinical
adoption of OCT to assist physicians in interpreting images15–18, interpretation of OCT images often requires an expert with
extensive training in reading these images, posing a major barrier to integrating OCT in clinics6,9. Thus, deep learning
algorithms, in particular convolutional networks (CNN), have become a powerful tool for analyzing medical images to assist
physicians in detecting, classifying, segmenting, and even diagnosing tissue images19. CNN has the advantage of
automatically extracting features and is not limited to features de�ned by the human eye. At present, many studies have used
CNN to identify basal cell carcinoma in stained images20 and segment nuclei from stained images21,22 and dermal �llers in
OCT images of mouse skin23.

In our study, for the �rst time, we imaged fresh, non-labeled (without using any exogenous dye/contrast agent) tissues obtained
during Mohs surgery using a high-resolution FF-OCT microscope. First, we de�ned FF-OCT features of all normal skin structures
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and various NMSC tumors, particularly BCC, and some benign lesions. Next, to demonstrate the feasibility of this device in a
surgical setting, we performed a blinded analysis by two OCT experts (1 pathologist and 1 Mohs surgeon) to access the
diagnostic accuracy (sensitivity and speci�city) of detecting tumors. Lastly, to overcome the limitations of reading gray-scale
images and mitigate the mosaic artifacts due to image stitching, we generated a deep-learning algorithm that can differentiate
BCC tumor nodules from sebaceous glands and other non-tumor tissues.

Material And Methods
Patient cohort, consenting, and tissue collection: This study was conducted at Memorial Sloan Kettering Skin Cancer Center,
Hauppauge, New York between April 2017 and February 2020. Patients undergoing Mohs surgery for NMSCs consented to an
institutional review board-approved protocol (# 08 − 006) for the collection of fresh discarded specimens (cut tangentially) after
the completion of pathology analysis. Our collection did not compromise Mohs procedures or patient care. We excluded
patients younger than 18 years of age. Also, large samples that exceeded the imaging window area (20x20 mm) of the tissue
holder or tissues thinner than 1 mm were not included in the study.

Tissue preparation and FF-OCT imaging: Discarded tissues were thawed from the frozen blocks and rinsed in normal saline.
They were then placed in the plastic cassette (provided with the device) with the frozen section cut surface facing the glass
window for imaging. Nicks and their associated color codes were applied on the edges of the specimens for the purpose of
tissue orientation and subsequent histopathology correlation. A drop of glycerin was applied to the glass window before the
tissue placement. The cassette was then closed with a cover to secure the specimen in place. The tissue �attening was
achieved using the sponge cushion lining the inner surface of the cover. A drop of mineral oil was added to the lens and the
cassette was then inserted into the imaging well of the device for scanning. The technological details of the device have been
previously described14. Once the scanning process was completed, the entire plane of 10 to 30 microns below the cut surface of
the specimen was visualized as one mosaic composed of multiple small �elds of view (FOV; 800 µm x 600 µm). The scanned
images were stored on a connected computer for analysis14.

Blinded analysis: The two expert readers (MJ, a pathologist; and CSJC, a Mohs surgeon), �rst trained themselves by studying
10 mosaics from BCC tumors and de�ned FF-OCT features for BCC and surrounding normal structures (epidermis, hair follicles,
sebaceous glands, eccrine ducts, adipose tissue, vessels, and nerves), comparing them with their corresponding histopathology.
Later a test set was created using 113 FF-OCT mosaics (from 113 fresh tissues). The images used for training were removed
from the test set. All the FF-OCT images collected were de-identi�ed and were assigned a study number and provided to the
experts for reading independently. The readers were blinded to the histopathology diagnosis. Each of the readers recorded
�ndings including the presence or absence of the tumor, type, and subtype of tumor in a spreadsheet. Clinical data was also
collected for the consented patients including name, age, gender, clinical diagnosis, and location of the lesion. Corresponding
histopathology sections (created at the time of Mohs evaluation) provided the closest mirror images of the FF-OCT mosaics
and were used as ground truth for the concordance of FF-OCT reading.

Deep-learning algorithm: For the arti�cial intelligence (AI) algorithm, images from 23 nodular BCC (nBCC) were used. The image
sizes were variable, and each image had more than 5,000 x 5,000 pixels with a pixel separation of 1.332 µm. The images were
chopped into patches with 512 x 512 pixels to accommodate the limitations of computation power and storage capacity.

A convolutional neural network (CNN) classi�cation model was built on top of the U-Net with symmetric down and up
samplings result for nBCC detection17,24,25 (Fig. 1). During the CNN training phase, 1,253 image patches with nBCC were used.
The largest receptive �eld is 186 x 186 µm2. During training, the cross-entropy loss was used as the baseline for evaluation with
5-fold cross-validation. In addition to mitigation of imbalanced nBCC and non-nBCC classes, the focal loss was also adopted to
improve the segmentation performance. As shown in Eq. (1), the focal loss is de�ned to down-weight easy examples and focus
training on hard negatives. The focal loss down weights easy examples with a factor of (1 − pt)γ so that the model can focus
on learning the misclassi�ed pixels24.

FL (pt) = −αt(1 − pt)
γlog (pt)
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1

where  is the weighting factor to address the class imbalance issue, γ is the focusing parameter, and  is de�ned in Eq. (2)].

2

where p ∈ [0,1], is the model’s estimated probability for the class with y = 1 (nBCC pixels). In our two-class scenario, y= -1 for
non-nBCC pixel.

The focal loss was �rst employed to eliminate the OCT mosaic artifacts. After the segmentation model, a classi�cation model
was used to differentiate the BCC tumor nodules from other tissues.

To quantitatively evaluate the image segmentation performance, mean intersection over union

(mIOU) was used to measure the overlapping between the predicted and annotated image pixels.

In addition to image segmentation, a classi�cation model was built on top of the U-Net result for nBCC detection of the excised
tissues. The post-segmentation image erosion process was applied to

reduce the fragmented dusty pixels. In addition, a voting strategy was adopted on the outputs of the U-Net patches by
partitioning each of the 512x512-pixel patches to 128x128-pixel patches for both hard and soft votings. As a result, 22,386
small patches were generated for training, and among them, 10,193 small patches have nBCC pixels. Resnet18 was used as the
classi�cation model. And 5-fold cross-validation was applied.

Results
Patient demographics and lesion site: Hundred and ten patients were enrolled in this study. The male: female ratio was 1:4 and
the average age of the patients was 63 years old (ranged 33 yo- 93 yo). Majority of the lesions 54/113 (47.8%) were located in
the T-zone region (ear, eye, nose, lip, and chin), followed by 39/113 (34.5%) in the head and neck region (scalp, forehead, cheek,
and neck), 14/113 (12.4%) on the extremities (arms, legs, hands, and feet), and only 6/113 (5.3%) on trunk and genitalia.

Histopathology diagnosis of the tissue samples collected (Table 1). A total of 113 tissues were collected and imaged with the
FF-OCT device. Of which, 95 (84%) were positive for tumor including 73 (65%) BCCs, 15 (13%) SCCs, 2 basosquamous cell
carcinoma (2%), and 5 others (4%). The most common BCC sub-type was the nBCC 46 (41%), followed by 43 (38%) in�ltrative
BCC (iBCC) or micro-nodular BCC (mnBCC) and the least common subtype was super�cial BCCs (sBCC) 3 (3%). The rest 18/113
tissues (15.9%) were negative for tumors.

αt pt

pt = {
p, ify = 1

1 − p, otherwise
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Table 1
Ground truth characteristics of the

sample
Characteristic N %

Total 113 100%

Tumor Presence 95 84%

Tumor Type1    

BCC 73 65%

SCC 15 13%

BCC & SCC 2 2%

Other 5 4%

BCC subtypes2    

sBCC 3 3%

nBCC 46 41%

iBCC/mnBCC 43 38%

No BCC 38 34%

FF-OCT features of normal skin structures and tumors:

1) Normal skin structures: On a low magni�cation view, all skin layers including epidermis, dermis, and subcutis could be
identi�ed (Fig. 2). On a zooming-in, cellular details of each layer became evident. The epidermis appeared as a grayish linear
strati�ed layer composed of multiple cells with a small dark nucleus and grayish cytoplasm. However, due to the di�culties in
�attening the tissue edge completely on the imaging window, the epidermis could not be visualized in most of the tissues.

Hair follicles (Fig. 3) appeared as tubular to round structures with a central dark hole lined by an inner grayish epidermal layer
and an outer bright �brous layer. Sometimes a bright hair shaft was identi�ed in the center of these follicles making their
identi�cation easy. Sebaceous glands (Fig. 3) appeared as round to oval varied-sized darkish (hypo-re�ective) structures
composed of multiple lobules separated by thin bright (hyper-re�ective) �brous septa. Due to their round shape, these glands
were di�cult to distinguish from nBCC; however, the presence of multiple small bright punctate particles, which we speculate to
be the sebum particulates, aided in the distinction. Eccrine glands (Fig. 3) appeared as tightly packed clusters of small, round to
oval grayish (hypo-re�ective) structures separated by thin bright septa. Within the gland’s lumen, small punctate bright particles
(similar to sebaceous glands) could be seen. Eccrine ducts (Fig. 3) were seen within the clusters of eccrine glands as small
roundish structures with a central dark (are�ective lumen) and lined by grayish cells. The eccrine unit (glands and ducts) could
be identi�ed as embedded within dark (are�ective) adipose tissue.

Smooth muscles (Fig. 4) could be identi�ed as bundles of grayish (hypo-re�ective) structures with intervening bright thin �brous
bands. Cigar-shaped dark elongated nuclei were seen within the muscle �bers. The smooth muscle bundles were seen lining the
dark lumen of medium-sized blood vessels and attached to a hair follicle (as arrector pili muscle).

2) Basal cell carcinoma: Classic features of BCC could be identi�ed on FF-OCT. BCC tumor nodules appeared as round to oval
varied size structures composed of clusters of grayish (hypore�ective) pleomorphic cells with dark nuclei (Fig. 5, 6). These
tumor nuclei were seen arranged perpendicular at the periphery of the nodule forming “palisading”. Clefting was identi�ed as a
dark (are�ective area) around tumor nodules.

In sBCC the tumor nodules were seen attached to the epidermis (Fig. 6a). In nBCC (Fig. 5) and mnBCC (Fig. 6b), the nodules
were identi�ed within the bright dermis. Palisading and clefting were prominent in both nBCC and mnBCCs. Necrosis was seen
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in the bigger tumor nodules of nBCC as dissociated cells with some scattered bright particles within. The collagen appeared as
bright (hyper-re�ective) parallel bundles around the tumor nodules. iBCC had a distinct appearance (Fig. 6c). The tumor foci
appear as darkish irregular strands (varied size and shape) composed of grayish clusters of cells with intervening bright strands
of �brous tissue. It was easier to identify these strands when they were clustered. Isolated foci were not readily detected.
Additionally, in the area of iBCC, there was a complete loss of normal skin structures.

3) Squamous cell carcinoma: SCC was seen as sheets of polygonal cells with abundant grayish cytoplasm and enlarged
irregular dark nuclei. Within the nucleus, a bright dot was often identi�ed, which could be the nucleolus (Fig. 7).

4) Other tumors: Cylindroma (Fig. 8) appeared as well circumscribed large multi-lobated grayish structure within the dermis.
Some of the lobules were surrounded by a bright thickened band of collagen. Each lobule is composed of monomorphic cells
with a dark round nucleus and a rim of scant grayish cytoplasm. No clefting around the nodule was seen.

Blinded analysis:
Diagnostic accuracy of FF-OCT device in detecting residual tumors in the surgically excised fresh tissue

Readers 1 (CSJC) and 2 (MJ) each demonstrated high sensitivity (91.6% and 95.8%) and moderate speci�city (55.6% and
61.1%), respectively, for detecting the presence of any malignant tumor in the margin (Table 2).

Table 2. Classi�cation accuracies of two expert readers for detecting tumors in the surgically excised fresh tissue.
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Assessment Reader Sensitivity (95%
CI)

Speci�city (95%
CI)

Positive
Predictive Value

Negative
Predictive Value

Tumor Presence Average 93.7%   58.3%   92.2%   64.4%  

Reader
1

91.6% (84.1%,
96.3%)

55.6% (30.8%,
78.5%)

91.6% (84.1%,
96.3%)

55.6% (30.8%,
78.5%)

Reader
2

95.8% (89.6%,
98.8%)

61.1% (35.7%,
82.7%)

92.9% (85.8%,
97.1%)

73.3% (44.9%,
92.2%)

Tumor
Classi�cation

BCC Average 87.3%   57.9%   80.4%   69.8%  

Reader
1

85.3% (75.3%,
92.4%)

52.6% (35.8%,
69%)

78.1% (67.5%,
86.4%)

64.5% (45.4%,
80.8%)

Reader
2

89.3% (80.1%,
95.3%)

63.2% (46%,
78.2%)

82.7% (72.7%,
90.2%)

75.0% (56.6%,
88.5%)

SCC Average 41.2%   95.8%   63.6%   90.2%  

Reader
1

41.2% (18.4%,
67.1%)

95.8% (89.7%,
98.9%)

63.6% (30.8%,
89.1%)

90.2% (82.7%,
95.2%)

Reader
2

41.2% (18.4%,
67.1%)

95.8% (89.7%,
98.9%)

63.6% (30.8%,
89.1%)

90.2% (82.7%,
95.2%)

Other tumors Average 30.0%   97.7%   41.7%   96.8%  

Reader
1

20.0% (0.5%,
71.6%)

99.1% (95%,
100%)

50.0% (1.3%,
98.7%)

96.4% (91%,
99%)

Reader
2

40.0% (5.3%,
85.3%)

96.3% (90.8%,
99%)

33.3% (4.3%,
77.7%)

97.2% (92%,
99.4%)

BCC
Subtyping

sBCC Average 0.0%   98.6%   NaN   97.3%  

Reader
1

0.0% (0%,
70.8%)

97.3% (92.2%,
99.4%)

0.0% (0%,
70.8%)

97.3% (92.2%,
99.4%)

Reader
2

0.0% (0%,
70.8%)

100.0% (96.7%,
100%)

NaN (0%,
100%)

97.3% (92.4%,
99.5%)

nBCC Average 79.3%   60.4%   57.9%   81.2%  

Reader
1

73.9% (58.9%,
85.7%)

59.7% (47%,
71.5%)

55.7% (42.4%,
68.5%)

76.9% (63.2%,
87.5%)

Reader
2

84.8% (71.1%,
93.7%)

61.2% (48.5%,
72.9%)

60.0% (47.1%,
72%)

85.4% (72.2%,
93.9%)

iBCC/mnBCC Average 33.7%   87.9%   62.1%   68.4%  

Reader
1

25.6% (13.5%,
41.2%)

87.1% (77%,
94%)

55.0% (31.5%,
76.9%)

65.6% (55%,
75.1%)

Reader
2

41.9% (27%,
57.9%)

88.6% (78.7%,
94.9%)

69.2% (48.2%,
85.7%)

71.3% (60.6%,
80.5%)

No BCC Average 56.6%   86.7%   68.1%   79.8%  

Abbreviations: CI: Con�dence interval, BCC: Basal cell carcinoma, SCC: Squamous cell carcinoma, sBCC: Super�cial basal
cell carcinoma, nBCC: Nodular basal cell carcinoma, iBCC: In�ltrative basal cell carcinoma, mnBCC: micronodular basal cell
carcinoma.

A fair degree of agreement was shown on this task, with a Cohen’s Kappa = 0.327 (Table 3). Readers were less accurate in
differentiating SCC from BCC; each reader indicated the presence of SCC in 7 of 17 specimens containing a histologic SCC
component. In addition, raters overcalled the presence of nodular BCC; they indicated the presence of this subtype in 54%
and 58% of all cases and in those instances were correct 55.7% and 60.0% of the time (positive predictive values).
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Assessment Reader Sensitivity (95%
CI)

Speci�city (95%
CI)

Positive
Predictive Value

Negative
Predictive Value

Reader
1

50.0% (33.4%,
66.6%)

84.0% (73.7%,
91.5%)

61.3% (42.2%,
78.2%)

76.8% (66.2%,
85.4%)

Reader
2

63.2% (46%,
78.2%)

89.3% (80.1%,
95.3%)

75.0% (56.6%,
88.5%)

82.7% (72.7%,
90.2%)

Abbreviations: CI: Con�dence interval, BCC: Basal cell carcinoma, SCC: Squamous cell carcinoma, sBCC: Super�cial basal
cell carcinoma, nBCC: Nodular basal cell carcinoma, iBCC: In�ltrative basal cell carcinoma, mnBCC: micronodular basal cell
carcinoma.

A fair degree of agreement was shown on this task, with a Cohen’s Kappa = 0.327 (Table 3). Readers were less accurate in
differentiating SCC from BCC; each reader indicated the presence of SCC in 7 of 17 specimens containing a histologic SCC
component. In addition, raters overcalled the presence of nodular BCC; they indicated the presence of this subtype in 54%
and 58% of all cases and in those instances were correct 55.7% and 60.0% of the time (positive predictive values).

Table 3
Agreement between two raters.

Assessment Cohen's Kappa (95% CI)

Tumor Presence 0.327 (0.092, 0.562)

Tumor Type 0.349 (0.184, 0.514)

BCC 0.362 (0.173, 0.551)

SCC 0.396 (0.119, 0.673)

Other 0.230 (-0.167, 0.626)

BCC subtypes    

sBCC 0.000 (-0.001, 0.001)

nBCC 0.319 (0.144, 0.494)

iBCC/mnBCC 0.185 (-0.02, 0.389)

No BCC 0.318 (0.127, 0.509)

Deep-learning algorithm: Most nBCC regions were segmented (Fig. 9, Table 4). The integrated segmentation and
classi�cation model showed better performance than the segmentation-only model. The artifact of the FOV boundary was
signi�cantly reduced when comparing the results of focal loss and cross-entropy loss. The false positives on nBCC are
signi�cantly reduced, and the mIOU increased to 60.3%±10.1%. The sensitivity and speci�city reach 93.5%±2.2% and 81.2%
±9.2%, respectively.

Table 4
Summary of the nBCC segmentation and detection results.

Nodular BCC Segmentation model only Segmentation + classi�cation models

Cross entropy loss Focal loss Hard vote Soft vote

Segmentation Mean IoU 46.4%±12.7% 51.6%±11.9% 60.1%±10.6% *60.3%±10.1%

Detection Accuracy 86.2%±6.2% 87.1%±7.3% *87.8%±6.8% 87.6%±5.9%

Sensitivity 94.3%±2.9% 93.2%±3.1% *93.5%±2.2% 93.2%±2.1%

Speci�city 79.5%±11.4% 79.8%±10.7% 81.1%±9.9% *81.2%±9.2%

PPV 78.7%±12.5% 79.6%±13.2% 80.4%±10.8% *80.5%±11.3%

NPV 93.4%±2.6% 93.1%±2.1% 93.2%±2.3% *93.3%±1.6%

Abbreviations: BCC: Basal cell carcinoma. *Represent best results
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Discussion
In this manuscript, we described, for the �rst time, cellular features of normal skin and NMSCs including BCC, and a benign
lesion with a novel high-resolution FF-OCT device in fresh ex vivo tissues. Through a blinded analysis, we demonstrated the
potential utility of this device for identifying and classifying neoplastic keratinocytic lesions. The FF-OCT had high sensitivity in
detecting all the tumors but had a low-moderate speci�city. 

Amongst all tumor types, nBCC had the highest sensitivity for tumor detection, however, had a moderate speci�city.  False-
positive results were due to the inability to distinguish tumor nodules from sebaceous glands. However, sebaceous glands
exhibit bright punctate dots and have sparse surrounding collagen that can aid in differentiating their identi�cation.  The deep
learning algorithms employed could largely segment nBCC regions. However, there were still some false positives on nBCC
segmentation, which might be due to the similar OCT appearance between nBCC and sebaceous glands. On the contrary, SCC
and sBCC had low sensitivity but very high speci�city. The low sensitivity could be a result of incomplete visualization of the
epidermis, which hindered the detection of these tumors originating from the epidermis. Incomplete visualization of the
epidermis was caused by the use of tangentially excised Mohs specimens and resultant tissue �attening issues encountered
during imaging. We believe such an issue can be improved with a vertically excised specimen. In the future, it may also be
possible to resolve the �attening issue by using the newly described digital tissue �attening26, which can use then expand the
application of this device to evaluate Mohs surgical margins. Similarly, iBCCs and mnBCCs had a low sensitivity. This could
possibly be due to the di�culty of identifying small strands or foci of these tumors among the bright and dense collagenous
background. 

The inter-rater reliability (Kohen's kappa, Table 3) values of the two OCT experts were below 0.4. This could be related to the
inability to differentiate BCC tumor nests from normal sebaceous glands or follicular epithelium by the grayscale imaging,
especially for small BCC strands or nests. Ex vivo confocal microscope can create digitally colored purple and pink images that
simulates H&E-stained tissue sections. 

The major limitation of this study was a small sample of tumors. Another limitation is the gray-scale nature of images that
requires interpretation by experts in this �eld. Thus, future studies are warranted using a large sample size (including benign
lesions) and performing a multi-reader diagnostic accuracy study. Furthermore, deep learning algorithms can be integrated to
convert  grayscale images into digitally colored purple and pink images27, similar to the images created by an ex vivo confocal
microscope. This would improve visualization of the OCT images and reduce the learning curve . Moreover, AI can aid in the
automated detection of tumors, leading to its wider adoption20,28.

Based on our pilot study, we envision FF-OCT as an alternative for time-consuming and tedious histopathology to enable a
rapid assessment of the tumor margins in the surgical excision samples, potentially reducing their recurrence rate. At least, FF-
OCT may offer a role in initial specimen screening for the margin status in the operation room to facilitate completeness of
tumor removal before conventional histological con�rmation. It can also be combined with the in-vivo imaging techniques such
as optical coherence tomography and confocal microscopy that has limited penetration depth and often cannot used to
evaluate deeper surgical margins. Additionally, FF-OCT can analyze small biopsies at the bedside before they are submerged in
formalin for further processing. If indicated, all or part of the specimen can be preserved for molecular analysis as the tissue is
neither processed nor sectioned. Lastly, since the FF-OCT images are digitally stored they can be read and analyzed remotely by
a specialist, as a telehealth tool29, for evaluation of ex vivo tissue, especially bene�cial for rural or underserved areas.  Although
different ex vivo imaging technologies exists, knowledge of this novel device is essential to the consumers so they can tailor
their needs based on the device cost and capability. Ultimately, ex-vivo OCT may not necessary replace the current rapid
pathology process but may help to �ll the gap in the under-served community or rural area where an extensive lab set-up and
trained technicians may not be readily available.  
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Figure 1

The U-Net con�guration with the designed image sizes (at the sides of the green rectangles) and convolution core numbers (on
or below the green rectangles).
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Figure 2

Images of normal layers of the skin. (A) FF-OCT image showing grayish epidermal lining (pink arrow), dermis (green asterisk),
and underlying subcutis (pink asterisk). (B) A strati�ed layer of the epidermis (pink arrow) shows multiple round to oval dark
nuclei surrounded by bright (grayish) cytoplasm. The underlying dermis appears grayish (green asterisk). (C) Adipocytes of the
subcutis appear as dark polygonal structures separated by thin white septa (pink asterisk). (D-F) Corresponding histopathology
section stained with Toluidine blue. Magni�cations: (A) = 5.2 mm x 5.2 mm; (B, C) = 300 x 150 mm; (D)= 10x; (E, F) = 40x .

Figure 3

Images of normal adnexal structures of the skin. (A) FF-OCT image showing hair follicles (pink arrows) in longitudinal section,
eccrine unit (green asterisk), and sebaceous lobules (red asterisk). (B) Eccrine glands appear as tightly packed clusters of round
to ovoid structures with some bright particles. A central duct is seen as a dark oval structure (green arrow) lined by a grayish
lining. (C) Sebaceous gland lobules appear round to oval darkish (hypo-re�ective) structures with bright punctate particles. (D)
Corresponding histopathology section stained with Toluidine blue. Magni�cations: (A): Scale bar is 1 mm; (B) = 300 x 240 mm;
(C)= 600 x 500 mm; (D)= 10x.
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Figure 4

Images of the smooth muscle of the skin. (A) FF-OCT image showing grayish smooth muscle bundles (green arrows) in
longitudinal section with cigar-shaped dark elongated nuclei within and the surrounding �brofatty tissue (collagen: green
asterisk; adipocytes red asterisk). (B) Corresponding histopathology section stained with H&E. Magni�cations: Scale bar: 1 mm;
(B) = 10x.
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Figure 5

Features of a nodular basal cell carcinoma (BCC) as compared to the normal adnexal structures: A) FFOCT image shows a big
BCC nodule (yellow asterisk) surrounded by normal skin structures. B) Zoomed-in area from the red box in the image (A) shows
cellular features of BCC with nuclear atypia, peripheral palisading (green arrow), and clefting (yellow arrow). The nodule is
surrounded by a thick bright band of collagen (red arrows). Sebaceous glands (orange asterisks) have a lobulated appearance
with bright punctate structures. The hair follicles (pink arrows) appear round to oval with a central lumen and epidermal lining.
C) Corresponding H&E-stained histopathology image. Scale bars = 1 mm.
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Figure 6

Images of basal cell carcinoma (BCC) subtypes. FF-OCT images: (A) super�cial BCC with grayish tumor nodules (yellow arrow).
Epidermal attachment is not visible due to the lack of epidermis caused by inadequate tissue �attening. (B) micronodular BCC
with small grayish tumor nodules, and (C) in�ltrative BCC with grayish tumor strands (yellow arrows). BCC nodules are
surrounded by a collagenous matrix. (D-F) Corresponding histopathology sections with Toluidine blue. Magni�cations: (A-C) = 2
x 1.5 mm; (D-F) = 10x.

Figure 8
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Image of a cylindroma. A) FF-OCT image shows a well-circumscribed large multi-lobated grayish structure within the dermis. (B)
Corresponding histopathology section stained with Toluidine blue. Scale bar: 1 mm.

Figure 9

The image segmentation results of 3 patients. CEL: cross-entropy loss, FL: focal loss. The 49 white color in the annotation
column represents the nBCC regions. The scale bars are all 2 mm. The 50 color-coding of yellow, pink, cyan, and black represent
true positive, false positive, false negative, and 51 true negative, respectively.


