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Abstract One of the major challenges of the Network Functions Virtualiza-
tion (NFV) paradigm is to properly deploy functions and services across the
network. In particular, current solutions for multi-domain service mapping
present several restrictions in terms of the choice of optimization models and
metrics. This lack of flexibility ultimately leads to sub-optimized mappings
that do not meet the (often conflicting) requirements of all the parties in-
volved in the deployment process (e.g., network operators, clients, providers).
This work proposes GeSeMa (Genetic Service Mapping), a new intelligent
mapping solution based on genetic algorithms. GeSeMa enables flexible config-
uration of the evaluation setup, which is used to generate candidate mappings.
The solution allows the specification of arbitrary optimization metrics, con-
straints, and different evaluation policies. A genetic algorithm processes map-
ping requests and iteratively creates/evolves candidate mappings. We evalu-
ate GeSeMa through comprehensive case studies, including a comparison with
other classic and state-of-the-art alternatives.
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1 Introduction

Network Functions Virtualization (NFV) is driving a paradigm shift in telecom-
munications. NFV allows network functions that have been traditionally im-
plemented as physical appliances in hardware to be implemented as software
that runs on virtual machines [1,2]. Examples include intrusion detection sys-
tems, load balancers, traffic filters, deep packet inspection tools, among many
others [3–6]. Hardware appliances, despite presenting high-performance, incur
on high capital and operational expenditures, low scalability, low mobility,
and complex management. On the other hand, Virtualized Network Functions
(VNF) are executed on a software plane that runs on commercial off-the-shelf
hardware, thus presenting much lower costs in terms of development, deploy-
ment, and maintenance.

Individual VNFs are the building blocks of Service Function Chains (SFC)
[7], which are compositions of multiple network functions connected on a ser-
vice topology. The deployment of service topologies on virtualized environ-
ments comprises the execution of a number of tasks [1]: composition, embed-
ding, and scheduling. Recent works have proposed solutions to tackle promi-
nent challenges and improve the results of each of those deployment tasks
[8–12].

Informally, the problem of mapping a network virtualization service across
multiple domains consists of defining where the network functions that make
up the service will be instantiated and executed. Different domains may have
restrictions on the number of services they run and the resource requirements
of the respective functions. In addition, the policies the domain adopts together
with business rules adopted by each domain also have an impact on which al-
ternatives are feasible and their costs. There are network functions that are
native to certain domains, to which they must necessarily be mapped. For
other functions, there is a choice of where they should be executed, which de-
pends not only on equalizing the resources required with policies and resources
available in the domains. It also depends on the topology of the virtualized ser-
vice and the topology of the multi-domain network to which it will be mapped.
In this case, the objective is typically to reduce the amount of traffic trans-
ferred between domains as flows are forwarded through the network service.
Furthermore, other criteria that can be defined for each mapping process in
particular, such as maximizing the number of users, and maximizing or min-
imizing the number of domains used to host the service. It should also be
taken into account that the mapping objectives usually change according to
the very nature of the service being mapped, the type of environment in which
they operate, and also the network technologies involved, such as 5G or earlier
cellular networks or even IoT or vehicular networks.

Traditional solutions for mapping VNFs are based on evaluation setups
that are often static in terms of the set of optimization metrics they employ,
as well as objectives and weights, lacking the flexibility required to customize
their execution [1,13,14]. Thus, the requirements of the multiple stakehold-
ers (i.e., clients, providers, and network operators) are hardly met. A static
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strategy often leads to poor results, leaving stakeholders to adapt their needs
to whatever setup is available in the solutions they are using. These limita-
tions are particularly critical when service topologies are mapped on multiple
domain environments [15,10,16,17]. These solutions only allow stakeholders
to make simple adjustments (e.g., adjusting weights of existing optimization
metrics), but to the best of our knowledge, no current solution allows arbitrary
optimization metrics and objectives to be defined.

It is important to note that, besides the evaluation setup, other features
can impact the mapping of virtualized network services on multiple domains.
Examples of some of those features include: the characteristics of the network
infrastructure (such as whether it is private or public, or whether encrypted
connections and specific communication protocols are employed); the topology
(e.g., fat tree, three-tier, fully-connected, arbitrary); the type of service (e.g.,
traffic filtering, cache, security); and the structure of service topologies (e.g.,
linear or branched). Frequently, mapping solutions also neglect (completely or
partially) these features, which affects their flexibility and further limits their
applicability.

In this work, we propose a new multi-domain mapping solution, called Ge-
netic Service Mapping (GeSeMa). GeSeMa allows the evaluation setup to be
customized, providing high flexibility to adapt to different needs of the mul-
tiple stakeholders and takes multiple features into consideration. To do that,
the stakeholders describe their needs and other service features on a standard
request document. GeSeMa then uses a multi-objective optimization meta-
heuristic based on genetic algorithms to find mapping candidates in feasible
time. We evaluate GeSeMa through comprehensive case studies, including a
comparison with other alternative classic strategies and state-of-the-art solu-
tions [16].

The rest of this work is organized as follows. Section 2 presents preliminary
definitions and related work. GeSeMa is presented in Section 3. Evaluation
results are in Section 4, with comparisons with other classic and state-of-the-
art solutions. Finally, Section 5 concludes the paper and presents future work.

2 Background and Related Work

This section is organized in three parts. Subsection 2.1 presents basic concepts
related to NFV technology and service deployment. Subsection 2.2 gives a brief
overview of genetic algorithms. Subsection 2.3 describes related work on multi-
domain mapping of virtualized network services.

2.1 NFV & Service Deployment

Traditional network infrastructures rely on dedicated hardware – called phys-
ical appliances – to execute a myriad of functions, such as network traffic
routing, shaping, and balancing [18]. The Network Functions Virtualization
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(NFV) [19] paradigm allows the implementation of network functions using
virtualization technologies. In comparison with hardware alternatives, NFV
technology reduces costs and increases flexibility [20]. A Virtualized Network
Function (VNF) is the basic NFV unit which processes network traffic apply-
ing some specific functionality. Furthermore, complex network services can be
created through the connection of multiple virtualized network functions in a
service topology [21,22] forming a Service Function Chain (SFC) [7].

The instantiation of virtualized network services on the network substrate
involves a series of tasks that are collectively known as the service deploy-
ment process. In particular, the NFV Resource Allocation (NFV-RA) [1] en-
compasses the most prominent deployment tasks, which are treated as opti-
mization problems: (i) composition of service topologies; (ii) embedding of
service topologies on virtualized environments; and (iii) scheduling network
functions on virtualization servers. The deployment tasks directly impact the
performance of virtualized network services, being a crucial task to properly
execute a myriad of applications, from security to dependable services [23,4,6].
Challenges regarding the NFV-RA tasks have been widely explored in recent
works [8–12].

The embedding tasks take into account the resources available on the vir-
tualized environment. Three of these embedding techniques are defined next:
mapping, selection, and placement. Mapping is dedicated to splitting and
mapping service topologies on multiple domains. Selection allows network
functions that have already been deployed to be shared among different ser-
vices. Finally, placement corresponds to the allocation of network services
to virtualization servers. These techniques also take into account the needs
of stakeholders (i.e., network providers, operators, and clients). These needs
are typically specified as policies and Service Level Agreements (SLAs). The
embedding task has also been considered to be a business opportunity for
Network-as-a-Service platforms [24]. In this work, we propose a flexible and
customizable embedding solution based on multi-objective genetic algorithms
for the mapping technique.

2.2 Genetic Algorithms

Genetic algorithms are inspired by Darwin’s theory of evolution and have been
used to solve a myriad of optimization problems [25–27]. These algorithms
evaluate individuals described by chromosomes (typically a vector represent-
ing a solution to the given problem). Chromosomes contain at least one gene,
where a gene is a vector position. Each gene can be seen as a sub-problem and
contains an allele. An allele, in turn, is a value that solves the sub-problem.
Generations of individuals are submitted to the evolution processes, and are
subject to operations such as crossover and mutation. The purpose of the evo-
lutionary operations is to create new generations with individuals that are
more fitted to solve the problem. Crossover operations select two or more
individuals and partially combine their chromosomes to create a new descend-
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ing individual. Mutation operations select random genes of an individual and
replace their alleles (randomly or not). Note that genetic algorithms are meta-
heuristics and do not guarantee the globally optimal result. Furthermore, ge-
netic algorithms execute stochastic operations. Thus, multiple executions of
the same metaheuristic can produce different results for the same input. In
particular, genetic algorithms are suitable to solve problems with large search
spaces, providing results in workable execution time.

Two main classes distinguish genetic algorithms when they are used to solve
optimization problems: mono-objective and multi-objective. Mono-objective
algorithms optimize a single metric, while multi-objective algorithms optimize
multiple metrics through a cost-benefit relationship — typically using Pareto
frontiers. Individuals in a common frontier do not have a domination relation-
ship (i.e., they have at least one metric that presents better results compared
to the other individuals in the same frontier). Optimization problems can also
have constraints that invalidate portions of the search space. Different mecha-
nisms can be used to tackle these constraints, for example, non-randomization
of the initial population, the definition of immutable genes, and discarding in-
valid individuals. In this work, the problem of mapping virtual services on mul-
tiple domains is modeled as a multi-objective optimization problem. We use
the Nondominated Sorting Genetic Algorithm II (NSGAII) [28] and Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [29] to implement the proposed
solution.

2.3 Related Work

There are often multiple possible mappings of a given virtualized network
service on a multi-domain environment. However, the performance of those
distinct mappings varies when different policies, constraints, and optimization
metrics are employed [1]. In this way, mapping solutions must evaluate the
multiple alternatives to guarantee, for instance, the QoS (Quality of Service)
and QoE (Quality of Experience) of the final results. Multi-domain mapping
solutions can be organized in two main classes: (i) centralized and (ii) dis-
tributed. Centralized solutions execute on a single processing unit. These so-
lutions receive as input information about the network service to embed and
the available domains, and return candidate mappings that optimize a given
evaluation setup. Distributed solutions send messages with embedding requests
to the available domains. The domains evaluate the embedding requests, de-
cide which functions they will host, and forward requests for the remaining
functions to neighbor domains. Centralized solutions are described in [30,31,
10,16], and distributed solutions are presented in [32,15].

Dietrich et. al. [30] propose a solution to allocate virtualized network func-
tions across a set of multiple providers infrastructures. The solution optimizes
the multi-domain mapping relying on four static metrics: (i) minimization
of financial costs; (ii) minimization of the number of different providers and
domains; (iii) minimization of resource usage; and (iv) maximization of suit-
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ability weights. In [31], an orchestration platform for multi-domain network
services, called TeNOR, is proposed. TeNOR includes a multi-domain map-
ping solution which recovers information about financial costs, transmission
delays, and resource usage to evaluate and optimizes (with a minimization
objective) the candidate mappings. Finally, in [10], a multi-domain mapping
strategy is proposed that considers hybrid scenarios where private and public
domains provide optical network resources. The objective of that solution is
to minimize financial costs (encouraging the allocation of functions in private
domains) and the usage of frequency slots of the optical channels connecting
the domains.

The solution proposed in [15] consists of a multi-domain mapping technique
based on a vertex-centric algorithm. The solution triggers rounds of message
exchanges among providers to find candidate mappings iteratively. The map-
ping algorithm uses a mechanism to avoid the concentration of the entire
service on a single provider. This mechanism limits the number of network
functions allocated in each round. This solution does not optimize any metric,
returning to the user a set of candidate mappings that fulfill the allocation and
instantiation constraints of the requesting service. With a method similar to
[15], DistNSE [32] finds candidate mappings by exchanging messages among
providers. This solution evaluates two optimization metrics: minimization of
financial costs and stabilization of inter-domain load. However, DistNSE does
not limit the number of network functions allocated on each provider.

In [16] a multi-domain mapping technique based on a mono-objective ge-
netic algorithm is proposed. The objective of that solution is to allocate the
network functions of a network service chain on a multi-domain environment
based on a single indicator (E). This indicator represents multiple domain
metrics, such as link availability, bandwidth, the number of network func-
tions that each domain can host, among others. Besides mapping the network
service across the multiple domains, the proposed solution also provides a
backup schema for the mapped network functions. The backup schema in-
tends to improve the overall service reliability. It is however possible map the
main functions without the backup.

The solution proposed in [17] employs a mono-objective genetic algorithm
to map virtualized network services on physical substrate nodes. The solution
aims to optimize the usage of computing and networking resources by the
network services. In this way, the authors propose an objective function that
minimizes the residual capacity of nodes to host functions and links to han-
dle their communication, given the mapped services. The objective function
consists of the minimization of a single indicator called Cm. This indicator
typically gets the best results when all the network functions are mapped to
a single substrate node.

Table 1 summarizes features of the related works described above. De-
spite the fact that all these solutions evaluate multiple optimization metrics,
they do not enable stakeholders to customize the evaluation setup (i.e., it is
not possible to define/select neither the metrics employed by the optimization
process, nor the objectives/weights). This lack of customization makes it diffi-
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Table 1 Summary of Mapping Solution Characteristics

Mapping Solution (Reference)
[30] [31] [10] [32] [15] [16] [17]

Class Centralized Centralized Centralized Distributed Distributed Centralized Centralized
Heuristic Subgraph Mapping N/A K-Cut Time to Live N/A Genetic Metaheuristic Genetic Metaheuristic

Optimization
Metrics

Financial Costs
Number of Providers

Computational Resources
Adequacy (Weights)

Financial Costs
Inter-domain Delay

Computational Resources

Financial Costs
Frequency Slots

Financial Costs
Load Balancing

N/A

Links Availability
Bandwidth Availability

Domain Reliability
Function Support

Bandwidth Efficiency
Processing Efficiency

Customization of
Evaluation Setup

✗ ✗ ✗ ✗ ✗ ✗ ✗

Support of Domain
Dependencies

✗ ✓ ✓ ✗ ✗ ✗ ✗

cult to model and evaluate policies that are closely related to the deployment
process (e.g., maximum delay, maximum geographical distance). Furthermore,
solutions in [31] and [10] present limitations in terms of the specification of
domain dependencies (i.e. they do not allow the specification of which func-
tions should be allocated to which particular domains). Thus, for example,
these solutions are not suitable to embed hybrid services (i.e., those in which
physical network functions coexist with virtualized network functions along a
service topology) in multi-domain environments.

Finally, the GA+LCB [16] solution provides limited support for the defi-
nition of domain dependencies – which can be specified only for the first and
last network functions of a chain. Besides employing a mono-objective ge-
netic algorithm, that solution does not enable the users to tune typical genetic
features such as setting the crossover probability and choosing the selector
algorithm. Similar to the GA+LCB, the solution proposed in [17] employs a
mono-objective genetic algorithm that enables the users only to tune genetic
features, such as crossover and mutation rates. However, this algorithm does
not allow the user to change its objective function nor define domain dependen-
cies of particular network functions in a service. It is possible to state that none
of the presented solutions supports a customized evaluation setup or is based
on multi-objective genetic algorithms to map services on multiple domains. In
the present work, we argue that multi-objective genetic algorithms can sup-
port customizable evaluation setups while finding good candidate mappings
in workable times for complex virtual network service mapping problems.

Genetic algorithms also have been used to solve other problems related
to NFV deployment. In [33], [34], [35] and [36], solutions based on genetic
algorithms are presented for network function placement. In particular, [33]
uses a Multi-Objective Genetic Algorithm (MOGA) and NSGAII to optimize
the allocation of network functions on virtualization servers taking two objec-
tives into account: the minimization of the concentration of traffic on some
connections while balancing the load across the multiple servers. The genetic
algorithm proposed in [34] minimizes the amount of traffic between servers in
different datacenters. Similarly, in [35], NSGAII is used to do service placement
minimizing two optimization metrics: the number of virtualization servers
used, and the concentration of traffic on the connection channels. Finally,
in [36] the authors propose a placement solution that maximizes the average
usage of available servers and minimizes the number of servers used to provide
a single service. In the context of network function scheduling, an NSGAII-
based solution is proposed [37] to minimize both server resource consumption
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and the processing time of network functions running on those servers. Despite
the fact that genetic algorithms are employed by those solutions, none exe-
cutes multi-objective multi-domain mapping of virtualized network services.
Furthermore, they also do not enable stakeholders to customize the evaluation
setup (including optimization metrics, objectives, and weights).

3 Genetic Service Mapping

Genetic Service Mapping (GeSeMa) employs genetic algorithms to map vir-
tualized network services across multiple administrative domains. GeSeMa
is a flexible and customizable NFV mapping solution, enabling stakeholders
to define service and network topologies, function and domain dependencies,
and the evaluation setup (optimization metrics, objectives, weights, and con-
straints). This custom information is specified in a request document written
in the YAML Ain’t Markup Language (YAML). This section starts with a
description of GeSeMa’s request model and next presents the genetic strategy
for multi-domain service mapping.

3.1 GeSeMa’s Request Model

GeSeMa’s request model, depicted in Figure 1, presents three main objects
that define (i) the service topology and the network functions (SERVICE); (ii)
the optimization metrics and objectives (METRICS); and (iii) the domains and
their characteristics (DOMAINS). A string specified according to the rules of
the Service ChAin Grammar (SCAG) [9] represents the service topology in
the SERVICE object. Furthermore, for each network function defined in the
service topology, there is a corresponding entry in the FUNCTIONS sub-object.
This entry, identified by the function ID, specifies the minimum resource re-
quirements, including memory, virtualized processing cores, and virtualized
network interfaces, all defined as integer values.

�✁✂✄✁☎✆

✝✞✟✠✡☛✞

☞✌✍✌✎✌✏✑

✒✓✔☛✕✡✖✔✒✓✔☛✕✡✖✔✗✘✙✚☞✛✌✙✜

✢✣✢✌✤✑

✥✦✧★

✩✪✫✦✬✭

✮✞✕✟✡☛✝

✎✌✚✯✎

✡✰✡✰
✩✱

✲✳✴✵✶✷✸✹✵

✶✲✺✻✷✼✽✸✺✷✻

☞✤✯✙✜✛☞✛✌✙

✡✰✡✰
✩✱

✲✳✴✵✶✷✸✹✵

✶✲✺✻✷✼✽✸✺✷✻

✕✟✾✔✝✡✿❀✖✕✟✾✔✝✡✿❀✖✛❁

❂✬✭❃★❂✦✬✭

❄✵❄✲✼❅

✹✶❆❇

✸❈✽✶✵✻

✰✖✮✾✡✔✝

✡✰❉✡✰❉
✸❊ ❋❄✵✷✼✸✶●

✡✰❉✡✰❉
✸❊ ❋❊✲❄✽✸✺●

❍✚✍✘❍✚✍✘✸❊ ❋❄✵✷✼✸✶●

■❃✦✫■

❏❂✫❑✭✩❏✩❃❑

Fig. 1 GeSeMa Request Model
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The METRICS object defines metrics and objectives used by the genetic al-
gorithms of GeSeMa to search, evaluate, and optimize candidate mappings.
Metrics are of two categories: local or transition. Local metrics are used to
evaluate the allocation of network functions to domains, which correspond to
the vertices of a graph representing the infrastructure on which the service is
to be mapped. Local metrics include for instance the financial cost to allocate
a function, the domain load, among others. Transition metrics are related to
inter-domain connections – which correspond to the edges of the infrastruc-
ture graph. Examples of transition metrics include: delay, distance in hops,
and geographical distance. The metrics and their categories are defined in the
request model using LOCAL and TRANSITION sub-objects, respectively. Each of
these sub-objects can define multiple metrics. A metric must be uniquely iden-
tified (by its ID), besides having two mandatory attributes: OBJECTIVE and
CONSTRAINTS. The objective attribute shows the evaluation criteria for a par-
ticular metric, which can be either MAXIMIZATION or MINIMIZATION. The last
attribute (CONSTRAINTS) consists of a list of strings each of which refers to the
constraints of an optimization metric. Constraints define acceptance thresholds
for the evaluation results of optimization metrics. In order to check results with
respect to thresholds, relational operators (”<”, ”>”, ”<=”, ”>=”, ”==” and
”! =”) are employed to compare numerical values with thresholds.

Finally, the DOMAINS object defines the physical and virtual environments
available and their transitions (connections). The domains attribute is rep-
resented by a directed graph G = (V,E). The set of vertices V corresponds
to the set of domains, and the set of edges E represents the logical connec-
tions between domains. The model keeps information about LOCAL metrics of
each domain (vertex) and TRANSITION metrics associated with the edges. A
particular domain is thus defined with three sub-objects: RESOURCES, LOCAL,
and TRANSITION. The RESOURCES sub-object contains information about mem-
ory (MEMORY), virtual processing cores (VCPU), and virtual network interfaces
(IFACES) made available by the domain. The LOCAL and TRANSITION sub-
objects, in turn, define the metrics associated with domains and their connec-
tions obtained either with benchmarking or from catalogs; this is used by the
optimization process. These sub-objects are also related to the METRICS object,
and there must be a correspondence between metric identifiers and benchmark
identifiers for both the LOCAL and TRANSITION sub-objects. In special, each en-
try of the TRANSITION sub-object determines to which domain the transition
corresponds (using the domain unique identifier) and then defines the values
of the optimization metrics for the transition.

3.2 The Proposed Genetic Multi-domain Mapping Method

GeSeMa executes two well-known genetic algorithms: NSGAII [28] and SPEA2
[29]. Note that the system can be extended, so that other algorithms can be in-
cluded. The stakeholders can choose the genetic algorithm taking into account
their characteristics, features of the requested service and the domains, plus
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the evaluation setup provided. The genetic algorithms model the virtualized
service mapping problem as follows:

1. Individuals: an individual’s chromosome is modeled as a vector with N >

1 genes (i.e., positions), where each gene corresponds to a network function
of the service topology (i.e., each function is mapped to a position in the
vector). Genes contain alleles, represented by integer values in the range
[0,M − 1] which correspond to the M > 0 domains available to map
the network functions to. Note that, in GeSeMa, a valid individual is a
candidate mapping.

2. Population: the initial population is created randomly or using a greedy-
based mechanism. The creation of the initial population must guarantee
the non-violation of function to domain dependencies, if there is any (i.e.,
for instance, if a domain must host some function, the index corresponding
to the specific domain is fixed to the allele of the constrained gene). To
start with, the greedy mechanism sets a valid allele to the first gene and
executes a greedy heuristic to define the other genes. If the population size
gets greater than the number of possible alleles in the first gene, surplus
individuals are created randomly. The population size P > 0 is a parameter
defined by the stakeholders.

3. Objectives and constraints: GeSeMa evaluates objectives (with the
evaluation setup) and constraints (e.g., policies, network topology, compu-
tational resources, and dependencies) for all individuals of each generation.
We use a taboo list to keep invalid individuals and avoid re-evaluations in
case of new occurrences. Furthermore, mechanisms to recover specific types
of invalid individuals are also defined (they will be discussed later).

4. Selection: the selection chooses individuals of a generation to crossover.
GeSeMa uses a tournament mechanism that randomizes I individuals and
returns the one that is the most fitted among them (i.e., the one on the best
Pareto frontier). The tournament size I > 1 is defined by the stakeholders.

5. Crossover: GeSeMa provides four crossover operators: Simulated Binary
Crossover, Half Uniform Crossover, Partially Mapped Crossover, and Sub-
tour Selection Crossover. The choice of a crossover operator should take
into account their particularities and service request features. The crossover
ratio (i.e., operator application probability) is also defined by the stake-
holders.

6. Mutation: the proposed solution employs two mutation operators: re-
placement and swap. Replacement chooses a random gene and replaces its
allele by a new random value. Swap chooses two random genes and ex-
changes their alleles. Genes with domain constraints are never mutated.
Similar to crossover, the stakeholders can define the mutation ratio.

GeSeMa executes two main procedures: (i) validation and configuration
of the genetic algorithm; and (ii) creation and evolution of the population.
The first procedure uses the model specified in Subsection 3.1 to validate
the provided service request, thus mapping high-level structures to iterable
elements (i.e., dictionaries and lists). Next, the procedure checks previously
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defined genetic parameters (i.e., population size, tournament size, crossover
operator/ratio, mutation operator/ratio, and number of generations) and, if
valid, configures the genetic algorithm. Finally, the procedure generates a set
of software elements employed for the creation and evolution of individuals by
the second procedure.

Fig. 2 Summary of the GeSeMa Workflow

Figure 2 summarizes the second procedure of GeSeMa. At first, the network
service, encoded as a string according to the SCAG grammar, is converted to a
format which is processed by the genetic algorithms (Figure 2: A and B). The
initial population is generated with valid individuals in terms of the network
topology (network domain transitions) and domain dependencies (constrained
network functions pinned to their respective domains). Next, the individu-
als are evaluated (Figure 2: C) considering the availability of computational
resources in the chosen domains and other constraints. In this way, each can-
didate is evaluated iteratively gene by gene for all metrics. Results of all genes
are aggregated to define the overall result for each metric. Finally, GeSeMa
executes selections (Figure 2: D) in addition to the crossover and mutation
genetic operations (Figure 2: E and F, respectively) to evolve the population.
All the stages depicted in Figure 2 C, D, E, and F represent the processing
done to create a generation of individuals (Figure 2: G). Finally, after each
generation has been created, the genetic algorithm saves the best fitted results
(local Pareto frontier) to reuse in future generations. After a predetermined
number of generations, GeSeMa returns the last Pareto frontier found as the
final result (Figure 2: H).

In particular, the evaluation stage (Figure 2: C) produces information that
is relevant for the next stages. The evaluation mechanism executes an itera-
tive process, processing the chromosome of an individual, gene by gene. Local
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optimization metrics are computed with the current gene’s allele. Transition
optimization metrics, in turn, are processed when a domain transition occurs.
The transition metrics use the current gene’s allele and the alleles of previously
related genes. Besides the allele, for each gene there is a so called relation ar-
ray with indexes of previously related genes (i.e., previous network functions
that have a connection with a particular network function in the requested ser-
vice topology). In this way, linear chromosomes can represent branched service
topologies. The set of partial evaluation results (i.e., by gene/allele) are jointly
processed, and the individuals are classified in terms of Pareto frontiers.

A taboo list includes all the invalid individuals. In case new invalid individ-
uals occur, if they have already been included in the taboo list, three actions
are possible: (i) discard individual (standard action); (ii) replace the individual
by a new random individual (in case policies or network topology constraints
are violated); or (iii) reduce domain redundancy (in case computational re-
sources constraints are violated). The evaluation process does not consider
domain dependencies since they are never violated, given the individuals of
the initial population and the specification of constrained genes as static and
non-mutable. Note that after GeSeMa returns the Pareto frontier, the user
– which can be an automated system that requested the service mapping –
has to determine which of the returned candidate mappings will be effectively
adopted. This selection has to be done based on local priorities/needs that are
defined individually, case-by-case.

4 Experimental Evaluation

In this section we present an evaluation of GeSeMa with two case studies1.
The first case study is presented in Subsection 4.1 and consists of the mapping
of a hierarchical cache service on a network consisting of 114 domains. This
case study allows the evaluation of GeSeMa’s convergence and execution time,
among other metrics. In this case study, we also compare GeSeMa with other
service mapping solutions that are based on classic heuristics. In the second
case study (Subsection 4.2), we compare GeSeMa with the GA+LCB solution.
In this case study, we employ the same network topology (consisting of 114
domains) on which we map a generic service chain that consists of 9 network
functions. GeSeMa was configured with the same constraints of GA+LCB,
and both were executed in the same evaluation setup.

4.1 Multimedia Hierarchical Cache Mapping

We evaluated GeSeMa through a case study in which a hierarchical multime-
dia cache is mapped onto a topology that corresponds to the Amazon AWS
network, consists of 114 domains [38]. The service connects n individual cache

1 The implementation is available at https://github.com/ViniGarcia/NFV-FLERAS
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functions on a linear topology. The first function is the master cache that re-
ceives and spreads content updates from a multimedia server. The other cache
functions both receive and make requests for content updates from/to their re-
spective predecessor cache. In this way content is spread hierarchically across
the service topology. The following constraints apply. Each domain can host
at most one cache. The stakeholders objective is to maximize a local metric
and a transition metric: the density of users of the multimedia service of the
domain (local) and geographical distance between neighboring caches (transi-
tion). The objective is to map caches to regions that are geographically distant
to each other and which have high user density.

The network topology is fully connected, in the sense that each node can
communicate directly with any other, without having to employ intermedi-
aries, thus the topology can be represented by a complete graph. Note that
we could have employed an arbitrary topology (instead of a complete graph),
however we opted to employ the complete graph in order to make the search
space more challenging for GeSeMa. Each domain x (vertex) has an associ-
ated value for user density vdux (local metric). Each connection between two
domains (edge) x and y has a value that corresponds to their geographical
distance vgdxy (transition metric). In a preliminary step, we tested multiple ge-
netic configurations to determine the operators and ratio of both crossover
and mutation, tournament size, initial population mode, and population size.

For this case study we employed the SPEA2 algorithm; the results for
NSGA2 were slightly inferior. SPEA2 was configured with the following param-
eters: SBX crossover ratio of 30%, replacement mutation ratio of 5%, selection
by binary tournament, random initial population, and population size of 50 in-
dividuals. The service topologies consisted of 7, 9, and 11 caches. The tests were
executed on a machine based on an Intel Core I5-3330 (3.0GHz) CPU with 8GB
RAM (DDR3, 1600MHz), running Ubuntu 16.04, and Python 3.5.2. We chose
service sizes (i.e., the number of network functions) that could not be com-
puted using exhaustive search in feasible time (on the same machine). All the
files, programs, and scripts used are available at https://github.com/ViniGarcia/NFV-
FLERAS/tree/GesemaExperiments. Experiments were executed 30 times with
a confidence level of 95%.

The first experiment consists of a convergence test. The purpose of this
experiment is to validate the feasibility of GeSeMa on the exploration and
exploitation of the search space, thus converging to a Pareto frontier (despite
of that being the global best frontier or not). Service mappings evolve for an
undetermined number of generations, stopping when no modification occurs
in the Pareto frontier after a set of 1500 generations. In case a modification
has occurred, a new set of 1500 generations is executed. The results of this
experiment are shown in Figures 3, 4, and 5 for the service topologies with 7,
9, and 11 functions, respectively. The lines represent the mean of the relative
Pareto frontiers of best-fitted candidates at a particular generation, error bars
show the best and worst Pareto frontiers found among the best candidates of
the same generation.
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Fig. 3 GeSeMa’s Convergence (7 VNFs)
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Fig. 4 GeSeMa’s Convergence (9 VNFs)

The relative frontiers are computed as follows: (i) a predefined number of
generations (in our case, 1500 generations) are evaluated by a preconfigured
evolutionary algorithm in round r; (ii) the frontiers are computed and the
fittest individuals from round r (hereby called “Pareto frontier r”) are obtained
and saved; (iii) the Pareto frontier r is merged with the Pareto frontier r − 1,
creating set s[r−1,r]; (iv) the relative frontiers of s[r−1,r] are computed and its
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Fig. 5 GeSeMa’s Convergence (11 VNFs)

Pareto frontier identified; (v.i) if no individual that appears exclusively in the
Pareto frontier r occurs in the Pareto frontier of s[r−1,r], we consider that the
algorithm has converged, and the next step - (vi) - is executed; (v.ii) if there is
at least one individual that appears both in Pareto frontier r and in the Pareto
frontier of s[r−1,r] (but not in frontier r − 1), we consider that the population
is still evolving, and steps (i), (ii), (iii), (iv), and (v) are repeated; (vi) the
Pareto frontiers from each round ([1; r]) are merged in another in set s[1,r];
(vii) the relative frontiers of s[1,r] are computed; and finally, (viii) information
about the relative frontiers they appear in s[1,r] are assigned to each individual
in the Pareto frontiers of rounds [1; r].

In the first experiment, the execution of GeSeMa with the previously de-
scribed configuration resulted in a positive correlation between the number of
generations required to make the genetic algorithm converge and the problem
complexity. This is a consequence of the large number of suboptimal candi-
dates generated in the beginning of the execution of GeSeMa (exploration is
more significant than exploitation in that phase), which are replaced in few
generations. Thus, typically, the larger the search space (number of domains
available) the more complex the problem is (number of VNFs in the service
topology), and more exploration is needed to find appropriate regions of the
search space to exploit. For the same reason, the number of frontier transitions
increases as the search space and the problem complexity do. In the experi-
ment, the mapping of the service topology with 7 functions converged after
36000 generations over 8 frontiers; with 9 functions it converged after 72000
generations over 13 frontiers; and with 11 functions it converged after 100500
generations over 19 frontiers.
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Fig. 6 GeSeMa Execution Time (7 VNFs)
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Fig. 7 GeSeMa Execution Time (9 VNFs)

The second experiment shows the execution time (in seconds) of GeSeMa
as the number of generations increases. This experiment was executed for the
topologies with 7 (Figure 6), 9 (Figure 7), and 11 (Figure 8) functions. The
results reveal a positive correlation of the execution time and the number of
generations. However, we also noted that the execution time presents little
variation as the service topology sizes vary for the same number of genera-
tions. This is a consequence of the constraint that specifies that each domain
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Fig. 8 GeSeMa Execution Time (11 VNFs)

hosts at most a single cache. Thus, the probability of creating invalid candi-
dates increases as the number of chromosomes does. However, these invalid
candidates are discarded before they are evaluated, which reduces the impact
on the execution time. But, despite maintaining the execution time stable,
this makes it more difficult to improve the candidates and also delays the
convergence of the genetic algorithm.

The third experiment modifies the evaluation setup employed to map the
network service. These modifications do not imply any changes of the algo-
rithm. All the modifications are done in the service request document through
the METRICS object. We considered three evaluation setups: (i) the standard
setup with the maximization of both the user density and the geographic
distance between neighboring caches; (ii) a mono-objective setup with the
maximization of the user density; and (iii) a mono-objective setup with the
maximization of the geographic distance between neighboring caches. Each
evaluation setup was submitted to GeSeMa with the previous configurations.
In this experiment, our halting criteria is based on time, with the main loop
of GeSeMa being executed for 10 seconds.

Table 2 Modifications On The Evaluation Setup

Maximization
User Density

Geographical Distance
User Density Geographical Distance

User Density
Geographical Distance

129261
144831.67

141176
(42313.69, 141176)

156314.20
(156314.20, 106576)

User Density – 150153 –
Geographical Distance – – 162025.35
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The results of the third experiment are shown in Table 2. The first column
shows results for the multi-objective setup with the best cost-benefit relation
and the same weight (i.e. equal to 0.5) for each particular optimization metric.
The second column shows the best candidate in the Pareto frontier for the
multi-objective optimization problem, but only considering the user density.
Furthermore, we present the best result for the mono-objective user density
evaluation in the second row of the same column. The last column shows
the best candidate in the Pareto frontier for the multi-objective optimization
problem, taking into account only the geographical distance in the first row.
We also present the best result for the third evaluation setup (mono-objective
geographical distance) in the third row of the third column. In the second
and third columns, for the multi-objective evaluation setup row, data between
parenthesis represent the results for both metrics employed to evaluate the
candidate: (geographical distance, user density).

The results demonstrate the capacity of GeSeMa to deal with different
evaluation setups by just modifying the service request document. For sure, the
most specific the evaluation setup is, the best the resulting mapping candidates
tend to be. So, in the experiment, if only the user density is relevant for
some specific problem, it is better to employ mono-objective optimization. The
same occurs for the geographic distance between neighboring caches. However,
multi-objective optimizations are the best options when the evaluation setup
relies on multiple metrics. Thus, later it is possible to evaluate the returned
Pareto frontier according to some criteria, such as using weighs.

The next experiments compare results from GeSeMa with two alternative
mapping solutions based on heuristic search: random search and k-stochastic
greedy search. The random search randomizes the domains that will allocate
the network functions of a given service topology. This solution must guarantee
the creation of valid candidates regarding domain dependencies and network
topology constraints. The stochastic k-greedy search randomizes k ≥ 1 do-
mains that can possibly allocate a network function of a service topology. It
uses a greedy strategy to find the best local option taking into account the eval-
uation setup. Similar to the random search, the stochastic k-greedy algorithm
must also guarantee that only valid candidates are created, with respect to
domain dependencies and network topology constraints. Both solutions were
adapted to process the same service request document used by GeSeMa, thus
enabling the customization of their evaluation setups and a fair comparison
with GeSeMa.

We configured all the solutions to execute their main loop for 10 seconds.
The main loop consists of the creation and evaluation of individuals. Thus, we
did not take into account in the execution time other internal routines, such as
request processing, graph instantiation, and output recording. Other relevant
configurations are the following. For GeSeMa running the SPEA2 algorithm:
we employed a SBX crossover ratio of 30%, a replacement mutation ratio of 5%,
selection was done with a binary tournament, the random initial population,
and population size was of 50 individuals. In the Figures, results for the Classic
random search is labeled as “Random”; stochastic k-greedy search with k = 2
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and k = 4 are labeled with “S2-Greedy” and “S4-Greedy”, respectively. Each
execution of the mapping solutions returns the local Pareto frontier, which
is afterwards used to compute the relative Pareto frontiers (i.e., candidates
in the relative Pareto frontier dominate all the other candidates in the local
Pareto frontiers found in any execution of any algorithm).
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Fig. 9 Frontiers Comparison (7 VNFs)

The fourth experiment presents the mean of the relative Pareto frontiers
from the candidates returned by the mapping solutions. Figures 9, 10, and 11
show these results for the topologies with, respectively, 7, 9 and 11 functions.
Grey bars show results obtained for all the candidates in the relative frontiers
(case “complete”), while white bars show results for the top ten candidates
of the relative frontiers of each solution (case “top 10”). GeSeMa applied for
mapping services consisting of 7 and 9 network functions presented the best
relative Pareto frontier mean for both the “complete” and “top 10” cases. For
mapping 11 functions, GeSeMa presented a worse result for the “complete”
case in comparison with S4-Greedy. However, for 11 functions, GeSeMa still
reaches better results than S4-greedy in the “top 10” case. The degradation
of the GeSeMa in the “complete” case occurs due to the higher number of
candidates in the Pareto frontiers (373 candidates) in comparison with the
number of candidates of S4-Greedy (200 candidates). Thus, the best candi-
dates from GeSeMa are better than the best candidates from S4-Greedy (see
“top 10” case), but GeSeMa returns more results that include candidates less
fitted than the ones returned from S4-Greedy. The total number of candidates
recovered from each mapping solution during the experiments are presented
in Table 3. Another relevant observation is that within the top ten candi-
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Fig. 10 Frontiers Comparison (9 VNFs)
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Fig. 11 Frontiers Comparison (11 VNFs)

dates, only GeSeMa presented all candidates in the relative Pareto frontier
(i.e., 0). This fact shows the efficiency and stability of the proposed solution
for mapping the service topology even as the number of functions varies.

Finally, the last experiments compare the total execution time (in seconds)
for the solutions to map topologies with 7 (Figure 12), 9 (Figure 13), and 11
(Figure 14) functions. Note that 10 seconds of the total execution time is re-
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Table 3 Number of Candidates Recovered From Mapping Solutions

Random S2-Greedy S4-Greedy GeSeMa
7 Functions 291 241 225 353
9 Functions 338 299 312 422
11 Functions 274 242 200 373

served to execute the main loop of each of the solutions. The extra time spent
by the various solutions to run internal operations, such as request processing,
graph creation, object instantiation, and output recording, were very similar.
The differences of the total execution times did not exceed 1.05 seconds -
7.6% - even in the worst scenario (mapping of 11 functions, which presented
the largest difference between S2-Greedy and Random). In particular, GeSeMa
presents slightly smaller execution times than Random (0.39, 0.29, and 0.21
seconds to map 7, 9, and 11 functions respectively), and slightly larger exe-
cution times than S2-Greedy (0.31, 0.55, and 0.84 seconds to map 7, 9, and
11 functions) and S4-Greedy (0.2, 0.39, and 0.59 for 7, 9, and 11 functions,
respectively).
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Fig. 12 Exec. Time Comparison (7 VNFs)

4.2 Comparison Between GeSeMa and GA+LCB

GA+LCB is a mapping solution based on a mono-objective genetic algo-
rithm [16]. In addition to the traditional mapping process (mapping the main
network functions of a network service), GA+LCB includes a backup map-
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ping mechanism that creates a backup schema for the requested network
service. However, as GeSeMa does not create backups, for comparison pur-
poses GA+LCB is executed to map the main functions, not the backups. The
GA+LCB objective function was configured as a maximization of the modi-
fied domain importance (impk from [16]), which consists of the maximization
of three metrics – link availability (dak), bandwidth availability (dck), and
the availability factor (Ak) – and the minimization of a single metric – inter-
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domain delay (ddk). The GA+LCB solution computes this evaluation setup as
E = w1∗nor(dak)+w2∗nor(dck)+w3∗nor(Ak)+w4∗(1−nor(ddk)), where nor

indicates a normalization function and wn the metric weight (
∑4

n=1 wn = 1).
GeSeMa, in turn, evaluates the candidates using the same metrics and objec-
tives but evaluating the Pareto frontiers.

In this case study, GeSeMa and GA+LCB are employed to map a net-
work service with 9 generic network functions. The network topology is the
same consisting of 114 AWS global domains used in the experiments of Sub-
section 4.1. The mapping of network functions should not exceed the com-
putational resource limits of the domains, and no more than two network
functions should be mapped to each domain. Both solutions were configured
to obey both maximum delay and minimum availability constraints. The val-
ues for metrics dck and Ak are defined randomly in the intervals [100, 500]
and [0.95, 0.99], respectively; the value of dak is 114 for all the domains (the
network topology is a complete graph); and the value of ddk is defined consid-
ering the geographical distance between pairs of domains gdk,k+n in the curve
gdk,k+n ∗ (1 − enor(gdk,k+n)∗−4) ∗ 0.05. As required by GA+LCB, the initial
domain and the final domain are specified in the request document.

The genetic parameters of both GA+LCB and GeSeMA were configure to
be as similar as possible. GA+LCB includes a crossover of half of the popula-
tion using a native algorithm. Thus, we configured GeSeMa with a crossover ra-
tio of 0.5 using the SBX algorithm (SBX has similar behavior to the GA+LCB
crossover algorithm). The mutation ratio is set to 0.05, GA+LCB uses a spe-
cific, simple mutation algorithm; GeSeMa uses a replacement mutation algo-
rithm. GA+LCB executes a traditional roulette selector; GeSeMa employs a
binary tournament selector. GA+LCB creates the initial population based on
a k-shortest path algorithm; GeSeMa creates the initial population randomly.
GA+LCB uses a self-designed mono-objective genetic algorithm with elitism
features; GeSeMa adopts SPEA2. The population size of 50 was the same for
both solutions, as well as the execution of 20000 generations. The experiments
were performed in the same machine used for the first case study (Subsec-
tion 4.1). All the algorithms, scripts, datasets, and requests used to compare
GA+LCB and GeSeMa are available at https://github.com/ViniGarcia/NFV-
FLERAS/tree/GesemaExperiments. Experiments were repeated 30 times with
a confidence level of 95%.

The first experiment compares the quality of the candidates returned by
GeSeMa and GA+LCB. We use the mean of the relative Pareto frontiers for
the comparison. Figure 15 shows the mean frontiers of candidates returned for
two cases: “complete” (frontiers of all candidates from all executions are used
to compute the mean value) and “top 10” (frontiers of top ten candidates of
all executions are used to compute the mean value). The GA+LCB solution
presented a better mean of the relative frontiers in the “complete” case. How-
ever, GeSeMa surpasses the GA+LCB results in the “top 10” experiment. This
behavior occurs due to the number of candidates returned from GA+LCB at
each execution: precisely one. Thus, GA+LCB returns a total of 30 candidates
with the best E value achieved in each execution of the solution. GeSeMa, in
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turn, returns the entire Pareto frontier, which typically contains multiple can-
didates. In this experiment, GeSeMa provided approximately 49 candidates
per execution, from a total of 1463 candidates evaluated in the “complete”
case. Some of these candidates are not better fitted than the ones returned by
the GA+LCB, but, as demonstrated by the “top 10” case, the best candidates
of GeSeMa are more fitted than the best candidates of GA+LCB.
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Fig. 16 Exec. Time Comparison (Genetic)
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The second experiment compares the mean execution times of GA+LCB
and GeSeMa to map the service in the AWS network topology. Figure 16 shows
the results. GeSeMa presented a better mean execution time, being 104% faster
than GA+LCB. These results can be explained as follows. First, GeSeMa em-
ploys a lightweight random initial population strategy, while GA+LCB uses
a k-smallest path heuristic to create a possibly more fitted initial popula-
tion. Thus, the GA+LCB strategy requires the execution of shortest path
algorithms that take quite a lengthy amount of time to run in large network
topologies. Second, the evaluation of multiple optimization metrics with a
mono-objective genetic algorithm requires an aggregated index (in GA+LCB,
called E). The creation of this index imposes an extra time to process the
normalization and weighting required by each generation. Third, GA+LCB
does not have any mechanism to avoid the evaluation of candidates which
have been already discarded but reappear during the execution of the genetic
algorithm. GeSeMa, in turn, uses a taboo list to ignore those candidates.

5 Conclusion

The deployment of virtualized network functions and services is one of the
most important process of their lifecycle. Resource allocation (NFV-RA) is
the core of the deployment process and consists of three tasks: composition;
embedding; and scheduling. In this context, multi-domain mapping allows em-
bedding a network service across a distributed environment consisting of mul-
tiple administrative domains. Current multi-domain mapping solutions do not
enable the stakeholders to customize their evaluation setups. In this paper we
presented Genetic Service Mapping (GeSeMa), an intelligent mapping solu-
tion that uses genetic metaheuristics to execute a customizable mapping of
service topologies across multi-domain environments. We evaluated the feasi-
bility and performance of GeSeMa compared with other alternatives. Results
confirm that GeSeMa produces mappings of superior quality in comparison
with both classic and state-of-the solutions, while presenting low execution
times.

Providing a flexible, customizable evaluation setup to solve the NFV-RA
problem allows stakeholders to get exactly what they need, also taking into
account their restrictions. That is the main purpose of GeSeMa: to optimize
service mapping according to network policies defined by those that are able
to describe their specific scenarios, services, resource availability, constraints,
and also the requirements of their end-users. This flexibility also brings further
possibilities. A fine-grained customized evaluation setup can include aspects
that are not purely technical and commercial. In this way, social and environ-
mental objectives can also be included in the evaluation setup, such as favoring
the service mapping to some regions due to humanitarian reasons or due to
the use of renewable energy sources.

In future work, we aim to make GeSeMa dynamic and adaptive, continu-
ously evolving the service mapping and suggesting migrations in real-time as
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both the network topology and the evaluation setup change. In this way, the
solution will be able to tackle the dynamism of devices in particular networks,
such as 5G and IoT. Furthermore, we envision that an adaptive GeSeMa can
work well in catastrophic scenarios and battlefield networks, where the avail-
able resources are unstable and can change at any time. Finally, taking advan-
tage of the flexibility of the evaluation setup customization, we aim to release a
service version of GeSeMa to be explored in the context of NFV marketplaces,
such as FENDE [3] and T-NOVA [39].
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