The three-dimensional (3D) planetary wave analysis provides more regionalized information on stratospheric-tropospheric dynamic interactions. The upward wave flux from the troposphere to the stratosphere is maximized above north-eastern Eurasia, while the downward flux is mainly over the North America and North Atlantic (NANA) region, which is much stronger in mid and late winter. This distribution is determined by the wave-wave interaction between the different wavenumbers of planetary waves, especially between wavenumber 1 and wavenumber 2. The upward wave flux anomalies in early winter are negatively correlated with the strength of the stratospheric polar vortex (SPV). In the mid and late winter months, the strength of the SPV is positively correlated with the first mode of 3D wave flux and has a leading relationship of approximately one month. The stronger SPV corresponds to a stronger upward wave flux above northern Eurasia and stronger downward flux over the NANA region. The interannual variation in wave flux in early winter is closely associated with the Scandinavian wave train pattern. In contrast, the wave flux variation is related to the circulation anomaly corresponding to Arctic Oscillation in mid and late winter, which causes climate anomalies across the Northern Hemisphere, especially coherent temperature changes in northern Europe, eastern United States and northeastern China.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
This preprint is available for download as a PDF.
Loading...
Posted 04 Mar, 2021
Received 27 Feb, 2021
Invitations sent on 27 Feb, 2021
On 22 Feb, 2021
On 22 Feb, 2021
Posted 04 Mar, 2021
Received 27 Feb, 2021
Invitations sent on 27 Feb, 2021
On 22 Feb, 2021
On 22 Feb, 2021
The three-dimensional (3D) planetary wave analysis provides more regionalized information on stratospheric-tropospheric dynamic interactions. The upward wave flux from the troposphere to the stratosphere is maximized above north-eastern Eurasia, while the downward flux is mainly over the North America and North Atlantic (NANA) region, which is much stronger in mid and late winter. This distribution is determined by the wave-wave interaction between the different wavenumbers of planetary waves, especially between wavenumber 1 and wavenumber 2. The upward wave flux anomalies in early winter are negatively correlated with the strength of the stratospheric polar vortex (SPV). In the mid and late winter months, the strength of the SPV is positively correlated with the first mode of 3D wave flux and has a leading relationship of approximately one month. The stronger SPV corresponds to a stronger upward wave flux above northern Eurasia and stronger downward flux over the NANA region. The interannual variation in wave flux in early winter is closely associated with the Scandinavian wave train pattern. In contrast, the wave flux variation is related to the circulation anomaly corresponding to Arctic Oscillation in mid and late winter, which causes climate anomalies across the Northern Hemisphere, especially coherent temperature changes in northern Europe, eastern United States and northeastern China.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
This preprint is available for download as a PDF.
Loading...