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Abstract
Robust microbial classi�cation systems are essential, but their de�nition is complicated by the large size
and high diversity of microbial populations combined with a widespread horizontal genetic exchange.
Multi-locus approaches that index gene variation without explicit phylogenetic classi�cation mitigates
these problems, but reproducibly de�ning high-level groups remains problematic. We describe a
generalisable machine learning approach, 'NeighbourGroups', that reproducibly, robustly, and rapidly
classi�es multi-locus sequence types with de�ned precision.

Full Text
Most bacteria exist in very large populations, and the combination of high growth rates, short generation
times, extensive horizontal gene transfer (HGT), and strong selection can lead to very high diversity along
with variable levels of clonality1. For many applications, notably infectious disease epidemiology, robust
classi�cation systems that pragmatically and reproducibly differentiate variants at high resolution are
essential. Multi-locus sequence typing (MLST) was developed to solve this problem, indexing sequence
variation using a limited number, often as few as seven, housekeeping gene fragments without explicitly
classifying them phylogenetically2. The sequence variation of these fragments is recorded as alleles and
combinations of alleles as sequence types (STs) that can be organised into groups or clonal complexes
(ccs), sometimes referred to as 'eBurst groups' (sBGs)3. As sequence capacity has increased, additional
schemes with more loci have been introduced, including ribosomal MLST (rMLST, indexing the 53
ribosomal protein genes) and core genome (cgMLST, indexing all shared genes in a particular
population); however, seven-locus classi�cations remain widely understood and used as a cornerstone
for bacterial typing4,5.

Whilst de�ning alleles and sequence types are straightforward, as they are effectively summaries of
sequence variation, representing higher-level groups, such as clonal complexes, is more problematic. In
addition to HGT confusing purely phylogenetic approaches, the existence of intermediate variants can
result in all variants merging into a single group. These problems are less intense for schemes with very
large numbers of loci, but for seven-locus MLST schemes, pragmatic solutions have been adopted, such
as de�ning clonal complexes with a central genotype5. However, while establishing a stable classi�cation
system, these approaches can misclassify STs into incorrect clonal complexes, as they rely on
assumptions about the representativeness of the data set being analysed, which may or may not be
correct. They can also be unstable to the addition of new data.

We have addressed this problem by leveraging the availability of large numbers of whole genome
sequences and machine learning techniques. First, cgMLST data are analysed using the Neighbour
Joining tree reconstruction method to establish clusters or 'Neighbour Groups' based on the similarity of
their cgMLST pro�les. Then, a supervised machine learning algorithm is used to optimally predict the
membership of these clusters from fewer loci, such as the MLST loci. The trained algorithm enables a
robust probabilistic assignment of a seven-locus genotype to a cluster de�ned with cgMLST data (Figure
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1), which is especially helpful when whole genome sequence data are unavailable, for example, from
clinical specimens, as WGS technology is not available or for legacy data. The algorithm is available as a
command line tool accessible from https://github.com/bgrdessislava/NeighbourGroups.

An essential parameter for the NeighbourGroups model is the number of classi�cation groups, which is
user-de�ned and can be established empirically. For example, with a Campylobacter dataset of >10,000
isolates for which cgMLST data were available6, we performed a grid search to assess model
performance for two to 100 classi�cation groups (Figure 2). Model performance was evaluated with an
adjusted Rand score, which determined whether two clusters were similar between the 'testing tree' and
'true tree'. An adjusted Rand score of >0.90 was de�ned as an excellent prediction, 0.80-0.90 good
recovery of groups, 0.65-0.80 moderate recovery, and <0.65 poor recoveries, with low con�dence in the
reproducibility of the classi�cation. This analysis indicated that, for this dataset, 20 NGroups gave an
optimum performance, with an adjusted Rand score of 0.895, showing high agreement between the 20
groups assigned from cgMLST with those assigned from the seven-locus MLST data.

At the time of writing, there were more than 150 MLST schemes available for a wide range of microbial
species, primarily bacteria, with hundreds of thousands of isolates typed to the level of seven loci MLST
and, in many cases, also with cgMLST. Most of these can be found on the PubMLST website
(https://www.pubmlst.org)7. From some MLST databases, notably those for Neisseria species8,
Campylobacter jejuni. Campylobacter coli 6, and Salmonella enterica3, clonal complexes (or eBurst
groups), have been de�ned using a variety of approaches, but for most data collections, such groups
have not been rigorously de�ned or maintained. Given the variability of bacterial population structures,
the number of different schemes and the number of isolates available, there is a need for a rational and
automated approach to de�ning groups which can be applied to whole genome and MLST data. This is
especially the case for pathogens for which it may not be possible to generate reliable whole genome
sequence data from clinical specimens but where this information is bene�cial. In addition, the Neighbour
Group approach is easily implemented, and its assumptions easily understood, providing a pragmatic
complement to other analysis approaches, many of which require whole genome sequences and high-
capacity computing 9,10. A �nal advantage is that the approach indicates the con�dence with which
seven locus data can be assigned to whole genome sequence groups.

Methods
Isolates acquisition and tree creation

10,359 high-quality Campylobacter jejuni U.K isolates were downloaded from PubMLST
[https://publmlsts.org ](Jolley, Bray and Maiden, 2018) using the following search query:
'Species=Campylobacter jejuni' AND 'Country=UK' AND ‘1990>=Year<=2020' AND 'N50>=20,000' AND
'1.4Mb<=Genome Size <= 1.8 Mb' AND 'Contigs<=50' AND 'source=human_stool'. 



Page 4/7

The output of this query is available at: https://pubmlst.org/bigsdb?
db=pubmlst_campylobacter_isolates&page=query&project_list=110&submit=1 

Tree Construction

The NeighbourGroups methodology requires the construction of two phylogenetic trees. The �rst is a
"True Tree" containing all isolates, and the second is a "Training Tree" containing a subset of isolates
used for model training. The model's classi�cation accuracy is then assessed using testing isolates from
the "True Tree". This step ensures the testing isolates are unseen by the model during training and helps
prevent data leakage. Neighbour-joining trees were constructed using the coreMLST values (1,343 loci in
C. jejuni) using GrapeTree (Zhou et al., 2018). The "True Tree" contained 10,359 isolates, and the "Training
Tree" had a randomly selected 80% subset. Trees were output in Newick format. 

NeighbourGroup Assignment

The two Newick format trees were initially processed to generate linkage matrices using Python. Brie�y,
Newick �les were read using ete3 (Huerta-Cepas, Serra and Bork, 2016). Following this, trees were
converted to cophenetic matrices. Next, cophenetic matrices were converted to condensed distance
matrices and, subsequently, linkage matrices using SciPy (Virtanen et al., 2020). Finally, linkage matrices
were passed to fcluster to perform hierarchical clustering and extract a predetermined number of groups. 

CatBoost Classi�er Training 

Following group assignment, the training isolates were passed to the CatBoost supervised learning multi-
class classi�cation algorithm. CatBoost is a gradient-boosting algorithm for decision trees and works
well with categorical values. The training was performed using the seven housekeeping MLST genes for
Campylobacter jejuni (aspA, glnA, gltA, glyA, pgm, tkt and uncA) as features and the NeighbourGroup
assignment as the target.

Testing Classi�er Performance

Following training, model performance was assessed using the 20% unseen isolates excluded from the
training step. Predicted groups were compared against the "true" groups de�ned by the "True Tree" using
an adjusted Rand Index. The Rand Index is a measure of similarity between two data clustering's. 

Determining Optimal Group Number

The maximum number of classi�cation groups (NGroups) is a user-de�ned hyper-parameter of the
NeighbourGroups methodology. A range of neighbour groups was tested between 2 and 100 to identify
an optimal number of NeighbourGroups. For each NGroup number, the classi�er was retrained, and the
adjusted Rand score was computed.

Retraining and Model Deployment
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Following the validation of model performance, a �nal NeighbourGroups model was built using the
complete set of isolates. The �nal trained model can be deployed to classify novel isolates. Each
prediction outputs a predicted group and an associated probability. Appropriate probability thresholds
may be determined to categorise unknown isolates. The Neighbour Groups methodology described here
is highly generalisable and can be applied across a wide range of bacterial species.

Declarations
Data Availability

All the data are freely available and can be found on the PubMLST database
(https://pubmlst.org/organisms/campylobacter-jejunicoli/) (Jolley, Bray and Maiden, 2018). The datasets
used during the current study are available by accessing the publicly available project No.110: 1998-2018
UK human UK isolates (n=10,359). https://pubmlst.org/bigsdb?
db=pubmlst_campylobacter_isolates&page=query&project_list=110&submit=1.
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Figure 1

Schematic illustration of the NeighbourGroup (NGroup) classi�cation pipeline. Two phylogenetic trees are
constructed: (1) the "True Tree", which is reconstructed from all the isolates and (2) the training tree,
which uses 80% of the isolates. Isolates A, B, C, and D are test isolates excluded from the training tree, for
which the model predicts Neighbour Group (NGroup) membership based on a limited number of loci.
Isolates E, F, G, and H are training isolates assigned to Neighbour Groups. The table shows the results
obtained from the model, with predicted NGroup membership as established by the "true tree" and
predicted from the training tree. Neighbour Group membership probability is estimated and re�ects a level
of uncertainty in the classi�cation. Adjusted Rand score shows how the model has performed: a score of
0 indicates the performance is no better than chance, and a score of 1 indicates perfect classi�cation.

Figure 2

Variation in adjusted Rand Index with number of NGroups for a dataset of 10,359 Campylobacter
jejuniWGSs. The adjusted Rand score is shown for 2 to 100 NGroups. Model performance was poor (low
adjusted Rand Index) with fewer NGroups and reached a maximum (0.895) for 20 NGroups, with little
added value for higher numbers of NGroups.


