1 Lee, G. A. & Hirst, L. W. Ocular surface squamous neoplasia. Surv. Ophthalmol. 39, 429-450, doi:10.1016/s0039-6257(05)80054-2 (1995).
2 Kiire, C. A. et al. A prospective study of the incidence, associations and outcomes of ocular surface squamous neoplasia in the United Kingdom. Eye (Lond.) 33, 283-294, doi:10.1038/s41433-018-0217-x (2019).
3 McClellan, A. J. et al. Epidemiology of Ocular Surface Squamous Neoplasia in a Veterans Affairs Population. Cornea 32, 1354-1358, doi:10.1097/ICO.0b013e31829e3c80 (2013).
4 Sun, E. C., Fears, T. R. & Goedert, J. J. Epidemiology of squamous cell conjunctival cancer. Cancer Epidemiol. Biomarkers Prev. 6, 73-77 (1997).
5 Chauhan, S. et al. Loss of pRB in Conjunctival Squamous Cell Carcinoma: A Predictor of Poor Prognosis. Appl. Immunohistochem. Mol. Morphol. 26, e70-e76, doi:10.1097/pai.0000000000000592 (2018).
6 Vizcaino, M. A. et al. ADAM3A copy number gains occur in a subset of conjunctival squamous cell carcinoma and its high grade precursors. Hum. Pathol. 94, 92-97, doi:10.1016/j.humpath.2019.08.020 (2019).
7 Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proceedings of the National Academy of Sciences 99, 12293-12297, doi:10.1073/pnas.192461099 (2002).
8 Harrington, K. J. et al. Nivolumab versus standard, single-agent therapy of investigator's choice in recurrent or metastatic squamous cell carcinoma of the head and neck (CheckMate 141): health-related quality-of-life results from a randomised, phase 3 trial. Lancet Oncol. 18, 1104-1115, doi:10.1016/s1470-2045(17)30421-7 (2017).
9 Ferris, R. L. et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 375, 1856-1867, doi:10.1056/NEJMoa1602252 (2016).
10 Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of Antitumor Immunity by CTLA-4 Blockade. Science 271, 1734-1736, doi:10.1126/science.271.5256.1734 (1996).
11 Saliba, M. et al. PD-L1 expression in sebaceous carcinomas. Cancer Immunol. Immunother., doi:10.1007/s00262-020-02821-3 (2021).
12 Sugiyama, D. et al. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc. Natl. Acad. Sci. U. S. A. 110, 17945-17950, doi:10.1073/pnas.1316796110 (2013).
13 Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231-235, doi:10.1038/nature14404 (2015).
14 Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of Tumor Immunity by Removing CD25<sup>+</sup>CD4<sup>+</sup> T Cells: A Common Basis Between Tumor Immunity and Autoimmunity. The Journal of Immunology 163, 5211-5218 (1999).
15 Nishikawa, H. & Sakaguchi, S. Regulatory T cells in tumor immunity. Int. J. Cancer 127, 759-767, doi:10.1002/ijc.25429 (2010).
16 Hori, S., Nomura, T. & Sakaguchi, S. Control of Regulatory T Cell Development by the Transcription Factor <em>Foxp3</em>. Science 299, 1057-1061, doi:10.1126/science.1079490 (2003).
17 Freeman, A. et al. Comparative immune phenotypic analysis of cutaneous Squamous Cell Carcinoma and Intraepidermal Carcinoma in immune-competent individuals: proportional representation of CD8+ T-cells but not FoxP3+ Regulatory T-cells is associated with disease stage. PLoS One 9, e110928, doi:10.1371/journal.pone.0110928 (2014).
18 Yan, M. et al. Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers. Breast Cancer Res. 13, R47, doi:10.1186/bcr2869 (2011).
19 Peduzzi, P., Concato, J., Kemper, E., Holford, T. R. & Feinstein, A. R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 49, 1373-1379, doi:10.1016/s0895-4356(96)00236-3 (1996).
20 Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20-21, doi:10.1038/83713 (2001).
21 Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330-336, doi:10.1038/ni904 (2003).
22 Chauhan, S. K. et al. Autoimmunity in Dry Eye Is Due to Resistance of Th17 to Treg Suppression. The Journal of Immunology 182, 1247-1252, doi:10.4049/jimmunol.182.3.1247 (2009).
23 Socié, G. & Ritz, J. Current issues in chronic graft-versus-host disease. Blood 124, 374-384, doi:10.1182/blood-2014-01-514752 (2014).
24 Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162-174, doi:10.1038/nri2506 (2009).
25 Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096-1103, doi:10.1038/nm1096-1096 (1996).
26 Koshiba, T. et al. Expression of Stromal Cell-derived Factor 1 and CXCR4 Ligand Receptor System in Pancreatic Cancer: A Possible Role for Tumor Progression. Clin. Cancer Res. 6, 3530-3535 (2000).
27 Wang, L. et al. Donor bone-marrow CXCR4+ Foxp3+ T-regulatory cells are essential for costimulation blockade-induced long-term survival of murine limb transplants. Sci. Rep. 10, 9292, doi:10.1038/s41598-020-66139-x (2020).
28 Gobert, M. et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 69, 2000-2009, doi:10.1158/0008-5472.Can-08-2360 (2009).
29 Wu, A. et al. Combination anti-CXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment. J. Neurooncol. 143, 241-249, doi:10.1007/s11060-019-03172-5 (2019).