Altermatt, P., Yang, Y., Sheng, Y., Chen, D. et al.: A method for optimizing PERC cells in industrial production lines using final IV parameters, statistical procedures and numerical device modeling. AIP Conference Proceedings 1999, 110001 (2018). https://doi.org/10.1063/1.5049310
Chugh, S., Ghosh, S., Gulistan, A., Rahman, B.M.A.: Machine Learning Regression Approach to the Nanophotonic Waveguide Analyses. IEEE J. Lightw. Technol. 37, 6080-6089 (2019)
Cicic, S. & Tomic, S.: Genetic algorithm designed high efficiency laser power converters based on the vertical epitaxial heterostructure architecture. Solar Energy Materials and Solar Cells 200, 109878 (2019)
de Pablo, J.J., Jackson, N.E., Webb, M.A. et al.: New frontiers for the materials genome initiative. npj Comput Mater 5, 41 (2019)
Draxl, C. & Scheffler, M.: The NOMAD laboratory: from data sharing to artificial intelligence. J. Phys.: Mater. 2, 036001 (2019)
Fan, J., Li, Y., Fryc, I., Qian, C., Fan, X., Zhang, G.: Machine-Learning Assisted Prediction of Spectral Power Distribution for Full-Spectrum White Light-Emitting Diode. IEEE Photon. J. 12, 8200218 (2020)
Genty, G., Salmela, L., Dudley, J.M. et al.: Machine learning and applications in ultrafast photonics. Nat. Photonics (2020). https://doi.org/10.1038/s41566-020-00716-4
Hakimian, F., Shayesteh, M.R., and Moslemi, M.R.: Optimization of a quantum-dot semiconductor optical amplifier (QD-SOA) design using the genetic algorithm. Opt Quant Electron 52, 48 (2020)
Heaven, D.: Why deep-learning AIs are so easy to fool. Nature 574, 163-166 (2019)
Ibrahim, M. S., Fan, J., Yung, W. K. C., Prisacaru, A., van, W., Fan, X., Zhang, G.: Machine Learning and Digital Twin Driven Diagnostics and Prognostics of Light‐Emitting Diodes. Laser & Photonics Reviews 14, 2000254 (2020) . https://doi.org/10.1002/lpor.202000254
Janai, M.A.B., Woon, K.L., Chan, C.S.: Design of efficient blue phosphorescent bottom emitting light emitting diodes by machine learning approach. Organ. Electron. 63, 257-266 (2018)
Jiang, J., Sell, D., Hoyer, S., Hickey, J., Yang, J., Fan, J.A.: Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks. ACS Nano 13, 8872–8878 (2019). https://doi.org/10.1021/acsnano.9b02371
Kailkhura, B., Gallagher, B., Kim, S. et al.: Reliable and explainable machine-learning methods for accelerated material discovery. npj Comput Mater 5, 108 (2019)
Kim. D.Y., Lin, G.B., Hwang, S., Park, J. H., Meyaard, D., Schubert, E.F., Ryu, H.Y., Kim, J.K.: Polarization-Engineered High-Efficiency GaInN Light-Emitting Diodes Optimized by Genetic Algorithm. IEEE Photonics J. 7, 1300209 (2015)
Kudyshev, Z. A., Kildishev, A. V., Shalaev, V. M., Boltasseva, A.: Machine learning–assisted global optimization of photonic devices, Nanophotonics 10, 371-383 (2021). https://doi.org/10.1515/nanoph-2020-0376
LeCunn, Y., Bengio, Y., Hinton, G.: Deep learning, Nature 521, 436–444 (2015)
Lipton, Z.C. & Steinhardt, J.: Troubling Trends in Machine Learning Scholarship, ACM Queue 17, 1-33 (2019) https://doi.org/10.1145/3317287.3328534
Liu, Z., Na, G., Tian, F., Yu, L., Li, J., Zhang, L.: Computational functionality‐driven design of semiconductors for optoelectronic applications. InfoMat 2 (2020) . https://doi.org/10.1002/inf2.12099
Lookman, T., Balachandran, P.V., Xue, D. et al.: Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Comput Mater 5, 21 (2019)
Lu, Q., Liu, Q., Sun, Q., Hsieh, C.Y., Zhang, S., Shi, L., Lee, C.K.: Deep Learning for Optoelectronic Properties of Organic Semiconductors, J. Phys. Chem. C 124, 7048–7060 (2020). https://doi.org/10.1021/acs.jpcc.0c00329
Luo, S., Li, T., Wang, X., Faizan, M., Zhanf, L.: High‐throughput computational materials screening and discovery of optoelectronic semiconductors. WIREs Comput. Mol. Sci. 11, e1489 (2020). https://doi.org/10.1002/wcms.1489
Ma, W., Liu, Z., Kudyshev, Z.A. et al.: Deep learning for the design of photonic structures. Nat. Photonics (2020). https://doi.org/10.1038/s41566-020-0685-y
Ma, Z. & Li, Y.: Parameter extraction and inverse design of semiconductor lasers based on the deep learning and particle swarm optimization method. Opt. Express 28, 21971-21981 (2020)
Majeed, N., Saladina, M., Krompiec, M., Greedy, S., Deibel, C., MacKenzie, R. C. I.: Using Deep Machine Learning to Understand the Physical Performance Bottlenecks in Novel Thin‐Film Solar Cells. Adv. Funct. Mater. 30, 1907259 (2020). https://doi.org/10.1002/adfm.201907259
Molesky, S., Lin, Z., Piggott, A. Y., Jin, W., Vuckovic, J., Rodriguez, W.: Inverse design in nanophotonics. Nature Phot. 12, 659-670 (2018) 659
Müller, M., Altermatt, P.P., Wagner , H., Fischer, G.: Sensitivity Analysis of Industrial Multicrystalline PERC Silicon Solar Cells by Means of 3-D Device Simulation and Metamodeling. IEEE J. Photovolt. 4, 107-113 (2014)
Piprek, J., White, J.K., SpringThorpe, A.J.: What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes? IEEE J. Quantum Electron. 38, 1253-1259 (2002)
Piprek, J., Li, S., Mensz, P., Hader, J: Monolitic Wavelength Converter: Many-Body Effects and Saturation Analysis, Ch. 14 in Optoelectronic Devices: Advanced Simulation and Analysis, Piprek, J. (ed.), pp. 405-546, Springer, New York (2005)
Piprek, J. & Li, S.: GaN-based Light-Emitting Diodes, Ch. 10 in Optoelectronic Devices: Advanced Simulation and Analysis, Piprek, J. (ed.), pp. 293-312, Springer, New York (2005)
Piprek, J.: Efficiency droop in nitride‐based light‐emitting diodes. Phys. Status Solidi A 207, 2217- 2225 (2010)
Piprek, J. & Li, S.: Electron leakage effects on GaN-based light-emitting diodes. Opt. Quant. Electron. 42, 89–95 (2010)
Piprek, J. & Li, Z.M.: Sensitivity analysis of electron leakage in III-nitride light-emitting diodes. Appl. Phys. Lett. 102, 131103 (2013)
Piprek, J., Römer, F., Witzigmann, B: On the uncertainty of the Auger recombination coefficient extracted from InGaN/GaN light-emitting diode efficiency droop measurements. Appl. Phys. Lett. 106, 101101 (2015)
Piprek, J.: How to decide between competing efficiency droop models for GaN-based light-emitting diodes. Appl. Phys. Lett. 107, 031101 (2015)
Piprek, J. (ed.), Handbook of optoelectronic device modeling and simulation, CRC Press, Boca Raton (2017)
Piprek, J. On the reliability of pulse power saturation models for broad-area GaAs-based lasers. Opt Quant Electron 51, 60 (2019)
Piprek, J.: Efficiency Models for GaN-based Light Emitting Diodes: Status and Challenges, MDPI Materials 13, 5174 (2020)
Razzaq, A., Mayer, A., Depauw, V., Gordon, I., Hajjiah, A. and Poortmans, J., Application of a Genetic Algorithm in Four-Terminal Perovskite/Crystalline-Silicon Tandem Devices. IEEE J. Photovolt. 10, 1689 - 1700 (2020)
Riley, P.: Three pitfalls to avoid in machine learning. Nature 572, 27-29 (2019)
Rouet-Leduc, B., Barros, K., Lookman, T. , Humphreys, C. J.: Optimization of GaN LEDs and the reduction of efficiency droop using active machine learning. Sci Rep 6, 24862 (2016)
Rouet-Leduc, B.: Machine learning for materials science. Ph.D. Thesis, Univ. of Cambridge (2017)
Schmidt, J., Marques, M.R.G., Botti, S., Marques, M.A.L.: Recent advances and applications of machine learning in solid-state materials science. npj Comp. Mat. 5, 83 (2019)
Usman, M., Anwar, A.R., Munsif, M.: A Survey of Simulations on Device Engineering of GaN-Based Light-Emitting Diodes. ECS J. Solid State Sci. Technol. 9, 066002 (2020)
Verzellesi, G., Saguatti, D., Meneghini, M., Bertazzi, F., Goano, M., Meneghesso, G., Zanoni, E.: Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies. Appl. Phys. Rev. 114, 071101 (2013)
Wagner-Mohnsen, H. & Altermatt, P.P.: A Combined Numerical Modeling and Machine Learning Approach for Optimization of Mass-Produced Industrial Solar Cells. IEEE J. Photovolt.10, 1441-1447 (2020)
Wasisto, H.S., Prades, J.D., Gulink, J., Waag, A.: Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs. Appl. Phys. Rev. 6, 041315 (2019)
Wasmer, S., Greulich, J., Höffler, H., Wöhrle, N., Demant, M., Fertig, F., Rein, S.: Impact of Material and Process Variations on the Distribution of Multicrystalline Silicon PERC Cell Efficiencies. IEEE J. Photovolt. 7, 118-128 (2017)
Wasmer, S. & Klöter, B.: Interpretable Machine Learning for Production Optimization. Proc. 36th EUPVSEC, 272 (2019). https://doi.org/10.4229/EUPVSEC20192019-2DO.5.6
Yang, L., Zhang, D., Karniadakis, G. E., Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations. SIAM Journal on Scientific Computing, 42, A292–A317 (2020)
Zhu, D., Schubert, M. F., Cho, J., Schubert, E.F., Crawford, M.H., Koleske, D.D., Shim, H., Sone, C.: Genetic Algorithm for Innovative Device Designs in High-Efficiency III–V Nitride Light-Emitting Diodes. Appl. Phys. Expr. 5, 012102 (2012)
Zunger, A.: Beware of plausible predictions of fantasy materials. Nature 566, 447-449 (2019)