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Abstract
Objectives: We developed a food-borne prophylactic strategy with aloin to protect dental collagen through
enhancing the mechanical strength, thermostability, and the resistance to enzymatic hydrolysis of dental
collagen. The mechanism and effect of this food-borne prophylactic strategy were examined.

Methods: Aloin solution (0.1 mg/mL) was prepared. The concentration is equivalent to the natural
content of aloin in edible aloe. Attenuated total reflectance flourier transform infrared spectroscopy (ATR-
FTIR), Gaussian peak fitting, and X-ray diffraction (XRD) were used to explore the mechanism of
interaction between aloin and dental collagen in situ. Mechanical strength and thermostability were
separately evaluated via Ultimate tensile strength test (UTS) and thermogravimetric analysis (TGA).
Hydroxyproline (HYP), cross-linked carboxy-terminal telopeptide of type I collagen (ICTP), and C-terminal
crosslinked telopeptide of type I collagen (CTX) were used as indicators to evaluate the resistance to
enzymatic hydrolysis. Wight loss was further tested as macro-parameter to evaluate the effectiveness of
aloin on dental collagen stability.

Results: Aloin can interact with dental collagen via hydrogen bonds in humid environment. The
interaction shorted the intermolecular distance and enhanced the proportion of stable α-helix chain of
dental collagen. Aloin-treated dental collagen exhibited improved mechanical strength, thermostability
and enzymatic stability.

Conclusion: Aloin can strongly integrate with dental collagen under physiological conditions via hydrogen
bonds and significantly enhance the dental collagen stability.

Clinical Relevance: The use of aloin maybe a daily, nondestructive, and low-cost strategy to protect dental
collagen.

1. Introduction
Infectious oral diseases such as caries, pulpitis and periapical periodontitis have become a global public
health problem for decades [1–3]. In many low- and middle-income countries, plenty of patients cannot
afford the medical expenses for these oral diseases [4,5]. Continuing deterioration of these oral disease
further cause systemic infection such as sepsis, multiple organ failure, and even death [6,7]. With the
invasion of bacteria, enzyme, and temperature variation, apatite mineral crystals of enamel and dentin
collapse incrementally, exposing the organic dental collagen network [8–10]. Denuded dental collagen is
much more susceptible to these exogenous infections and their triple helix structure will degrade rapidly.
The loosening of collagen structure and the high porosity of collagen network provide more possibilities
for the diffusion of these infectious substance. Further, the diffusion of acidic metabolites produced by
bacteria makes the infectious area much larger than the zone of bacterial invasion. Hence, it is significant
for dentists to extend the scope of surgery to adequately eliminate the infectious tissues. However, the
traumatic strategy increases the risk of secondary infection [11]. Furthermore, teeth of people in high-
carbonhydrate diet and the patients suffered from temporomandibular disorders, excessive occlusal
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forces, and tooth wear are also susceptible to these infectious oral diseases [12,13]. Hence, it is urgent to
explore a daily, nondestructive, and low-cost strategy to enhance the dental collagen stability.

In medicine, dental bonding strategy has been proposed to physically isolate the dental collagen from
exogenous infectious factors through adhesive resin. Adhesive resin can penetrate into the dentin
collagen network and wrap with the collagen fibrils through micro-mechanical interlocking [14]. However,
this physical interaction is susceptible to moisture, bacteria, and biomechanics [15–17]. Other studies
proposed to rebuild the “inorganic-organic” hybrid structure of dentin through remineralization [18].
Scientists use amorphous mineral precursor nanoparticles like bioactive glass, calcium phosphate, and
silica to reproduce the mineralization process [19–21]. However, the period of remineralization is so long
to be used for clinical and daily application [22]. The introduction of antibacterial agent such as
quaternary ammonium salt, metal ions (Ag+, Cu2+, Zn2+, etc), and antibiotics can strongly resist the
bacterial infection [23,24]. While this strategy is limited by their toxicity and drug resistance. Furthermore,
these strategies need to be executed by professional doctors, and it cannot be applied universally by the
general population. 

Modification of collagen structure based on exogenous agents is a non-invasive strategy to improve the
structural stability of dentin collagen. Some synthetic agents, such as glutaraldehyde, dopamine
methacrylamide, and isocyanates can chemically interact with amino acid residues of collagen,
improving collagen stability [25-27]. However, their toxicity makes them not suitable for daily use and
medicine [28,29]. Meanwhile, water molecules can competitively bind with the active group (-OH, -NH2) of
dental collagen, restricting the chemical interaction between these agents and collagen [30]. Natural
agents including tangeretin, procyanidine, and hesperidin are regarded as candidates to enhance dental
collagen structure in humid environment [31]. Compared to artificial agents, they present better
biocompatibility, biosecurity and edibility [32]. However, these plant-derived agents need to be purified
from the seeds and peels [33]. Aloin, as the main component of aloe, has the potential to be the candidate
for food-borne prophylactic strategy because it can be ingested directly [34]. Therefore, present study
aims to explore the influence of aloin on dental collagen structure and the effect on enhancing dental
collagen stability in situ. The null hypothesis tested is that the application of aloin has no effect on
improving dental collagen stability.

2. Materials And Methods
2.1 Reagents and dental collagen preparation

Aloin (CAS: 8015-61-0) and phosphoric acid (PA) were purchased from MedBio (shanghai, China). Sixty
non-caries, intact human third molars were collected with the approval by the Institutional Review Board
of the last author’s institute (#IRB-S2021-655-01). All extracted teeth were used within 1 month after
extraction. 
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Twenty-six dentin slices (10.0 mm diameter, 1.0 mm thick), twenty dentin beams (1.0 mm × 1.0 mm × 6.0
mm), and 310 mg dentin powder were prepared as previously [27]. All specimens were demineralized in
10 wt % PA for 24 h and then rinsed with deionized water for 20 min to prepare dental collagen. Aloin
solution (0.1 mg/mL) was prepared through mechanical stirring for 10 min and ultrasonic agitation for
10 min. The tested concentration is based on the natural proportion of aloin in aloe. Aim to evaluate the
effect of aloin, half of randomly selected specimens of demineralized dental collagen were used as the
control group (DDC group). The other specimens were treated with aloin solution for 2 min and then
rinsed with deionized water for 1 min. Aloin treated dental collagen were used as the experimental group
(A-DDC group). 

2.2 The influence of aloin on dental collagen structure

2.2.1 Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and peak fitting

ATR-FTIR (Shimadzu, Tokyo, Japan) was used to explore the interaction between aloin and dental
collagen in situ. Demineralized dental collagen slices were used as specimens and placed on the
diamond crystal top plate of ATR-FTIR with a gauge force of 100 N. The characteristic peak of amide I,
amide II and amide III of DDC and A-DDC group were recorded. The wavelength range was set at
400~4000 cm-1 with a resolution of 2 cm-1. Background spectra were collected with no sample on the
ATR crystal top plate and this spectrum was subtracted from all absorbance spectra. Gaussian peak
fitting was used to quantify the content of each secondary structure of dental collagen (n=3) [35]. 

2.2.2 X-ray diffraction (XRD)

The crystallinity index of dental collagen specimens was analyzed with XRD (Bruker D8, Germany) using
CuKα radiation (40kV, 40mA). Samples were scanned from 0° to 70°. 

2.3 Mechanical stability 

The ultimate tensile strength (UTS) before and after thermocycling were tested to evaluate the effect of
aloin on dental collagen mechanical stability. Twenty dental beams were used in this test. Half of
randomly selected specimens were used to evaluate the immediate UTS. Thermocycling was used to
evaluate the effect of aloin on the other half of dental collagen stability according to the ISO TR 11,450
standard (1994). All specimens were tested at a crosshead speed of 1 mm/min on a microtensile testing
machine (EZ-TEST 500 N, Shimadzu, Japan). Maximum load (N), length (L) and width (W) of the cross
sectioned area were measured when the specimens until failure. The UTS (E) of each group of was
calculated according to the formula: E= N/(L×W) (n=5). 

2.4 Thermostability

Forty-eight mg demineralized dentin powder was divided randomly into two groups. For each group, 8.0
mg of powder was initially used and dried in a vacuum desiccator with silica gel for 24 h before
thermogravimetric analysis (TGA, Mettler Toledo, Columbus, OH, USA) from room temperature to 300 °C
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at a heating rate of 10 °C/min under N2 atmosphere (flow rate= 10 mL /min). The five percent mass loss
temperature (T95%) was recorded (n=3).

2.5 Enzymatic stability

2.5.1 Release of ICTP and CTX

For each group, 5.0 mg powder were immersed in 2.0 mL artificial saliva at 37 °C to simulate the
influence of oral environment for 7 and 14 days. The culture solution was taken and the amount of ICTP
and CTX were separately measured using ICTP (Finetest, Wuhan, China) and CTX ELISA kits (IDS,
England). The standard curves were plotted according to the requirements of the kit before measurement.
OD 450nm was recorded and the concentration of ICTP and CTX were calculated based on standard
curve (n=5). 

2.5.2 Release of Hydroxyproline (HYP)

The content of HYP in extract is a convincing indicator for collagen degradation. High-performance liquid
chromatography (HPLC; Agilent Technologies, Santa Clara, CA, USA) was used to test the release of HYP
of each group (n=3). Two groups of demineralized dentin powders (5.0 mg) were immersed in 2.5 mL of
collagenase solution (50 μg/ mL, Invitrogen, Carlsbad, CA, USA) for 24 h and 48 h. Detail procedure is the
same as we previously published [36]. 

2.5.3 Weight Loss

Twenty slices of DDC and A-DDC groups were all dried as mentioned in section 2.4 and weighted (m1).
Then the specimens were immersed in collagenase solution (50 μg/ mL) for 7 days and 14 days
respectively. Specimens should be washed and dried until the mass unchanged and weighted (m2).
Specimens at the corresponding time point for each group should be washed, dried until the mass
unchanged, and then weighted (m2). The weight loss (W%) was described by the percentage weight loss
of individual samples, calculated by the following formula: W%= (m1-m2)/m1×100% (n=5). 

2.6 Statistical analysis

After normal distribution and variance evaluation by D'Agostino-Pearson test and Fisher’s test, the data of
mechanical stability and enzymatic stability were submitted to two-way analysis of variance (ANOVA)
and Bonferroni’s repeated measure with Graph Pad Prism version 8.0 (La Jolla, CA, USA,
RRID:SCR_002798). Student's T-test was used to compare the T95% and secondary structure parameters
in curve fitting. The significance level value was 0.05.

3. Results
3.1 The influence of aloin on dental collagen structure
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The schematic diagram of the dental collagen preparation and modification process was shown in Fig. 1.
Both of DDC and A-DDC exhibited the typical XRD spectrum of dental collagen (Fig. 2a). The DDC
showed XRD peaks at 2θ= 7.51 ° (d= 11.76), 21.01 ° (d= 4.23), and 31.21 ° (d= 2.86). The A-DDC exhibited
three characteristic peaks at 2θ= 7.56 ° (d= 11.68), 20.80 ° (d= 4.27), and 31.61 ° (d= 2.83). Nevertheless,
an increased intensity of Peak I and a decreased intensity of Peak II and Peak III were detected in A-DDC
compared to DDC.

The spectrum of ATR-FTIR of both DDC and A-DDC showed the characteristic amide I, amide II, and
amide III peaks of dentin collagen (Fig. 2b). After modification with aloin, the amide I peak of collagen
displayed a blue shift from 1639.38 cm-1 to 1635.52 cm-1. Meanwhile, the spectrum intensity of A-DDC
showed a little decrease compared to DDC, further convincing the interaction between aloin and dental
collagen.

The curve fitting procedure allowed determining the secondary structure composition in both groups (Fig.
2c and 2d): α-helix (1650–1660 cm-1), β-sheet (1600–1640 cm-1), β-turn (1660–1700 cm-1), and random
coil (1640–1650 cm-1). The intensity of signals decreased after pretreatment with aloin compared to the
DDC. The subgroup distribution of the secondary structure was identical but the proportion was different
after modification. As shown in Fig. 3a and 3d, the proportion of α-helix increased from 33.40 ± 0.90% to
38.51 ± 1.17% (p< 0.01), and the proportion of random coil decreased from 18.70 ± 0.56% to 7.78 ± 0.54%
(p< 0.0001).

3.2 Mechanical stability

The results of UTS were plotted in Fig. 4a. For immediate UTS, significant difference was noted in A-DDC
(24.09 ± 3.47 MPa) compared with DDC (17.16 ± 2.26 MPa) (p< 0.01). There were sharp decreases in
UTS of both groups with the thermocycling protocol. While A-DDC presented a 33.62% decrease in UTS,
the value (15.99 ± 0.39 MPa) remained significantly higher than that of DDC (6.24 ± 1.23 MPa, dropped
by 63.64%) (p< 0.0001).

3.3 Thermostability

The thermostability of collagen with aloin treatment was evaluated by TGA analysis. As shown in Fig. 4b,
the T95% of the treated collagen was higher than that of the untreated collagen (p< 0.05). For DDC, T95%

was 108.60 ± 5.60 °C. After being treated by aloin solution for 2 min, the T95% rose significantly to 122.70
± 2.79 °C.

3.4 Enzymatic stability

Release of ICTP and CTX

Fig. 5a summarized the release of the telopeptide ICTP by the endogenous MMPs of dentin. The mean
liberation of the more ICTP 20.42 ± 2.48 ng/mg dry dentin for 7 days occurred in DDC, whereas A-DDC
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liberated 13.76 ± 2.21 ng/mg dry dentin (p< 0.001). The content of ICTP in both groups for 14 days are
higher than them for 7 days (p< 0.05). A-DDC still showed a significantly lower rate of ICTP telopeptide
release for 14 days (19.30 ± 0.89 ng/mg dry mass) than DDC (25.08 ± 2.15 ng/mg dry dentin) (p< 0.01).

Fig. 5b revealed the release of the telopeptide CTX produced by cathepsin-K. Similar to ICTP, the
demineralized specimens in contact with aloin showed the release of CTX telopeptide both for 7 days
(79.24 ± 6.16 pg /mg dry dentin) and 14 days (135.20 ± 5.73 pg/mg dry dentin) significantly lower than
that in DDC (129.10 ± 5.30 and 161.40 ± 5.41 pg/mg dry dentin, respectively) (p< 0.0001).

Release of HYP

The resistance to collagenase digestion was also determined by measuring free HYP. As shown in Fig. 5c,
no significant difference was observed for 24 h between A-DDC (0.08 ± 0.01 mg/g dentin) and DDC (0.09
± 0.01 mg/g dentin) (p= 0.17). After 48 h, significantly lower release of hydroxyproline occurred in A-DDC
(0.10 ± 0.00 mg/g dentin) as compared to DDC (0.21 ± 0.01 mg/g dentin) (p< 0.0001).

Weight Loss

Fig. 5d showed the weight loss of demineralized dentin for 7 and 14 days. The A-DDC showed a W% with
4.95 ± 0.72% for 7 days which was obviously lower than that in DDC (7.15 ± 0.86%, p< 0.01). The W% in
both groups increased with time and it was significantly lower in A-DDC (8.10 ± 0.77%) compared to DDC
(10.84 ± 0.60%) for 14 days (p< 0.001).

4. Discussion
In the present work, the authors have developed a new non-invasive and dietary strategy for enhancing
dental collagen stability with aloin. Results indicate that this strategy can significantly improve the
mechanical strength, thermostability and the capacity on resisting enzymatic hydrolysis of dental
collagen. Hence, the null hypotheses should be rejected.

Phenolic compounds such as catechol, polyphenols, and procyanidine have been proposed as collagen
modifiers [37–39]. Previous researches have proposed they can interact with collagen via covalent bonds,
hydrogen bonds and van der Waals forces [40]. While, in this article, the blue shift of amide I from
1639.38 cm-1 to 1635.52 cm-1 suggests that aloin can interact with dental collagen via hydrogen bonds.
The mechanism of interaction is attributed to the hydrogen bonds between the phenolic hydroxyl groups
of the natural compounds and amino or amide groups of dentin collagen. 

The increased area of the characteristic peak located in 1600 cm-1 ~ 1700 cm-1 interval of the ATR-FTIR
spectra and the increase in intensity of Peak I in XRD suggest that the dental collagen of A-DDC group
exhibits an enhanced proportion of α-helix. As the most stable secondary structure in collagen type I, an
increase in content of α-helix demonstrates the enhancement of dental collagen stability [41]. Meanwhile,
the proportion of relatively unstable structures like β-sheet, and especially random coil shows a
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significantly decrease based on the results of curve fitting [42]. The XRD spectrum exhibits a similar
tendency that the intensity of Peak II decrease, demonstrating that the dental collagen of A-DDC
compared to DDC containing less content of random coil. These phenomenon evidences that the
interaction between aloin and collagen improve the structural stability. Meanwhile, the decreased d value
of Peak I of A-DDC in XRD suggests that the dental collagen treated with aloin exhibit a smaller
interplanar spacing. This phenomenon illustrates that the hydrogen bonds between dental collagen and
aloin can reduce the intermolecular distance of dental collagen fibrils, further improving the stability of
collagen structures. 

Intraoral temperature, bite force and enzyme play significant roles in dentin fate determination [43].
Hence, we chose UTS, TGA, and enzymatic stability tests to assess the effectiveness of aloin on dentin
collagen. The increase of UTS and T95% of A-DDC group are adjunctive evidences for the interaction
between dental collagen and aloin. Hydrogen bonds between aloin and collagen increases the collagen
density per unit volume [44]. The enhanced binding force in the form of closer intermolecular distances is
manifested macroscopically as an increase in UTS. In addition, the UTS of the specimens in A-DDC is
significantly higher than that in DDC group after rinsing with deionized water, laterally indicating the
interactions remain stable in the humid oral environment. 

In terms of thermostability of collagen, the modification may stabilize the structure of the thermally labile
domains by forming more hydrogen bonds [45]. A shorter axial distance among amino acid residues
indirectly confirms an improved hydrogen bonding content, according to the d value of Peak III in XRD
reduced from 2.86 to 2.83. Furthermore, aloin can elevate the proportion of stable secondary structure to
increase the stability of thermally-labile domains with dentin collagen. Besides, the temperatures of
weight loss are also related to the molecular weight of the reaction system. The graft of aloin can
significantly increase the molecular weight of dental collagen and the higher molecular weight also
explain why dentin collagen modified with aloin exhibited increased thermostability [46].

The findings prove that aloin has abilities to resist collagenase as measured by the release of ICTP, CTX
and HYP, as well as confirmed by the weight loss. The released HYP is due to the action of bacterial-
collagenase and other dentine-bound proteases and give indication of tissue collagen concentration
[47]. The release of ICTP and CTX fragments represents specific degradation products resulting from
MMPs and cathepsin K-mediated activities [48]. Weight loss is the macroscopic manifestation of
enzymatic degradation [49]. Effective inhibition of collagenase by aloin occurs in our work is due to
several reasons. Firstly, the stabilized collagen matrix acts as a mechanical barrier, preventing unwinding
of the triple helix, which is necessary for exposure of the catalytic site of collagenase to cleave. Secondly,
aloin promotes conformational changes of collagen and alter the configuration of the active site of
collagenase, making protease unable to identify the complementary peptide sequence for collagen.
Furthermore, aloin may exert additional effect directly on collagenase via chelation and hydrophobic
interactions like other plant-derived polyphenols, reducing collagenase’s molecular mobility and altering
the 3-D structure of their catalytic or allosteric domains. 
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While, previous researches have proven that phenols can interact with intraoral microbiota to degrade
their activity, enhancing the antibacterial capacity of dental collagen [50]. Whether aloin has this effect
are in investigation. Also, studies should be designed to quantify the in–situ reaction kinetics to further
explore the daily intake of aloin.

5. Conclusion
A food-borne prophylactic strategy using aloin to enhance the dental collagen stability has been
developed. Aloin can interact with dental collagen through hydrogen bonds. Using of this strategy can
improve the mechanical strength, thermostability and the enzymatic stability of dental collagen. This
daily, nondestructive, and low-cost strategy has the potential to significantly enhance the dental collagen
stability, decreasing the risk of tooth infection. 
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Figure 1

Schematic diagram of the preparation of DDC and A-DDC
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Figure 2

Interaction between aloin and demineralized dentinal collagen matrix (a) XRD pattern and (b) infrared
spectra of DDC and A-DDC. Gaussian deconvolution of the characteristic peak located in the 1600 cm-1 to
1700 cm-1 of DDC (c) and A-DDC group (d), respectively
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Figure 3

The percentage of secondary structure of DDC and A-DDC (a) the content of α-helix, (b) the content of β-
sheet, (c) the content of β-turn, (d) the content of random coil. (Data are presented as the mean ± SD; *p<
0.05; ** p< 0.01; *** p< 0.001; **** p< 0.0001)
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Figure 4

The mechanical strength (a) and thermostability (b) of each group (Data are presented as the mean ± SD;
*p< 0.05; ** p< 0.01; *** p< 0.001; **** p< 0.0001)
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Figure 5

The enzymatic stability of demineralized dental collagen before and after treatment with aloin (a) the
concentration of ICTP, (b) the concentration of CTX, (c) the concentration of HYP, (d) the wight loss for
each group (Data are presented as the mean ± SD; *p< 0.05; ** p< 0.01; *** p< 0.001; **** p< 0.0001)


