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Abstract

Cervical cancer is one of the most common cancers in daily life. Early
detection and diagnosis can effectively help facilitate subsequent clinical
treatment and management. With the growing advancement of artificial
intelligence (AI) and deep learning (DL) techniques, an increasing num-
ber of computer-aided diagnosis (CAD) methods based on deep learning
have been applied in cervical cytology screening. In this paper, we survey
more than 70 publications since 2016 to provide a systematic and compre-
hensive review of DL-based cervical cytology screening. First, we provide
a concise summary of the medical and biological knowledge pertaining
to cervical cytology, since we hold a firm belief that a comprehensive
biomedical understanding can significantly contribute to the develop-
ment of CAD systems. Then, we collect a wide range of public cervical
cytology datasets. Besides, image analysis approaches and applications
including cervical cell identification, abnormal cell or area detection,
cell region segmentation and cervical whole slide image diagnosis are
summarized. Finally, we discuss the present obstacles and promising
directions for future researches in automated cervical cytology screening.

Keywords: Cervical cytology, Deep learning, cancer screening, Artificial
intelligence, Cytopathology
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1 Introduction

Cervical cancer is a common malignancy that poses a serious threat to women’s
health. It is the fourth most common cancer in terms of both incidence and
mortality. In 2020, approximately 600,000 new cases of cervical cancer were
diagnosed and more than 340,000 people died from this disease globally [1].
The incidence and mortality of cervical cancer may vary among countries and
regions, which is related to the level of health services, the implementation
of screening and prevention measures, lifestyle, and environmental factors in
that region [2]. Fortunately, cervical cancer has a long precancerous stage, and
annual screening programs can help detect and treat it in a timely manner. If
cervical cancer is detected early, it can be completely eradicated.

Early-stage cervical cancer may not have obvious symptoms, but as the
disease progresses, symptoms such as abnormal vaginal bleeding, vaginal dis-
charge, and pelvic pain may appear. Early diagnosis is crucial for the treatment
and prognosis of cervical cancer [3]. At present, the most widely used and effec-
tive screening scheme around the world is cervical cytology screening. However,
the traditional cervical cytology screening program requires the manual iden-
tification of abnormal cells under a microscope, which is time-consuming,
tedious, and error-prone [4]. In this context, an increasing number of automatic
screening systems have been proposed to reduce the burden on cytopathologists
and improve diagnosis efficiency [5–7]. With the advancement of artificial intel-
ligence (AI) and digital image processing, machine learning (ML) technology
has been widely applied in cervical cytology screening to analyze cytological
images due to its high-performance results [8–10]. Nevertheless, traditional
machine learning approaches have complex image preprocessing and feature
selection steps that limit the further progress of human-machine collaboration.

In the past few years, deep learning (DL), a branch of machine learning,
has exploded in the field of computer vision [11–15]. The end-to-end automatic
feature extraction and learning process of DL eliminates the need for manual
feature design and selection. DL has made a breakthrough in various fields of
image processing, medical image analysis is no exception [16–18]. DL solutions
have been successfully applied in many medical imaging tasks, such as tho-
racic Imaging, neuroimaging, cardiovascular imaging, abdominal imaging, and
microscopy imaging[19]. The development of DL has also greatly accelerated
automatic image analysis in cervical cytology screening. To understand the
popularity and development trend of deep learning in cervical cytology, multi-
ple literature databases (Google Scholar, dblp, PubMed, and Web of Science)
are searched using the keywords related to cervical cytology screening (cervi-
cal cytology, cervical cancer diagnosis, deep learning, Pap smear, etc.). Fig. 1
illustrates the number of related publications from 2016 to 2022. Since 2016,
there has been a notable surge in the use of DL for cervical cytology screening.
Moreover, the object detection task has experienced significant growth since
2019, while the task of whole slide image (WSI) analysis has emerged in 2021
and shown impressive expansion recently.
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Fig. 1 Number of publications in DL-based classification, detection, segmentation and WSI
analysis for automated cervical cytology.

There exist several surveys in the field of automated cervical cytology
[10, 20–24]. Although these reviews provide valuable insights into automated
cervical cytology, they are not exhaustive and some areas remain unexplored,
calling for a further comprehensive investigation. First of all, the above reviews
focus on classification and segmentation tasks at the cell level, and none of
them investigate the application of object detection algorithms in automated
cervical cytology screening. Secondly, the majority of these reviews primarily
concentrate on conventional machine learning approaches, with comparatively
limited coverage of DL-based methods. Moreover, few reviews provide biomed-
ical context pertaining to cervical cytology, which is relevant for understanding
the applicability of DL-based methods in this field. Last but not the least,
there is currently no review specialized for automatic WSI analysis of cervical
cytology as the related works have only recently started to emerge in 2021.
Automatic WSI analysis of cervical cytology holds great promise for improv-
ing the efficiency and accuracy of cervical cancer screening. Staying abreast of
the latest developments and advancements in this field will be important for
researchers and practitioners.

To address the above issues, a comprehensive overview of relevant works
for automated cervical cytology is presented in this survey including over 70
publications since 2016. For researchers just entering this field, this survey pro-
vides background knowledge on cervical cytology such as a brief introduction
to cervical cancer, popular cervical cytology screening procedures, and defi-
nite cell categories in the Bethesda system (TBS). It is worth noting that the
comparison of different reporting terms is elaborated as well. This can often
cause confusion and impact the construction of a correct and reasonable DL
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model. Besides, this survey has also compiled the most extensive collection
of publicly available cervical cytology image datasets. Moreover, this survey
summarizes the latest DL-based classification, detection, segmentation, and
WSI analysis methods in automated cervical cytology screening. Towards the
end of this paper, several challenges and opportunities (stain normalization,
image super-resolution, incorporating medical domain knowledge, annotation-
efficient learning, internet of medical things, etc.) are presented that may
provide promising research directions in cervical cytology screening.

The paper is organized as follows: Section 1 introduces the background and
objective of this survey. In Section 2, an overview of cervical cytology with
detailed biomedical knowledge is provided. Section 3 lists the public datasets
in cervical cytology screening and summarizes the detailed progress in the DL-
based automated cervical cytology from cell identification to WSI analysis. In
Section 4, existing challenges and potential opportunities in automated cervical
cytology screening are discussed. Finally, Section 5 concludes this review paper.

2 Overview of cervical cytology

Before the review of deep learning-based method for cervical cytology screen-
ing, an preliminary overview of cervical cytology is presented in this section.
We believe that medical and biological domain knowledge has a critical impact
on the construction of computational models and the design of Computer-aided
diagnosis (CAD) systems. We first introduce the basic knowledge of cervical
cancer in Section 2.1. Then, a detailed procedure of cervical cytology screening
is described in Section 2.2. After that, we introduce the history of reporting
terminology for cervical cytology and explain the corresponding relations and
difference between four reporting systems in Section 2.3. Next, we elaborate
the cell categories in TBS in Section 2.4.

2.1 Introduction of cervical cancer

Cervical cancer is a kind of malignant tumor arising from the cervix and
threatens the life and health of women. There are two main types of cervical
cancer: (1) squamous cell carcinoma (SCC); and (2) adenocarcinoma. About
90% of cervical cancer cases are SCC, most of which begin in the transforma-
tion zone and develop from cells in the outer part of the cervix [25]. Cervical
cancer is by far the most common HPV-related disease, and almost all cer-
vical cancers (more than 95%) are caused by persistent infection with some
types of HPV. There are at least 13 known types of HPV that can persist and
progress to cancer, called high-risk HPV, the most common being HPV 16 and
18 strains. Cervical cancer has a long period of the precancerous stage, and
its development is continuous, as shown in Figure 2. The main characteristics
of precancerous cells focus on changes in the nucleus. For example, nuclear
enlargement results in an increased nuclear to cytoplasmic ratio. It’s common
to see Binucleation and multinucleation. Besides, nucleoli are generally absent
or inconspicuous if present. And the contour of the nuclear membrane is quite
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irregular. Early forms of cervical cancer may have no symptoms or signs, but
there is compelling evidence that cervical cancer is one of the most preventable
and treatable cancers if detected early and managed effectively through regu-
lar screening programs. There are currently three World Health Organization
(WHO) recommended screening tests for cervical cancer: (1) HPV testing for
high-risk HPV types; (2) cervical cytology screening; and (3) visual inspection
with acetic acid (VIA). Cervical cytology screening has been the basic method
worldwide since the cytological features are significant indications of cervical
cancer.

Normal cervix Cervical cancer

CIN 1 CIN 2 CIN 3Normal

HPV Infection

Persistent Infection

(5-20years)

Histology:

Cytology: HSILLSILNormal

Golden screening stage

(Precancerous cell changes)

Fig. 2 The natural evolution of HPV infected cervical cancer.

2.2 Procedure of cervical cytology screening

Cervical cytology screening is the most effective and widely used screening
program for discovering cancerous or precancerous lesions. The primary goal
of screening is to identify abnormal cervical cells with severe cell changes so
that they can be monitored or treated in time to prevent the development of
invasive cancer [26]. A large number of medical organizations suggest conduct-
ing routine cervical cytology screening every few years. Currently, conventional
Papanicolaou smear (CPS) test and liquid-based cytology (LBC) are per-
formed for cervical cytology screening worldwide [27]. CPS is a procedure in
which cervical cells are scraped and observed under a microscope. Fig. 3(a)
illustrates the whole process of CPS. Under the guidance of a vaginal specu-
lum, a soft brush will insert into the vagina to collect cells from the cervix.
Then a pap smear can be acquired by evenly spreading the cells from the brush
onto the glass slide. After staining, cytologists can observe the sample under
a microscope and make a diagnosis.

Due to the influence of blood, mucus, inflammation, and other factors, CPS
often acquires blurred samples, resulting in poor imaging results and detection
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Sample collection1 Smearing and storage2 Observation4Staining and airing3

(a) Conventional Papanicolaou smear test

Sample collection 

and preservation

1 Oscillation2 Centrifugation 

and slide making
3 Staining and airing4

Digital scanning5Whole slide image Glass slideScreening and reviewing6

(b) Liquid-based cytology using digital slides

Fig. 3 Two prevalent procedures of cervical cytology screening

errors. In recent years, with the development of digital pathology scanners and
the improvement of sample preparation level, LBC can significantly improve
the imaging quality of cervical cell samples, and thus has gradually become
the mainstream implement for cervical cytology screening. As shown in Fig.
3(b), the collected cells will be placed in a preservation solution for further
process. After oscillation and centrifugation, a liquid-based glass slide can be
obtained by natural sedimentation. Then, the liquid-based sample preparation
is completed via staining and air drying. To facilitate retrospective exami-
nation, a digital slide is usually generated via pathological scanners. Digital
pathology brings a positive and profound impact on traditional pathologi-
cal diagnosis, which digitizes glass slides into whole slide images (WSIs) to
greatly reduce the workload of pathologists and improve the diagnosis effi-
ciency compared to microscope-based visual observation [28, 29]. Liquid-based
preparation together with digital slides is a satisfactory alternative to conven-
tional smear and has a great application prospect for nowadays’ large-scale
cervical cancer screening programs.
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2.3 History of reporting terminology

The establishment of a standard cervical cytology report system plays a vital
role in the universality of diagnosis methods and the acceptance of diagno-
sis results. In practice, the standard report system can cross the gap between
different regions and different countries, strengthen the exchange of relevant
scientific research results, and greatly improve the efficiency of cervical can-
cer diagnosis [30]. The earliest report system for cervical cytological diagnosis
was the Papanicolaou classification system, which developed a numeric clas-
sification terminology to grade cervical cells for 5 levels [31]. Class I to Class
V respectively indicated the absence of abnormal or atypical cells; atypical
cells, but no evidence of malignancy; cytology suggestive of but not conclu-
sive for malignancy; cytology strongly suggestive of malignancy; and cytology
conclusive for malignancy. However, many pointed out that the Papanicolaou
classification system was strongly subjective and there was no strict objec-
tive standard for the difference between Class II, III, and IV. In addition, the
Papanicolaou classification system did not have a clear definition of precan-
cerous lesions and was not able to correspond to histopathological diagnosis
terms.

With the development and refinement of both cytological and histological
diagnoses of cervical cancer, an understanding of the natural history of cer-
vical intraepithelial neoplasms (CIN) has developed progressively. The term
dysplasia was introduced to refer to precancerous abnormalities of squamous
cells and the 3-tiers dysplasia system (mild/ moderate/severe dysplasia, or car-
cinoma in situ) was proposed [32]. Recognizing the difficulty in differentiating
severe dysplasia and carcinoma in situ (CIS), in 1966 [33], the CIN classifi-
cation system was developed to describe CIN as a continuum of neoplastic
change with progressively increasing risk of invasion, which was subdivided
into grades I, II, and III. The advantage of both the 3-tiers dysplasia sys-
tem and CIN classification was the ability to use it for cytological as well as
histological samples.

In the 1970s and 1980s, as HPV testing became more available, vast epi-
demiological and biochemical evidence manifested the link between HPV and
cervical dysplasia, which supported the role of high-risk HPV as a necessary
factor in the development of cervical cancer [34, 35]. As a result, the first edition
of the Bethesda system (TBS) for reporting cervical cytology was promulgated
in 1988 [36]. TBS aims to provide a uniform interpretation of cervical cytology,
thereby facilitating communication between the clinician and the laboratory.
With the change in practice to increased utilization of new technologies and
findings in the last few decades, such as further insights into HPV biology and
the development of liquid-based preparations, TBS has been updated three
times to meet the evolving cervical cytology. The newest TBS 2014 guideline
[37] offers comprehensive terminology for the reporting of cervical cytology.
Nowadays, dysplasia and CIN systems remain standard reporting terms for
cervical histopathology. However, for reporting cervical cytology, TBS is the
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Table 1 Different cervical pathology reporting systems

Histopathology Cytopathology

3-tier dysplasia CIN The Pap classification TBS

Normal Normal I (Normal) NIML

Atypical cells Squamous atypia II (Atypical)
ASCUS
ASCH
AGC

mild dysplasia CIN1
III (Suspicious)

LSIL
moderate dysplasia CIN2

HSILsevere dysplasia
CIN3

carcinoma in situ IV (Suggestive)

Invasive cancer Invasive cancer V (Indicative)
SCC

Adenocarcinoma

most commonly used and appropriate criterion. Referring to [38, 39], the spe-
cific classification criteria and corresponding relations of these four systems
are shown in Table 1.

2.4 Cell categories in TBS

TBS lays the foundation for our further comprehending of HPV biology and
provides the necessary framework for the development of systematic evidence-
based guidelines for cervical cancer screening and management. Since TBS is
the widely recognized standard for cervical cytology reporting, in this section,
cell categories in the latest version of TBS (TBS 2014) [37] are introduced for
better understanding of cervical cytology.

The specimen is reported as negative for intraepithelial lesion or malig-
nancy (NIML) when there is no cellular evidence of neoplasia or epithelial
abnormalities. Normal cellular elements include normal squamous cells and
glandular cells. Squamous cells located in different positions of cervical epithe-
lium have different characteristics, from shallow to deep can be divided into the
superficial cell, intermediate cell, parabasal cell and basal cell. In a stained sam-
ple, the cytoplasm of superficial cells are pink or orange while the cytoplasm of
all of the less mature cells are light green or cyan. Superficial cells and interme-
diate cells are large polygonal with very low nuclear-to-cytoplasmic ratio (N/C
ratio) while parabasal cells and basal cells are generally round or oval with rel-
atively high N/C ratio. Basal cells are small, and undifferentiated cells which
are rarely seen in a Pap smear unless there is severe atrophy. Glandular cells
consist of endocervical cells and endometrial cells. Viewed from above, sheets
of endocervical cells have a honeycomb appearance, whereas when viewed from
side line up like “picket-fence” palisades. Endocervical glandular cells exhibit
polarity with nuclei at one end of the cytoplasm and mucus present at the
other. Endometrial cells which are spontaneously shed are derived from epithe-
lial or stromal and often in a 3-dimentional cluster referred to as an “exodus”
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ball, which generally present at the end of menstrual flow. Figure 4 exhibits
various normal cervical cells.

(a) (c)(b)

(d) (e) (f)

Fig. 4 Different normal cervical cells: (a) superficial cell, (b) intermediate cell, (c) parabasal
cell, (d) basal cell, (e) endocervical cell, (f) endometrial cell.

Abnormal squamous cells or glandular cells can be discovered during cer-
vical cytology screening which can be categorized as following types according
to TBS reporting terminology:

• Atypical squamous cells - undetermined significance (ASC-US):
This type refers to changes that are suggestive of the low-grade squamous
intraepithelial lesion (LSIL). The nuclei of ASC-US are about 2.5 to 3 times
the area of a normal intermediate squamous cell nucleus (approximately 35
mm2) and the N/C ratio is slightly increased.

• Atypical squamous cells - cannot exclude a high-grade squamous
intraepithelial lesion (ASC-H): ASC-H primarily affects the squamous
metaplastic cells and the nuclei are usually approximately 1.5-2.5 times
larger than normal metaplastic cells’ nuclei. The cytological changes of ASC-
H are suggestive of the high-grade squamous intraepithelial lesion (HSIL)
but are insufficient for a definitive diagnosis of HSIL.

• Low-grade squamous intraepithelial lesion (LSIL): To render an LSIL
diagnosis, explicit abnormal changes must be found in the squamous cells.
Cytological changes of LSIL usually occur in mature intermediate or super-
ficial squamous cells and the nuclear enlargement are more than three times
the area of normal intermediate nuclei. Additional characteristics of LSILs
include hyperchromatic nuclei, absent or inconspicuous nucleoli, binucleation
or multinucleation, and increased koilocytosis.
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• How-grade squamous intraepithelial lesion (HSIL): In general, the
cells affected by HSIL are immature parabasal or basal cells. HSIL cells
can appear in sheets, singly, or in syncytial clusters which may result in
hyperchromatic crowded groups (HCG). The nuclear enlargement and small
size of HSIL cells lead to a marked increase in the N/C ratio. The nucleoli are
generally absent and the contour of the nuclear membrane is quite irregular.

• Squamous cell carcinoma (SCC): SCC is defined as “an invasive epithe-
lial tumor composed of squamous cells of varying degrees of differentiation”
according to 2014 WHO terminology [40], which is the most common malig-
nant tumor of cervical cancer. Cytological features of SCC usually include
pleomorphic hyperchromatic nuclei, irregularly dispersed chromatin with
nuclear clearing, prominent irregular often multiple nucleoli, keratinization
of cells, and keratinous debris.

• Atypical glandular cells (AGC): AGC is a generic terminology for atyp-
ical endocervical cells or atypical endometrial cells when there is difficulty
in locating the origin of the cells. Atypical endocervical cells may be further
qualified as “NOS” or “favor neoplasia”, while atypical endometrial cells
don’t need it. The cytological features of AGC may include nuclear enlarge-
ment, crowding, variation in size, hyperchromasia, chromatin heterogeneity,
and evidence of proliferation.

• Endocervical adenocarcinoma in situ (AIS): AIS is considered to be
the glandular counterpart of HSIL and the precursor to invasive endocervical
adenocarcinoma. The criteria of AIS comprise of the following aspects: The
cells present as sheets, pseudostratified strips or clusters – with loss of well-
defined honeycomb patterns; The nuclei tend to be enlarged, variably sized,
oval or elongated, and the loosely superficial cells of the cell groups incline to
be tapered and spread out, referred to as “feathering”; Nucleoli are usually
small or inconspicuous and may not be present; The quantity of cytoplasm is
diminished and N/C ratio is increased; Nuclear hyperchromasia with evenly
dispersed, coarsely granular chromatin; The chromatin pattern is coarsely
granular with even distribution and mitoses are common.

• Adenocarcinoma: The Cytological criteria for adenocarcinoma may over-
lap those outlined for AIS. There are abundant abnormal cells, typically
with columnar configuration. Nuclei tend to be enlarged, pleomorphic with
nuclear membrane irregularities, and may be hypochromatic with irregularly
distributed chromatin or chromatin clearing. Multinucleation and Macronu-
cleoli are common features. Adenocarcinoma may coexist with squamous
lesions.

Figure 5 shows an illustration of various abnormal cervical cells. In a large-
scale cervical cell screening program for the general population, the number
of abnormal squamous cases is far more than abnormal glandular cases and
ASC-US, LSIL, ASC-H, and HSIL are the four most common types. ASC-US
and LSIL lesions usually occur in superficial cells or intermediate cells while
ASC-H and HSIL lesions usually occur in parabasal cells and basal cells.
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(a) ASC-US (c) LSIL(b) ASC-H

(d) HSIL (e) SCC

Abnormal squamous cells

Abnormal glandular cells

(f) Atypical endocervical cells (AGC)

(j) Adenocarcinoma, endometrial (i) Adenocarcinoma, endocervical

(g) Atypical endometrial cells(AGC) (h) AIS

Fig. 5 Illustration of various abnormal cervical cells.

3 Deep learning in cervical cytology

The aim of automated cervical cytology screening is to automatically diag-
nose digital slides of subjects by computer modeling. This analysis procedure
involves searching the region of interest (ROI), segmenting cells, and classifying
precancerous or cancerous cells. With the development of such techniques as
medical imaging, computer vision, and machine learning, automated analysis
receives increasing attention. The realization and application of such methods
are helpful to improve the efficiency and accuracy of cytologists perform-
ing WSI examinations during the cervical cytology screening process. In this
section, we first survey publicly available cervical cytology datasets (Section
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3.1) and then summarize the literature on various deep learning methods
applied in cervical cytology, including several representative clinical tasks: cell-
level identification (Section 3.2), detection (Section 3.3), segmentation (Section
3.4), and slide-level diagnosis(Section 3.5).

3.1 Public datasets of cervical cytology

At the beginning of developing automatic methods for cervical cytology screen-
ing, many human and material resources are devoted to the collection of
cervical cytological images because automatic analysis methods rely on large
amounts of labeled data and there is few public datasets available. We sum-
marize publicly available datasets for cervical cytology screening, as listed in
Table 2. These public cervical cytology datasets can be utilized to develop
automatic analysis algorithms for multiple tasks, including image classification,
object detection, semantic segmentation, etc.
Herlev [41]. Herlev is the most widely used dataset for the analysis of cervical
cytology, which consists of 917 Papanicolaou (Pap) smear cervical images in
7 classes (3 normal classes and 4 abnormal classes) based on the classification
rule of the 3-tiers dysplasia system. Each cell image is segmented manually
into the background, cytoplasm, and nucleus for further feature extraction.
ISBI 2014 [42]. This dataset is released for the first Overlapping Cervical
Cytology Image Segmentation Challenge under the auspices of the IEEE Inter-
national Symposium on Biomedical Imaging (ISBI 2014). The main target of
this challenge is to extract the boundaries of individual cytoplasm and nucleus
from overlapping cervical cytology images. The dataset consists of 16 Extended
Depth Field (EDF) cervical cytology images and 945 synthetic images. Each
image consists of 20 to 60 Papanicolaou-stained cervical cells with different
degrees of overlap.
ISBI 2015 [43]. This dataset is used for the second cervical cell segmentation
challenge in ISBI 2015, consisting of a collection of 17 multi-layer cervical
cell volumes, from which 8 will be used for training and 9 for testing. The
main difference between ISBI 2015 and ISBI 2014 is that the input data will
consist of a multi-layer cytology volume, which means that the input data
is now a volume consisting of a set of multi-focal images acquired from the
same specimen. This richer input dataset may provide more information on the
task of detecting and segmenting cervical cells, thus enabling more accurate
cytoplasmic and nuclear detection and segmentation of cervical cells.
SIPaKMeD [44]. This database consists of 4,049 images of isolated cervical
cells. The cells are annotated by experienced cytopathologists into five differ-
ent classes (superficial-intermediate, parabasal, koilocytotic, dyskeratotic, and
meta-plastic cells), depending on their cytological appearance and morphology.
Among these five classes, superficial-intermediate and parabasal are normal
cells. Koilocytes and dyskeratotic are abnormal but not malignant cells while
metaplastic belongs to benign. In each image of the SIPaKMeD database, the
areas of the cytoplasm and the nucleus are manually defined.
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Table 2 Summary of publicly available datasets for cervical cytology screening

Dataset year Preparation Terminology Task Description Link

Herlev [41] 2005 CPS
three-tiers
dysplasia

Classification
Segmentation

917 cells in 7 classes http://mde-lab.aegean.gr/downloads

ISBI 2014 [42] 2014 LBC - Segmentation 16 EDF cell images and 945 sythetic
images

https://cs.adelaide.edu.au/∼carneiro/
isbi14 challenge/index.html

ISBI 2015 [43] 2015 LBC - Segmentation 17 multi-layer cervical cell volumes https://cs.adelaide.edu.au/∼carneiro/
isbi15 challenge/index.html

SIPaKMeD [44] 2018 CPS
cytological
morphology

Classification 4,049 cervical cells in 5 catogories https://www.cs.uoi.gr/-marina/
sipakmed.html

CERVIX93 [45] 2018 LBC TBS
Classification
Detection

93 stacks of images with 2,705 anno-
tated nuclei

https://github.com/parham-ap/
cytology dataset

BHS [46] 2019 CPS - Segmentation 194 images https://sites.google.com/view/centercric

BTTFA [47] 2019 LBC - Segmentation 104 cervical LBC images https://data.mendeley.com/datasets/
jks43dkjj7/1

Mendeley
LBC

[48] 2020 LBC TBS Classification 963 LBC images in 4 classes https://data.mendeley.com/datasets/
zddtpgzv63/4

Cric [49] 2021 CPS TBS Classification 400 images with 11,534 cells https://database.cric.com.br

Comparison
Detector

[50] 2021 LBC TBS Detection 7,410 images with 48,587 objects in
11 categories

https://github.com/kuku-sichuan/
ComparisonDetector

RepoMedUNM
[51]

2021 LBC + CPS TBS Classification 6,168 Pap smear cell images http://repomed.nusamandiri.ac.id/

CCEDD [52] 2022 LBC -
Edge Detection
Segmentation

686 raw cervical images and 33,614
cut images

https://github.com/nachifur/LLPC

Cx22 [53] 2022 LBC - Segmentation 1,320 images of 14,946 cellular
instances

https://github.com/LGQ330/Cx22

http://mde-lab.aegean.gr/downloads
https://cs.adelaide.edu.au/~carneiro/isbi14_challenge/index.html
https://cs.adelaide.edu.au/~carneiro/isbi14_challenge/index.html
https://cs.adelaide.edu.au/~carneiro/isbi15_challenge/index.html
https://cs.adelaide.edu.au/~carneiro/isbi15_challenge/index.html
https://www.cs.uoi.gr/-marina/sipakmed.html
https://www.cs.uoi.gr/-marina/sipakmed.html
https://github.com/parham-ap/cytology_dataset
https://github.com/parham-ap/cytology_dataset
https://sites.google.com/view/centercric
https://data.mendeley.com/datasets/jks43dkjj7/1
https://data.mendeley.com/datasets/jks43dkjj7/1
https://data.mendeley.com/datasets/zddtpgzv63/4
https://data.mendeley.com/datasets/zddtpgzv63/4
https://database.cric.com.br
https://github.com/kuku-sichuan/ComparisonDetector
https://github.com/kuku-sichuan/ComparisonDetector
http://repomed.nusamandiri.ac.id/
https://github.com/nachifur/LLPC
https://github.com/LGQ330/Cx22
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CERVIX93 [45]. This dataset consists of 93 stacks (frames) of images at
40× magnification. Each of the stacks has 10-20 images and all images are size
1280 × 960 pixels. Based on TBS, all frames are examined by cytologists and
graded with three categories (Negative, LSIL, HSIL). A total of 2705 nuclei are
manually annotated with bounding boxes according to all grade categories.
BHS [46]. This database collects 194 conventional pap smears from the
Brazilian Health System (BHS). The collected glass slides are digitized with
a magnification of 40× to construct the training dataset (26 images) and test
dataset (168 images). The images are labeled into two classes (normal and
abnormal) and abnormal images contain 5 different types of precancerous or
cancerous cells (Carcinoma, HSIL, LSIL, ASCUS, and ASCH).
BTTFA [47]. This dataset contains 104 cervical LBC images with the size of
1024 × 768 scanned via the Olympus microscope B x 51 with a magnification
of 200×. conventional pap smears from the Brazilian Health System (BHS).
All collected images are manually segmented by a professional pathologist to
get the pixel-level segmentation label.
Mendeley LBC [48]. This dataset consists of a total of 963 liquid-based
cytology (LBC) images which can be used for a comparative assessment of
one’s experimental findings against publicly available conventional pap smear
datasets. The dataset has been subdivided into four categories: NIML (613),
LSIL (163), HSIL (113), and SCC (74).
CRIC [49]. The collection of the CRIC dataset has 400 images of conventional
cervical pap smears and 11,534 classified cells. CRIC Cervix collection covers
cervical cells with six types based on TBS nomenclature: NILM (6,779), ASC-
US (606), LSIL (1,360), ASC-H(925), HSIL (1,703), and SCC (161).
Comparison Detector [50]. This database consists of 7,410 cervical images
cropped from the WSIs. There is a total of 48,587 object instance bounding
boxes labeled by experienced cytopathologists. According to TBS categories,
the annotated objects belong to 11 categories: ASC-US, ASC-H, LSIL,
HSIL, SCC, AGC, trichomonas (TRICH), candida (CAND), flora, herps and
actinomyces (ACTIN).
RepoMedUNM [51]. This database is comprised of 6,168 Pap smear cell
images including both non-ThinPrep Pap test images and ThinPrep Pap test
images. For non-ThinPrep images, there are 3,083 images in total contain-
ing two categories, normal and LSIL. ThinPrep images are divided into three
categories: normal cells (1,513), koilocyt cells (434), and HSIL (410).
CCEDD [52]. This dataset collects 686 cervical images with the a size of
2048 × 1536. The captured images contain overlapping cervical cell masses in
various complex backgrounds and are labeled by 6 experienced cytologists to
outline the contours of the cytoplasm and nucleus. The original images are
divided into training set, validation set, and test set using a ratio of 6:1:3. All
raw image are cut into 512 × 384 pixels and 33,614 cut images in total are
obtained.
Cx22 [53]. This dataset is an extension of CCEDD dataset that more pre-
cise instances (cytoplasm and nucleus) are annotated. A total of 14,946 cell
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instances in 1,320 images are collected and divided into two sub-sets, Cx22-
Multi (containing multiple instances) and Cx22-Pair (only containing a pair
of instances).

3.2 Cervical cell identification

Cell-level identification is one of the most successful tasks applied by deep
learning in cervical cytology screening. Traditional machine learning methods
need to accurately segment the cell outline and even the nucleus, and then
manually design the features (nucleus area, cytoplasm area, nucleus perimeter,
cytoplasm perimeter, N/C ratio, etc.). The extracted hand-crafted features
are fused and utilized for final classification, to realize the identification of
cervical cells. Most of the traditional machine learning-based methods rely
on the accuracy of cell segmentation, which is the key to feature extraction.
However, in actual clinical practice, the complex background and fuzzy over-
lapping cells bring serious difficulties to the accurate segmentation of cervical
cells. Conversely, a DL-based identification scheme in the form of a convolu-
tional neural network (CNN) avoids complex image preprocessing steps such
as pixel-level cell segmentation, feature selection, and extraction. Owing to
the learning of abundant training data, DL-based approaches have gradually
become a promising research direction use can realize end-to-end and high-
performance identification of cervical cells. The most straightforward approach
is to feed the cell image directly into a deep CNN model to extract the fea-
ture maps, then use the output layer and a classifier to obtain the predicted
category. Shanthi et al. [54] designed a CNN architecture composed of three
convolutional layers, three max-pooling layers and one fully connected layer.
They evaluated the proposed network on four different datasets using different
settings (2 class, 3 class, 4 class, and 5 class), showing its ability for cervical
cell identification. Chen et al. [55] proposed a novel network CompactVGG,
which is adapted from VGGNet to realize the high-performance classification
of cervical cells. On public datasets Herlev and SIPaKMeD, and their collected
private dataset, CompactVGG achieved the best performance compared to
some classical CNN models. Similarly, DCAVN is proposed to identify cervi-
cal cells as normal or abnormal by using deep convolutional and variational
autoencoder network [56].

In addition to using the classical CNN architectures or self-designed mod-
els, there are three commonly used approaches for cervical cell identification:
transfer learning, multi-model ensemble, and hybrid feature fusion, as shown
in Fig. 6. A summary of the deep learning-based methods for cervical cell
classification is exhibited in the table 3.



16 Article Title
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(a) Transfer learning based identification
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Fig. 6 Three prevalent deep learning based approaches for cervical cell identification.
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Table 3: Summary of deep learning-based studies for cervical cell classification.
Accuracy (Acc), Precision (Pre), Recall (Rec), Specificity (Spec), Sensitivity (Sens),
F1-score (F1).

Reference Method Dataset Classes Result
Classical or Self-designed Model

Shanthi et al.
(2019) [54]

Simple CNN (3 Conv + 1 pooling
+ 1 FC)

Herlev

2-class,
3-class,
4-class,
5-class

(2-class): Acc = 96.11%,
(3-class): Acc = 94.80%,
(4-class): Acc = 94.62%,
(5-class): Acc = 95.31%

Chen et al.
(2021) [55]

CompactVGG (Adapted from
VGGNet)

Herlev, SIPaKMed and pri-
vate dataset (60,238 positive
cells, 25,001 negative cells, and
113,713 junk images)

2-class,
3-class

Herlev (2-class): Acc = 94.81%, Sens = 95.52%,
Spec = 92.76%, F1 = 96.46%;
SIPaKMed (3-class): Acc = 98.94%,
Sens = 97.80%, Spec = 99.17%, F1 = 98.28%;
Private (3-class): Acc = 88.30%, Sens = 92.83%,
Spec = 91.03%, F1 = 87.04%

Khamparia et
al. [56]

Deep convolutional and vari-
ational autoencoder network
(DCAVN)

Herlev 2-class Acc = 99.4%, Pre = 99.4%, Rec = 99.1%, F1 =
99%

Transfer Learning

Zhang et al.
(2017) [57]

Simple ConvNet + Transfer
learning (Fine-tune)

Herlev and private dataset
HEMLBC (989 abnormal cells
and 989 normal cells)

2-class

Herlev: Sens=98.2%, Spec=98.3%, Acc=98.3%,
F1=98.8%, AUC=99.8%;
HEMLBC: Sens = 98.3%, Spec = 99.0%,
Acc = 98.6%

Hyeon et al.
(2017) [58]

VGG-16 + Transfer learning
(Feature extraction)

Private dataset (8,373 abnormal
cells and 8,373 normal cells)

2-class Pre = 78.17%, Rec = 78.17%, F1 = 78.17%

Ghoneim et al.
(2019) [59]

CNN (shallow CNN, VGG-16
and CaffeNet) + ELM-based
classifier + Transfer learning
(Fine-tune)

Herlev
2-class,
7-class

(2-class): Acc = 99.5%,
(7-class): Acc = 91.2%

Khamparia et
al. (2020)[60]

CNN (InceptionV3, VGG-
19, SqueezeNet, ResNet-50)
+ Transfer learning (Feature
extraction)

Herlev 2-class

InceptionV3: Acc = 94.88%;
VGG-19: Acc = 96.76%;
SqueezeNet: Acc = 95.17%;
ResNet-50: Acc = 97.89%
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Table 3: Continued
Reference Method Dataset Classes Result

Wang et al.
(2020)[61]

Adaptive pruning deep transfer
learning model (PsiNet-TAP)

Private dataset (120 normal
cell images, 206 uninvolved cell
images and 63 abnormal cell
images )

2-class

Normal vs abnormal: Acc = 98.41%,
Sens = 97.83%, Spec = 98.75%;
Normal vs uninvolved: Acc = 98.18%,
Sens = 98.57%, Spec = 97.50%;
Normal vs abnormal + uninvolved: Acc = 98.49%,
Sens = 99.64%, Spec = 95.83%

Bhatt et al.
(2021)[62]

Progressive resizing technique
+ CNN (EfficientNet, VGGNet,
ResNet) + Transfer learning
(Fine-tune)

Herlev and SIPaKMed
2-class,
5-class,
7-class

SIPaKMed (2-class): Acc = 99.01%, Pre = 99.15%,
Rec = 98.89%;
SIPaKMed (5-class): Acc = 99.70%, Pre = 99.70%,
Rec = 99.72%;
Herlev (7-class): Acc = 93.14%, Pre = 94.56%,
Rec = 93.98%

Multi-Model Ensemble

Rahaman et
al. (2021) [63]

CNN (VGG-16, VGG-19, Xcep-
tionNet, and ResNet-50) +
Hybrid deep feature fusion

Herlev and SIPaKMed

2-class,
3-class,
5-class,
7-class

SIPaKMed: (2-class) Acc = 99.85%,
(3-class) Acc = 99.38%, (5-class) Acc = 99.14%;
Herlev: (2-class) Acc = 98.32%, (7-class)
Acc = 90.32%

Manna et al.
(2021) [64]

CNN (Inception v3, Xception-
Net and DenseNet-169) + Fuzzy
rank-based ensemble

Mendeley LBC and SIPaKMed
2-class,
4-class,
5-class

SIPaKMed (2-class): Acc = 98.55%, Pre = 98.57%,
Rec = 98.52%, F1 = 98.54%;
SIPaKMed (5-class): Acc = 95.43%, Pre = 95.34%,
Rec = 95.38%, F1 = 95.36%;
Mendeley LBC (4-class): Acc = 99.23%,
Pre = 99.13%, Rec = 99.23%, F1 = 99.18%

Diniz et al.
(2021) [65]

CNN (EfficientNet, MobileNet,
XceptionNet and Inception v3 )
+ Vote from three best-trained
models

CRIC
2-class,
3-class,
6-class

(2-class): Acc = 96%, Pre = 96%, Rec = 96%;
(3-class): Acc = 96%, Pre = 94%, Rec = 94%;
(6-class): Acc = 95%, Pre = 85%, Rec = 85%

Liu et al.
(2022) [66]

CNN (Xception) + Vision trans-
former (tiny DeiT) + MLP mod-
ule

Herlev, CRIC and SIPaKMeD
combined dataset

2-class,
11-class

Herlev (2-class): Acc = 92.35%, Pre = 88.90%,
Rec = 93.50%, F1 = 90.70%;
Combined dataset (11-class): Acc = 91.72%,
Pre = 91.80%, Rec = 91.60%, F1 = 91.70%
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Table 3: Continued
Reference Method Dataset Classes Result

Kundu et al.
(2022) [67]

CNN (GoogLeNet and ResNet-
18 ) + genetic algorithm for fea-
ture selection

Mendeley LBC and SIPaKMed
2-class,
4-class,
5-class

SIPaKMed (2-class): Acc = 99.65%, Pre = 99.60%,
Rec = 99.58%, F1 = 99.59%;
SIPaKMed (5-class): Acc = 98.94%, Pre = 98.79%,
Rec = 98.80%, F1 = 98.79%;
Mendeley LBC (4-class): Acc = 99.07%,
Pre = 98.39%, Rec = 98.18%, F1 = 98.31%

Hybrid Feature Fusion

Jia et al.
(2020) [68]

Strong features (extracted by
GLCM and Gabor) + Abstract
features (Extracted from LeNet-
5) + Multi feature serial fusion

Herlev and private dataset (1000
positive cell images and 1000
negative cell images)

2-class,
7-class

Herlev (2-class): Acc = 99.3%, Sens = 98.9%,
Spec = 99.4%;
Herlev (7-class): Acc = 93.8%, Sens = 93.7%,
Spec = 93.7%;
Private dataset (2-class): Acc = 94.9%,
Sens = 93.3%, Spec = 93.3%

Dong et al.
(2020) [69]

Hand-crafted features (Color,
texure and morphological fea-
turs) + Inception v3

Herlev
2-class,
7-class

Herlev (2-class): Acc = 98.23%, Sens = 99.44%,
Spec = 96.73%;
Herlev (7-class): Acc = 94.68%

Zhang et al.
(2021) [70]

MDHDN (spectrum images +
VGG-19 + Hand-crafted fea-
tures)

Herlev, SIPaKMed and private
BJTU dataset (735 normal cells
and 1,756 abnormal cells)

2-class,
5-class,
7-class

Herlev (2-class): Acc = 98.7%, Sens = 98.2%,
Spec = 98.9%;
Herlev (7-class): Acc = 94.8%, Sens = 93.7%,
Spec = 91.1%

Yaman et al.
(2022) [71]

Multi-resolution images + Dark-
Net + NCA + SVM

Mendeley LBC and SIPaKMed
4-class,
5-class

SIPaKMed (5-class): Acc = 98.26%, Pre = 98.27%,
Rec = 98.28%, F1 = 98.73%;
Mendeley LBC (4-class): Acc = 99.47%,
Pre = 99.26%, Rec = 98.21%, F1 = 98.73%

Qin et al.
(2022) [72]

Multi-task feature fusion model
(manual features fitting brance
+ multi-task classification
branch)

SIPaKMeD and private HUSTC
dataset (70,197 single-cell images
in 5 categories)

2-class,
5-class

HUSTC (2-class): Acc = 99.52%, Sens = 98.90%,
Spec = 98.12%, F1 = 99.71%;
HUSTC (5-class): Acc = 81.88%, Sens = 79.58%,
Spec = 94.97%, F1 = 79.10%;
SIPaKMeD (2-class): Acc = 98.96%,
Sens = 98.60%, Spec = 99.21%, F1 = 98.72%;
SIPaKMeD (5-class): Acc = 98.67%,
Sens = 98.65%, Spec = 99.67%, F1 = 98.67%
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3.2.1 Transfer learning based identification

The success of deep learning is closely related to large amounts of data, which
means that insufficient training data can seriously affect the performance of
deep learning models. However, one problem with applying deep learning to
medical image analysis is the lack of effective annotation. Limited labels result
in limited available data, which makes deep learning models difficult to train
well and brings overfitting problems. Therefore, transfer learning is an effective
alternative in this case [73]. In contrast to general deep learning algorithms that
solve isolated tasks, transfer learning attempts to transfer learned knowledge
in the source task and apply it to improve learning in the target task, such
as transferring knowledge from a large public dataset (e.g. ImageNet) to a
dome-specific task (e.g. Cervical cell identification), as shown in Fig. 6(a). The
application of transfer learning in the field of cervical cell identification can save
a significant amount of labeling effort, reduce overfitting problems and improve
the generalization ability of deep learning models. To transfer deep learning
models, fine-tuning and feature extraction are two common strategies [74].
Fine-tuning needs to train the pre-trained model which is obtained from the
source dataset on the target dataset to fine-tune all parameters in the learnable
layers of the networks. Feature extraction remains the same parameters in all
layers except the top layer. The top layer connects with the classifier and is
related to the specific classification task.

Zhang et al. [57] first introduced a transfer learning approach to cervical
cytology screening for both conventional Pap smear and liquid-based cytology
datasets. They proposed a simple ConvNet, DeepPap, to classify the cervi-
cal cells into healthy and abnormal, as illustrated in Fig. 7. The proposed
ConvNet was firstly pre-trained on a natural image dataset, ImageNet and
then fine-tuned on cervical cytological datasets. On both the CPS dataset,
Herlev, and the LBC dataset, HEMLBC, the proposed ConvNet presented
high-performance classification results.

Hyeon et al. [58] utilized VGGNet-16 which was pre-trained on the Ima-
geNet dataset to extract features of cervical cells and then trained an SVM
classifier to perform the prediction. They collected 71,344 Pap smear micro-
scopic images classified into six categories according to TBS criteria. To
mitigate the imbalanced distribution they downsampled and regrouped all
images into two classes: normal (8,373) and abnormal (8,373). Using 80% of
the images for training and the rest for testing, the SVM classifier achieved the
best performance with a 0.7817 F1 score when compared to logistic regression,
random forest, and AdaBoost.

Ghoneim et al. [59] introduced CNNs and extreme learning machine
(ELM)-based classifier in cervical cell classification. They compared the shal-
low CNN model with two deep CNN models, VGG-16 and CaffeNet. Three
deep learning models were fine-tuned on the Herlev dataset, and the proposed
CNN-ELM-based system achieved 99.5% accuracy in the 2-class classification
and 91.2% in the 7-class classification.
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Fig. 7 The architecture of DeepPap [57].

Khamparia et al. [60] proposed a novel internet of health things (IoHT)-
driven diagnostic system for cervical cancer. To classify abnormal cervical
cells, they leveraged several classical CNN models (InceptionV3, VGG19,
SqueezeNet, and ResNet50) as the feature extractor in conjunction with mul-
tiple machine learning classifiers (K nearest neighbor, naive Bayes, logistic
regression, random forest, and support vector machines.) for final prediction.
ResNet50 together with the random forest classifier achieved the highest clas-
sification accuracy of 97.89%. They also developed a web application for the
prediction of uploaded test images and the proposed IoHT system can greatly
improve the diagnosis efficiency of cytologists.

Wang et al. [61] presented an adaptive pruning deep transfer learning model
(PsiNet-TAP) to classify Pap smear images. PsiNet-TAP consists of 10 con-
volution layers and is firstly pre-trained on the ImageNet dataset. After that,
transfer learning is applied by using the pre-trained weights as the initial-
ized weights to fine-tune the model on Pap smear images. Furthermore, to
discard all unimportant convolution kernels, they designed an adaptive prun-
ing method based on the product of l1-norm and output excitation mean.
Using their collected 389 cervical Pap smear images, PsiNet-TAP achieved a
remarkable performance of more than 98% accuracy.

Bhatt et al. [62] utilized progressive resizing together with a transfer learn-
ing technique to train several generic CNN models for the identification of
cervical cells. They performed binary and multiclass experiments on Herlev
and SIPaKMed datasets. The experimental results demonstrated the high
performance of the proposed method and the activation results of GradCam
highlights the pre-malignant or malignant lesions located by the proposed
model.
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3.2.2 Multi-model ensemble based identification

Ensemble learning is a machine learning technology that exploits multiple base
learners to produce predictive results and fuse results with various voting mech-
anisms to achieve better performances of the learning systems [75]. The basic
guiding principle of ensemble learning is ’many heads are better than one’.
In recent years, with the rapid development of deep learning, ensemble deep
learning has been widely applied in biomedical and bioinformatic fields [76, 77].
The multi-model ensemble is the most straightforward way to realize ensemble
deep learning. The diversity of individual networks is the essential character-
istic of multi-model ensemble learning and various integration strategies can
assist the basic model for better performance. The ensemble across multiple
models has been a promising direction to improve accuracy for cervical cell
identification, as illustrated in Fig. 6(b).

Rahaman et al. [63] proposed a hybrid deep feature fusion (HDFF)
approach, DeepCervix for the multiclass classification task of cervical cells.
Four deep learning networks, VGG16, VGG19, XceptionNet, and ResNet50
were used to extract the features and the subsequent feature fusion network
was utilized to concatenate the extracted features to perform the final predic-
tion. The HDFF Network achieved an accuracy of 99.85% for 2-class, 99.38%
for 3-class, and 99.14% for 5-class classification on the SIPaKMeD dataset.
For the Herlev dataset, the proposed method achieved 98.32% and 90.32% for
2-class and 7-class classification respectively.

Manna et al. [64] developed an ensemble-based model for cervical cell
classification using three general CNN models, Inception v3, Xception, and
DenseNet-169. They presented a novel ensemble technique that the prediction
scores of three CNN models were taken into account to make the final decision.
The proposed ensemble method leveraged a fuzzy ranking-based approach,
where two non-linear functions were applied to the probability scores of each
base learner to determine the fuzzy ranks of the classes. The ranks assigned
by the two non-linear functions are multiplied and the ranks of the three
base learners were added and the lowest rank was assigned as the predicted
class. Extensive experiments on two public datasets, SIPaKMeD, and Mende-
ley LBC demonstrated the high performance of the proposed method in terms
of classification accuracy and sensitivity.

Diniz et al. [65] proposed a simple but effective ensemble method to clas-
sify cervical cells. After the selection of the three best-trained models from all
models, the final prediction was generated by the vote of these three models’
predictions. Using the public CRIC dataset, the proposed ensemble method
outperformed EfficientNet, MobileNet, InceptionNetV3, and XceptionNet,
showing its effectiveness in cervical cell classification.

Liu et al. [66] proposed a DL-based framework, CVM-Cervix for cervical
cell classification. CVM-Cervix first combined a CNN module with a visual
transformer module to extract local and global features from cervical cell
images (See Fig. 8). The Xception model was used as the CNN module to
generate 2048-dimensional local features and the tiny DeiT model was used
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as a vision transformer module to generate 192-dimensional global features.
Then a multilayer perceptron module fused the local and global features to
perform the final identification. CVM-Cervix was evaluated on the combina-
tion of CRIC and SIPaKMeD datasets, which included 11 categories in total.
The experimental results demonstrated the effectiveness of the proposed CVM-
Cervix to classify cervical Pap smear images. To meet the practical needs of
clinical work, they also introduced a lightweight post-processing to compress
the model by using a quantization technique to reduce the storage space of
each weight from 32 to 16 bits. The model parameter size was greatly reduced
while the classification accuracy remained almost unchanged.

Fig. 8 Detailed network of CVM-Cervix [66].

Kundu et al. [67] employed an evolutionary metaheuristic algorithm, named
Genetic Algorithm to select the features which were extracted from GoogLeNet
and ResNet-18 models. After feature selection, an SVM served as the classifier
to perform the final prediction. The proposed method achieved 99.07% accu-
racy and 98.31% F1-score on the Mendeley LBC dataset. For the SIPaKMeD
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dataset, the proposed method achieved 99.65% and 98.94% for 2-class and
5-class classification.

3.2.3 Hybrid feature fusion based identification

Although the DL-based model has achieved good results in the task of cervical
cell classification, there is still a lot of room for improvement. Hand-crafted
features, especially some features related to cell morphology, contain rich
domain knowledge in the medical field. Incorporating medical domain knowl-
edge with the deep learning network can promote the effective attention of
the network and further improve the network performance. Fig. 6(c) shows
a general example of combining DL-based features with manual cytological
characteristics.

Jia et al. [68] proposed a novel deep learning-based framework called strong
feature CNN-SVM. Gray-Level Co-occurrence Matrix (GLCM) and Gabor
were used to calculate the strong features. The strong features were fused with
abstract features extracted by CNN and then they were sent into the SVM
for final prediction. The experimental results on two independent datasets
indicated the effectiveness of the strong feature CNN-SVM model in cervical
cytology screening.

Dong et al. [69] proposed an innovative cell recognition algorithm that com-
bines hand-crafted features with automatically extracted features via Inception
v3 network. To address the low universality of artificial feature extraction while
maintaining the cervical cell domain knowledge, they extracted both deep fea-
tures and hand-crafted features and leveraged a fully connected layer to fuse
these features. Furthermore, this paper also utilized an image enhancement
algorithm to reduce noise generated during image acquisition and conversion
and improve the overall performance. Based on the public Herlev dataset, the
proposed method achieved an accuracy of 98.23% for 2-class classification and
an accuracy of 94.68% for 7-class classification.

Zhang et al. [70] proposed a novel multi-domain hybrid deep learning frame-
work (MDHDN) to classify cervical cells. It was the first time to apply cell
spectrum for cervical cell classification. MDHDN was a three-path cooperative
framework, in which two subpaths were used to extract deep features from
the time and frequency domains respectively using the VGG-19 network, and
the other subpath was used to extract and select hand-crafted features. The
final classification results were obtained through the correlation analysis of
the prediction of the three paths. On the Herlev dataset, MDHDN acquired
an accuracy of 98.7% for 2-class classification and 94.8% for 7-class classifica-
tion. The proposed framework also presented an excellent performance on the
public SIPaKMeD dataset and their collected in-house dataset BJTU.

In [71], Yaman et al. designed an exemplar pyramid deep feature extraction
model for the classification of cervical cells. They fed pap-smear images of dif-
ferent resolutions into the DarkNet19/DarkNet53 to get the pyramid features.
Then, a Neighborhood Component Analysis (NCA) algorithm was deployed to
select the most discriminative features and an SVM classifier was utilized to
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execute the final classification. SIPaKMeD and Mendeley LBC datasets were
used for method validation. Experimental results demonstrated that the pro-
posed method outperformed some mainstream classification models such as
ResNet, DenseNet, InceptionV3, Xception, etc.

Qin et al. [72] presented a multi-task feature fusion model which per-
formed binary classification and 5-class classification for cervical cells (See
Fig. 9). The whole model consisted of a manual features fitting branch and
a multi-task classification branch. They utilized CE-Net [78] to segment cer-
vical cells for further manual feature acquirement. Multiple discriminatively
hand-crafted features including morphological features, integral optical Dens,
and texture features were obtained and utilized in the manual features fitting
branch to supply prior knowledge for more precise classification. They also uti-
lized smoothing noisy label regularization and supervised contrastive learning
strategy for model training. On the SIPaKMeD dataset, the proposed method
achieved accuracy of 98.96% and 98.67% for 2-class and 5-class classification
that surpassed other SOTA methods. On the self-built dataset, the proposed
method also achieved the best performance.

Fig. 9 Multi-task feature fusion model for cervical cell classification [72].

3.3 Abnormal cell detection

Identifying thousands of cells in a specimen using a classification network alone
is time-consuming and inefficient. Thus, a fast search and localization of sus-
picious abnormal cervical cells are essential for cervical image analysis which
further affects the slide-level diagnosis in cervical cytology screening. Object
detection models from the computer vision field which simultaneously locate
the objects and predict the categories have been well studied and applied in
abnormal cervical cell detection.
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After the first CNN-based object detection framework R-CNN [79] was put
forward, a series of improved algorithms have been proposed which greatly pro-
mote the development of generic object detection [80, 81]. There are mainly two
types of generic object detection methods: two-stage object detection which
involves two stages of region proposal and object detection, and one-stage
object detection which directly predicts object bounding boxes and class labels
in a single pass [82]. The two-stage object detection is preferred in scenarios
where high detection accuracy is required, and the object instances are small
or densely packed. In the region proposal stage, the algorithm first generates a
set of candidate regions of interest in the image. These regions are proposed as
potential locations of objects, and the goal is to reduce the number of regions
to be processed in the second stage. This is usually achieved by using algo-
rithms like Selective Search [83], EdgeBoxes [84], or Region Proposal Networks
(RPN) [15]. In the object detection stage, the algorithm processes the can-
didate regions generated in the previous stage and assigns object class labels
and bounding boxes to each region. The object detection is usually performed
using deep learning models, such as the popular Faster R-CNN [15](see Fig.
10(a)), R-FCN [85], FPN [86] or Cascade R-CNN [87], which use convolutional
neural networks (CNNs) for feature extraction and classification. When con-
sidering the problem of detection speed, one-stage methods are better choices.
One-stage object detection algorithms are typically faster and more efficient
than two-stage approaches, as they don’t require an initial region proposal
step. However, they are generally less accurate, particularly for smaller objects
or objects with high levels of occlusion. Some popular examples of one-stage
object detection algorithms include YOLO [88] (see Fig. 10(b)), SSD (see Fig.
10(c)), RetinaNet [89] and RefineDet [90].

In clinical practice, it’s hard to build a high-quality dataset for cervical
cell detection since the annotation of cervical cells depends heavily on profes-
sional medical knowledge. Thus, some semi-supervised methods have also been
explored to detect abnormal cervical cells. In this section, we not only review
supervised learning based methods (Section 3.3.1 and Section 3.3.2) for cervi-
cal cell detection but survey the latest semi-supervised learning based methods
as well (Section 3.3.3).
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Fig. 10 Three commonly used detection models.
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Table 4: Summary of deep learning-based studies for abnormal cell detection. Accu-
racy (Acc), Precision (Pre), Recall (Rec), Specificity (Spec), Sensitivity (Sens),
Average precision (AP), Mean average precision (mAP).

Reference Method Dataset Classes Result
One-stage supervised learning

Xiang et al.
(2020) [92]

YOLOv3 + Inception V3+ Label
smoothing

Private (12,909 cervical images
with 58,995 annotations corre-
sponded to 10 categories.)

10-class mAP = 0.634

Nambu et al.
(2021) [93]

YOLOv4 + ResNeSt Private (919 cervical cell images) 6-class
Detection: AP = 0.542;
Classification: Acc = 0.905, Pre = 0.718, Rec = 0.708

Liang et al.
(2021) [94]

YOLOv3 + ILCB+ SSAM Private (12,909 cervical images
with 58,995 annotations corre-
sponded to 10 categories.)

10-class mAP = 0.6544

Jia et al.
(2022) [95]

Improved SSD Private 4-class mAP = 0.8153

Jia et al.
(2022) [96]

Improved YOLOv3 Private (2,000 cell images of 200
patients)

7-class mAP = 0.7887

Two-stage supervised learning

Sompawong et
al. (2019) [97]

Mask R-CNN Private (2,734 normal cells, 494
atypical cells, 148 low-grade
cells, and 84 high-grade cells.)

4-class mAP = 0.578, Acc = 0.917, Sens=0.917, Spec =
0.917

Zhang et al.
(2019) [98]

R-FCN (Net-22 as feature
extractor)

Private (62 cervical cell images
including 180 abnormal regions)

2-class AP=0.932

Li et al. (2021)
[99]

DGCA-RCNN Tian-chi competition dataset 2-class AP
.1 = 0.505, AP

.3 = 0.486, AP
.75 = 0.445

Yan et al.
(2021) [100]

HSDet Private (1,000 WSIs) 2-class mAP = 0.571

Liang et al.
(2021) [50]

Comparison detector (Faster R-
CNN + Prototype + Few-shot
learning)

ComparisonDetector (7,410 cer-
vical microscopical images with
48,587 object instance bounding
boxes in 11 categories.)

11-class
Small dataset: mAP = 0.263, Rec = 0.357;
Medium-sized dataset: mAP = 0.488, Rec = 0.640

Wang et al.
(2022) [101]

3cDe-Net (DC-ResNet as back-
bone + FPN )

Tian-chi competition dataset
and Herlev

2-class mAP = 0.504

Xu et al.
(2022) [102]

Faster R-CNN + FPN + Trans-
fer Learning + Multi-scale
Learning

ComparisonDetector 11-class mAP = 0.616, Rec = 0.877

Liang et al.
(2022) [103]

Faster R-CNN + FPN + RRAM
+ GRAM

Private (40,000 images with
194,880 annotated objects)

10-class mAP = 0.342, AP
.5 = 0.586, AP

.75 = 0.360
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Table 4: Continued
Reference Method Dataset Classes Result
Liu et al.
(2022) [104]

RepPoints + FPN + Grad-Libra
Loss

Private dataset 10-class mAP = 0.531

Chen et al.
(2022) [105]

TDCC-Net Private (6,935 cervical cytologic
images including 22,054 ground-
truth boxes in 5 categories:
ASCUS, LSIL, ASCH, HSIL and
SCC)

5-class mAP = 0.256, AP
.5 = 0.477, AP

.75 = 0.255

Semi-supervised learning

Zhang et al.
(2021) [106]

CLCR-STNet Private (6 categories: Normal,
ASCUS, LSIL, ASCH, HSIL and
SCC)

6-class
30% labeled: mAP = 0.3207;
50% labeled: mAP = 0.3532;
70% labeled: mAP = 0.3556

Du et al.
(2021) [107]

RetinaNet + MT + attention
mechanism

Private (9,000 images and 2,050
testing images)

2-class 20% labeled: mAP = 0.579, Pre= 0.28, Rec = 0.78

Chai et al.
(2022) [108]

Faster R-CNN + Proposal align-
ment + Prototype alignment

Private (240,860 images contain-
ing lesions of ASCUS, LSIL,
HSIL and AGC)

4-class
25% labeled: mAP=0.170;
50% labeled: mAP = 0.195;
75% labeled: mAP = 0.254
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3.3.1 One-stage supervised learning based detection

Xiang et al. [92] utilized CNN-based object detection to achieve the recog-
nition of cervical cells. They exploited YOLOv3 as the baseline model and
cascaded a further task-specifical classifier to improve the classification per-
formance of hard examples. Furthermore, to relieve the problem of unreliable
annotations, they smoothed the distribution of noisy labels. To evaluate the
proposed method, they built a dataset composed of 12,909 cervical images
with 58,995 ground truth boxes. All labels corresponded to 10 categories. The
proposed method eventually achieved an mAP of 63.4% and improved the
detection precision of hard samples.

Nambu et al. [93] proposed a two-step screening assistance system for
detecting atypical cervical cells. The first step was a quick detection based
on YOLOv4 and the second one was a further classification of the localized
cells using a ResNeSt model. Experimental results showed that the developed
system enabled highly sensitive with fast detection speed.

To relieve the problem that general CNN-based detectors might yield too
many false positive predictions, Liang et al. [94] proposed a global context-
aware framework based on YOLOv3 using an image-level classification branch
(ILCB) and a weighted loss to filter false positive predictions, as shown in
Fig. 11. Besides, they presented a soft scale anchor matching (SSAM) method
to assign objects to anchors more softly. This paper carried out substantial
experiments to evaluate the proposed method and the experimental results
validated the effectiveness of the proposed method, which achieved an mAP of
65.44% and gained a 5.7% increase in mAP together with an 18.5% increase
in specificity.

Fig. 11 Global context-aware framework for cervical cell detection [94].
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Jia et al. studied one-stage detection method for cervical cancer cells care-
fully [95, 96]. They improved SSD model by fusing feature maps between
different layers in the first work. For the second work, they improved YOLOv3
model by using dense blocks and S3Pool algorithm. To further enhance the per-
formance for cervical cell detection, they did anchor cluster analysis based on
k-means++ to select proper anchor size for cervical cells and adjusted the loss
function for better training. Both of these two works achieved good detection
accuracy for abnormal cervical cells.

3.3.2 Two-stage supervised learning based detection

Sompawong et al. [97] applied Mask Regional Convolutional Neural Network
(Mask R-CNN) to detect cervical cancer. In detail, they leveraged ResNet-
50 which was pre-trained from ImageNet as the backbone and used a feature
pyramid network (FPN) as the detection neck to better select and fuse features.
Based on their collected liquid-based dataset, the proposed method obtained
an mAP of 57.8%, accuracy of 91.7%, sensitivity of 91.7%, and specificity of
91.7%.

Zhang et al. [98] utilized a region-based, fully convolutional network (R-
FCN) for abnormal region detection in cervical cytology screening. Inspired
by ResNet, they designed a new feature extractor called Net-22, which con-
sisted of 22 convolutional layers including the structure of the residual block.
Experimental results showed that the R-FCN gained an average precision of
93.2%.

Li et al. [99] proposed a novel detection model, deformable and global con-
text aware Faster R-CNN (DGCA-RCNN), to detect abnormal cervical cells
in cytology images. DGCA-RCNN improved the original FPN-based Faster
R-CNN by introducing deformable convolutional layers and a global context
aware (GCA) module. The proposed DGCA-RCNN was evaluated on the pub-
lic Tian-chi competition dataset and achieved the best performance compared
with other SOTA detectors.

In [100], Yan et al. proposed a novel cervical cell detector, HSDet to make
better use of negative samples. They adopted HRNet [109] as a feature extrac-
tor to cooperate with the cascade R-CNN [110]. Besides, they proposed a pair
sampling method to generate the sample pair images and a hybrid sampling
strategy to balance hard samples with simple samples. Combining the above
methods with HSDet, false detections were effectively decreased. On the in-
house dataset consisting of 1000 WSIs, HSDet achieved an mAP of 57.1%,
surpassing the Faster R-CNN and Cascade R-CNN models.

Liang et al. [50] proposed an end-to-end cervical cell/clumps detection
method called Comparison detector. The Comparison detector utilized Faster
R-CNN with FPN as the basic network and adapted the classifier to com-
pare each proposal with the prototype representations of each category. They
also investigated the generation method of prototype representations for the
background category and considered different designs of the head model. For
experiments, the Comparison detector obtained an mAP of 48.8% on its
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collected dataset. It’s worth noting that on the constructed small dataset,
Comparison detector improved by about 20% accuracy than the baseline
model.

Wang et al. [101] presented a cervical cancer cell detection algorithm called
3cDe-Net, to address the issue of cell overlap with blurred cytoplasmic bound-
aries in clinical practice. 3cDe-Net consisted of an improved backbone network
named DC-ResNet by introducing dilated convolution and group convolution
and a multiscale feature fusion based detection head. Based on the Faster
R-CNN algorithm, this paper also generated adaptive anchors and defined
a new balanced loss function. The proposed method was evaluated on two
publicly available datasets, the Tian-chi competition dataset (Data-T) and
the Herlev dataset. Extensive experiments demonstrated the effectiveness of
a novel backbone network, DC-ResNet. Besides, the proposed detection algo-
rithm 3cDe-Net achieved an mAP of 50.4%, which significantly improved the
performance of the original Faster R-CNN for cervical cancer cell detection.

Xu et al. [102] studied a transfer learning-based method for the detection
of cervical cells or clumps. Specifically, Faster R-CNN together with FPN was
pre-trained on the COCO dataset and then fine-tuned on cervical cytological
images for abnormal cell detection. The authors also utilized a multi-scale
training strategy that randomly selected input scales to further improve the
performance. The proposed method ultimately obtained an mAP of 0.616 and
an average recall of 0.877.

To mimic cytopathologists’ diagnostic behaviors that surrounding cells
should be referred to identify whether a cervical cell is abnormal, Liang et al.
[103] explored contextual relationships in cervical cytological images towards
better abnormal cell detection. Based on Faster R-CNN equipped with FPN,
they presented RoI-relationship Attention Module (RRAM) and Global RoI
Attention Module (GRAM) to respectively capture the cross-cell contextual
relationship and global context for context-rich features. Compared with var-
ious SOTA detection networks, the proposed method achieved overwhelming
success with an mAP of 34.2%.

Liu et al. [104] proposed a Grad-Libra Loss to address the long-tailed data
distribution problem in cervical cytology screening that normal or inflamma-
tory cells were much more than cancerous or precancerous cells. Grad-Libra
Loss considered the “hardness” of each sample and helped the detection model
focus on hard samples in all categories. Various mainstream detectors were
utilized to verify the performance of Grad-Libra Loss against the conventional
cross-entropy loss. On the collected long-tailed CCA-LT dataset, Grad-Libra
Loss presented excellent detection performance superior to other loss functions.

Chen et al. [105] proposed a novel task decomposing and cell comparing
network, TDCC-Net for cervical lesion cell detection (Fig. 12). To cope with
the large appearance variances between single-cell and multi-cell lesion regions,
they decomposed the original detection task into two subtasks detecting single-
cell and multi-cell regions, respectively. In addition, to better obtain lesion
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features and conform with clinical practice, they designed a dynamic compar-
ing module to perform normal-and-abnormal cells comparison adaptively and
present an instance contrastive loss to perform abnormal-and-abnormal cells
comparison. Extensive experiments on a large cervical cytology dataset demon-
strated that TDCC-Net achieved state-of-the-art performance in cervical lesion
detection.

Fig. 12 The architecture of TDCC-Net [105].

3.3.3 Semi-supervised learning based detection

In general, cervical cell detection has been done using supervised learning,
where a model is trained on a set of labeled images to learn the patterns that
indicate the presence of abnormal cells. However, obtaining a large number of
labeled images can be difficult and time-consuming, especially in areas where
access to healthcare is limited. Semi-supervised learning based methods for
cervical cell detection have been proposed in recent years to alleviate the above
problem, which combines the use of labeled and unlabeled data to improve
the accuracy of the model [111]. The model uses the labeled data to learn the
patterns that indicate the presence of abnormal cells and then applies this
knowledge to the unlabeled data to identify additional cases of abnormality.
Semi-supervised learning for cervical cell detection has the potential to improve
the accuracy of automated systems for detecting abnormal cells, especially in
areas where labeled data is scarce.

Zhang et al. [106] proposed a novel semi-supervised cervical cell detec-
tion method, called Classification and Localization Consistency Regularized
Student-Teacher Network (CLCR-STNet), as shown in Fig. 13. Since it was
difficult to acquire large amounts of labeled data in the field of medical
image analysis, this paper introduced a novel semi-supervised method that
utilized both labeled and unlabeled data with online pseudo label mining.
Faster R-CNN was employed as the backbone network and Jensen-Shannon
(JS) divergence was used to compute the consistency loss between student
and teacher models. The experimental results demonstrated that the pro-
posed CLCR-STNet effectively exerted the potential of unlabeled data and
outperformed the supervised methods counterpart.
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Fig. 13 Overview of semi-supervised model, CLCR-STNet, for cervical cell detection [106].

In [107], Du et al. devised a semi-supervised detection network to reduce
the false positive rate in cervical cytology screening. To be specific, a Reti-
naNet was first employed to find the suspicious abnormalities and then a false
positive suppression network based on Mean Teacher (MT) model was utilized
to execute the further fine-grained classification and decrease the false positive
samples. MT model utilized both labeled and unlabeled data for training via
the enforced consistency between the teacher network and student network.
Moreover, the authors used the generated mask as an attention map to further
improve the MT model. Using 20% labeled data and 80% unlabeled data for
training, the proposed method achieved 88.6% accuracy which was comparable
with the fully supervised method. Besides, the proposed method successfully
reduced the false positive rate after using false positive suppressing.

Chai et al. [108] delved into the semi-supervised method for cervical can-
cer cell detection. To learn more discriminative features, they proposed a deep
semi-supervised metric learning network that performed a dual alignment of
semantic features on both the proposal level and the prototype levels. Con-
cretely, the pseudo labels were generated for the unlabeled data to align the
proposal features with the class proxy derived from the labeled data. Besides,
to reduce the influence of possibly noisy pseudo labels, they further aligned the
labeled and unlabeled prototypes. They also utilized a memory bank to store
the labeled prototypes. The proposed method achieved an average mAP of
27.0% and surpassed another two state-of-the-art semi-supervised object detec-
tion methods, the consistency-based semi-supervised detection (CSD) model
and Mean Teacher model. Extensive experiments showed that the proposed
method could improve the fully-supervised baseline through the use of metric
learning.
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3.4 Cell region segmentation

Cervical cell segmentation is a process to identify and separate individual cer-
vical cells from a digital image in cervical cytology screening. Even though the
DL-based classification method has been widely applied to cervical cell identifi-
cation, which does not need to accurately segment the contours of cervical cells,
the segmentation of cervical cell regions is still the fundamental link to carry-
ing out quantitative cell analysis (shape, size, texture, etc.). Besides, a precise
segmentation of cell regions can provide detailed cytological features of clinical
significance which can further support fine-grained cervical cell identification.

Cervical cell segmentation can be expressed as the problem of classifying
pixels with semantic labels (semantic segmentation), especical the differentia-
tion of the nucleus and cytoplasm, or the division of individual cells (instance
segmentation). Traditional segmentation methods are generally based on
thresholding, edge detection, region growing, k-means, clustering, or water-
shed methods [112]. With the development of deep learning and CNN, a new
generation of deep learning-based segmentation models have been yielded with
remarkable performance improvements, and gradually present their potential
for medical image segmentation [113]. Fully Convolutional Network (FCN) is a
milestone in DL-based segmentation models which firstly introduce CNN into
the task of semantic segmentation [114]. Inspired by FCNs, U-Net [115] has
been proposed for biomedical image segmentation and received a good repu-
tation and promotion. In addition to the above models, SegNet [116], Mask
R-CNN [117], DeepLab [118], and a series of improved methods have been
developed to further enhance the performance of image segmentation. Fig. 14
presents three commonly used models for cervical cell segmentation. In this
section, the reviewed works encompass segmentation of both cell components
(See Section 3.4.1) and overlapping cells (See Section 3.4.2), with the most
relevant DL-based approaches being summarized in Table 5.
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Fig. 14 Three commonly used commonly used models for cervical cell segmentation.
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Table 5: Summary of deep learning-based studies for cervical cell segmentation.
Nucleus (Nuc), Cytoplasm (Cyt), Accuracy (Acc), Precision (Pre), Recall (Rec),
Specificity (Spec), Sensitivity (Sens), False negative rate (FNR), True positive rate
(TPR), Zijdenbos similarity index (ZSI), Dice similarity coefficient (DSC), Average
Jaccard Index (AJI), Mean intersection over union (mIoU).

Reference Method Dataset Segmented region Result
Segmentation of nucleus and cytoplasm

Zhang et al.
(2017) [119]

FCN + graph-based approach Herlev dataset Nucleus ZSI = 0.92

Gautam et al.
(2018) [120]

VGGNet-like network + selective
pre-processing

Herlev dataset Nucleus ZSI = 0.90, Pre = 0.89, Rec = 0.91

Liu et al.
(2018) [121]

Mask R-CNN + LFCCRF Herlev dataset Nucleus ZSI = 0.95, Pre = 0.96, Rec = 0.96

Zhang et al.
(2019) [47]

BTTFA (Binary-tree-like net-
work topology + Two-path
fusion attention)

ISBI 2014 and a new released
dataset

Nucleus
ISBI 2014 dataset: DS C= 0.931;
Released dataset: DSC = 0.91

Zhao et al.
(2019) [122]

D-MEM (Unet + Dense block +
Deformable convolution + Multi-
path ensemble model)

Herlev dataset Nucleus ZSI = 0.933, Pre = 0.946, Rec = 0.984

Zhao et al.
(2019) [123]

PGU-net+ (Unet + Residual
module + Progressive growing
method)

Herlev dataset Nucleus ZSI = 0.925, Pre = 0.901, Rec = 0.968

Hussain et al.
(2020) [124]

Shape context FCN Combination of public Herlev,
private LBC dataset (1670 raw
images) and private conventional
dataset (1320 raw images)

Nucleus ZSI = 0.97

Zhao et al.
(2022) [125]

LFANet (UNet + LFA module) Herlev dataset Nucleus and cytoplasm Cyt DSC = 0.9454, AJI = 0.8979, Pre = 0.9453,
and Rec = 0.9762; Nuc DSC = 0.9743, AJI =
0.9401, Pre = 0.9592, and Rec = 0.9748

Luo et al.
(2022) [126]

DSSNet (Dual-Supervised Sam-
pling Network)

Mendeley-LBC, ISBI2014,
and private TJ sparse (3,600
images), TJ dense(1,400images)

Nucleus
TJ sparse: mIoU = 0.7923; TJ dense: mIoU = 0.6927;
Mendeley-LBC: mIoU = 0.7458; ISBI 2014: mIoU = 0.8445

Segmentation of overlapping cells

Song et al.
(2016) [127]

Multi-scale CNN and deforma-
tion model

ISBI 2015 and private dataset
(21 cervical cytology images and
each image has 30-80 H&E
stained cervical cells distributed
in 7 clumps )

Overlapping cell
ISBI 2015 dataset: Cyt DSC=0.91, Nuc DSC = 0.93;
Private SZU dataset: Cyt DSC = 0.90, Nuc DSC = 0.92
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Table 5: Continued

Reference Method Dataset Segmented region Result
Tareef et al.
(2017) [128]

Super pixel-wise CNN +
dynamic shape modeling

ISBI 2014 Overlapping cell Cyt ZSI = 0.90, Nuc ZSI = 0.94

Xu et al.
(2018) [129]

Light CNN model + SLIC +
multi-cell labeling

ISBI 2014, ISBI 2015 and pri-
vate dataset (14 scanned cervical
cytology images )

Overlapping cell
ISBI 2014 dataset: DSC = 0.91, FNRo = 0.13, TPRp =
ISBI 2015 dataset: DSC = 0.90, FNRo = 0.21, TPRp =
Private dataset: DSC = 0.90, FNRo = 0.24, TPRp = 0.90

Wan et al.
(2019) [130]

TernausNet model + double-
window based cell localization +
DeepLab V2 model + CRFs +
DRLSE

ISBI 2014, ISBI 2015 and pri-
vate dataset (14 cervical cytol-
ogy images and each image has
2−20 cells)

Overlapping cell
ISBI 2014 dataset: DSC = 0.93;
ISBI 2015 dataset: DSC = 0.92;
Private dataset: DSC = 0.92

Zhou et al.
(2019) [131]

IRNet (Mask R-CNN + DRM +
IRM)

Private dataset (413 images with
4,439 cytoplasm and 4,789 nuclei
annotated)

Overlapping cell Cyt AJI = 0.7185, F1 = 0.7497; Nuc AJI =
0.5496, F1 = 0.7554

Zhang et al.
(2020) [132]

Attention U-Net + graph-based
Random Walk

ISBI 2014 Overlapping cell
Cyt DSC = 0.917, TP = 0.937, FP = 0.003;
Nuc DSC = 0.93, Pre = 0.94, Rec = 0.95

Zhou et al.
(2020) [133]

MMT-PSM (Mean Teacher
framework + Perturbation-
Sensitive Samples Distillation
+ Mask-Guided Feature
distillation)

Private dataset (413 labeled and
4,371 unlabeled images)

Overlapping cell
100% labeled: AJI = 0.6643, mAP = 0.4052;
80% labeled: AJI = 0.6692, mAP = 0.4013;
40% labeled: AJI = 0.6449, mAP = 0.3726.

Mahyari et al.
(2022) [134]

Residual CNN model + multi-
layer random walker image seg-
mentation + Hungarian algo-
rithm

ISBI 2014 and extended ISBI
2014 dataset (100,000 over-
lapped cervical cell images are
newly created)

Overlapping cell
ISBI 2014 dataset: DSC = 0.89, FNR = 0.10,TPR = 0.9
Extended ISBI 2014 dataset: DSC = 0.97, FNR = 0.03,
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3.4.1 Segmentation of nucleus and cytoplasm

According to TBS [37], the morphological features, especially variations in the
nucleus, are decisive factors supporting the precancerous lesions. There are
a number of important specific cytological features that need a precise seg-
mentation of nucleus and cytoplasm, such as nucleus area, cytoplasm area,
nucleus/cytoplasm ratio, nucleus roundness, cytoplasm roundness, distribu-
tion of nucleus, etc. Thus, the accuracy and reliability of the segmentation
algorithm can greatly affect the accuracy of subsequent cell feature extraction.
Besides, the segmentation of the nucleus and cytoplasm plays a crucial role in
the quantitative analysis of abnormal cells and the accurate diagnosis of cer-
vical cancer. Numerous DL-based studies for the segmentation of cervical cell
components have been investigated below.

Zhang et al. [119] combined fully convolutional networks (FCN) and a
graph-based approach for the automatic segmentation of cervical nuclei. The
overall framework included two steps. FCN was first employed to coarsely split
the background, cytoplasm, and nuclei in cervical cell images. Later, the graph-
based approach was applied and incorporated with the FCN-learned nucleus
probability map to yield fine-grained cell nucleus segmentation results. The
proposed method finally obtained a ZSI of 0.92 on the Herlev dataset, superior
to several traditional machine learning-based segmentation methods.

Gautam et al. [120] put forward a novel approach for nuclei segmenta-
tion in Pap smear images based on deep CNN and selective pre-processing.
They emphasize the importance of selective pre-processing since there were
significant differences in the image characteristics (e.g. object sizes, chromatin
pattern variability) for normal and abnormal cells. Using a VGGNet-like net-
work, the proposed approach excellently accomplished nucleus segmentation
on the Herlev dataset with a ZSI of 0.90.

Liu et al. [121] provided pixel-level prior information to train a Mask
R-CNN for cervical nucleus segmentation. ResNet together with the feature
pyramid network (FPN) was utilized as the backbone of the Mask R-CNN
to extract multi-scale features of the nuclei. To refine the segmentation result
from Mask R-CNN’s output, the authors leveraged a local fully connected
conditional random field (LFCCRF). The experimental results on the Her-
lev dataset showed that the proposed method outperformed other prevailing
methods with a precision of 0.96 and an average ZSI of 0.95.

Zhang et al. [47] proposed a binary tree-like network with two-path fusion
attention feature (BTTFA) for segmenting cervical cell nuclei. Due to the lack
of real-world data for the cervical nucleus segmentation task, at the begin-
ning of the work, they constructed a real-world clinical dataset including
104 LBC-based images with pixel-wise labels manually annotated by profes-
sional pathologists. BTTFA model selected ResNeXt as the backbone and
utilized a binary tree-like network together with a two-path fusion attention
to incorporate multi-level features which compensated for the information loss
caused by the pooling layers. The proposed BTTFA was evaluated on the
collected real-world dataset and ISBI 2014 dataset. BTTFA obtained a DSC
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score of 0.91 on the released dataset, and a DSC score of 0.931 on the ISBI
2014 dataset which outperformed three classical segmentation networks, U-
Net, FCN, and DeepLabv3+. The experimental results demonstrated BTTFA
provided a feasible method for cervical cell nucleus segmentation.

Zhao et al. [122] suggested a unique method to segment cervical nuclei using
Deformable Multipath Ensemble Model (D-MEM). To build the D-MEM, U-
Net was adopted as the basic network and dense blocks were exploited to
transfer feature information more effectively. To capture the irregular shape of
abnormal cervical nuclei and make the network sensitive to subtle changes in
objects, deformable convolutions were employed. Moreover, this paper created
the multi-path ensemble model by training several networks simultaneously
and integrating all paths’ predictions for final results.

In [123], a progressive growing U-net (PGU-net+) model was presented to
segment nuclei of cervical cells. Residual modules ware inserted into different
stages of the U-net to enhance the extraction ability of multi-scale features.
Furthermore, the authors adopted the progressive growing method as the
network training strategy that could significantly reduce computational con-
sumption and effectively improve the segmentation performance. PGU-net+
gained a ZSI of 0.925 on the Herlev dataset and outperformed the original
U-net.

Hussain et al. [124] proposed a shape context fully convolutional neural
network (FCN) to extract cervical nuclei which accomplished instance seg-
mentation and classification on Pap smear images simultaneously. Based on
standard Unet architecture, they added residual blocks, densely connected
blocks, and a bottleneck layer to build the final segmentation network. Besides,
a stacked auto-encoder based shape representation model (SRM) was intro-
duced to enhance the strength and robustness of the proposed FCN. To
evaluate the performance of the proposed method, extensive experiments were
carried out on the combination of three datasets (two clinical datasets and one
public dataset, Herlev). The proposed method realized an average Zijdenbos
similarity index (ZSI) of 0.97 and surpassed another two deep learning-based
models Unet and Mask R-CNN.

To meet the needs of clinical application in practice, Zhao et al. [125]
proposed a lightweight feature attention network (LFANet) for abnormal cer-
vical cell segmentation. Two plug-and-play modules, the lightweight feature
extraction (LFE) module, and the feature layer attention (FLA) module were
introduced to improve the feature extraction ability and reduce the compu-
tational consumption. The proposed LFANet achieved the best segmentation
results on the Herlev dataset with a low computational complexity showing
that LFANet was effective for splitting the nucleus and cytoplasm regions
of cervical cells. Besides, the authors also carried out comparative experi-
ments on three other medical image segmentation datasets to further verify
the robustness of LFANet.

Luo et al. [126] proposed a dual-supervised sampling network (DSSNet) to
accelerate the speed of cervical nucleus segmentation, as illustrated in Fig. 15.
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Via the supervised-down sampling module using the compressed images rather
than raw images, the amount of the convolution computation was dramatically
reduced. Besides, a boundary detection network was exploited to supervise the
up-sampling process of the decoding layer to ensure segmentation accuracy.
The proposed DSSNet achieved the same level of accuracy as UNet while
speeding up for 5 times.

Fig. 15 Detailed structure of DSSNet [126].

3.4.2 Segmentation of overlapping cells

Segmentation of overlapping cervical cells refers to the process of separating
individual cells that are overlapped in a cervical cytological image. Early sys-
tems focus on segmenting the nucleus and cytoplasm of isolated cells, which
is not entirely practical. In clinical practice, the overlap of cervical cells is a
very common phenomenon. The large degree of overlap and poor cytoplasmic
boundary contrast increase the complexity of the cell segmentation task, which
may lead to incorrect diagnoses. In recent years, with the successful organi-
zation of the Overlapping Cervical Cytology Image Segmentation Challenge
in ISBI 2014 and 2015, an increasing number of works pay attention to this
topic. To address this issue, researchers tend to adopt multi-stage approaches
in which a coarse segmentation of cell elements is performed first and then the
extraction and refinement of overlapping regions followed.

To segment individual cells from overlapping clumps in Pap smear images,
Song et al. [127] proposed a novel framework based on a multi-scale CNN and
deformation model. The overall segmentation framework consisted of the fol-
lowing three parts: cell component segmentation part to classify the region of
nuclei, cytoplasm or background; multiple cells labeling part for splitting of the
detected overlapping cytoplasm; and cell boundary refinement and inference
part to achieve accurate segmentation results. They evaluated the proposed
method with two different datasets, ISBI 2015 Challenge Dataset and Shen-
zhen University (SZU) Dataset. The experimental results demonstrated that
the proposed method outperformed state-of-the-art methods and achieved the
highest dice coefficient (DSC) value on both two datasets.
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Tareef et al. [128] proposed a variational segmentation framework for cervi-
cal cells using super pixel-wise CNN and dynamic shape modeling. The cellular
components were first classified into background, nuclei, and cytoplasm based
on a CNN model. Then, individual cytoplasm was separated from overlapping
cellular mass using Voronoi segmentation and learned shape prior-based evolu-
tion. On both versions of the ISBI 2014 datasets (preliminary version and final
challenge version), the proposed framework achieved the highest segmentation
performance.

Xu et al. [129] presented a novel method for automated segmentation of
overlapping cervical cells using a light CNN model and fast multi-cell labeling.
They first leveraged a light CNN model which is composed of a convolutional
layer a pooling layer and a fully connected layer, to discriminate nuclei part as
accurate initialization. Then, for the segmentation of overlapping cytoplasm,
they utilized the simple linear iterative clustering (SLIC) method to generate
a superpixel map and devised a fast multi-cell labeling method to roughly split
clumped cytoplasm. Finally, the cell boundary was refined by an improved
distance regularized level set method. The proposed method was validated on
three datasets including ISBI 2014 dataset, ISBI 2015 dataset and an in-house
dataset. The experimental results showed the effectiveness of the proposed
method for the segmentation of overlapping cervical cells.

Wan et al. [130] presented a unique DCNN-based framework to automati-
cally segment overlapping cervical cells. The workflow of the proposed method
included cell detection, cytoplasm segmentation, and boundary refinement, as
shown in Fig. 16. TernausNet model and the double-window based cell localiza-
tion method were first utilized to extract the individual cells for cell detection.
Then, a modified DeepLab V2 model was constructed to segment the cyto-
plasm. To refine the cell outer contours, fully connected conditional random
fields (CRFs) and distance regularized level set evolution (DRLSE) served as
post-processing methods. Three datasets including one in-house dataset and
public datasets, ISBI 2014 and ISBI 2015, were served to evaluate the pro-
posed method. The developed DCNN method achieved DSCs of 0.93, 0.92,
and 0.92 on ISBI 2014, ISBI 2015, and the in-house dataset, respectively. The
high-performance segmentation results showed the effectiveness and potential
of the proposed method to be applied for automatic cervical cancer diagnosis.

Zhou et al. [131] proposed Instance Relation Network (IRNet) to seg-
ment overlapping cervical cells which explored instance relation interaction,
as illustrated in Fig. 17. Based on Mask R-CNN, IRNet introduced Instance
Relation Module (IRM) and Duplicate Removal Module (DRM) to improve
the network’s ability for cell-instance segmentation. IRM could make good use
of contextual information and enhance semantic consistency. DRM benefited
candidates selection which calibrated the misalignment between classifica-
tion score and localization accuracy. A large cervical Pap smear (CPS)
dataset was built to validate the performance of IRNet and the experimental
results demonstrated the effectiveness of IRNet for overlapping cervical cell
segmentation.
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Fig. 16 The workflow of accurate overlapping cell segmentation in [130].

Fig. 17 Overview of IRNet [131].

Zhang et al. [132] proposed a polar coordinate sampling-based approach
for overlapping cervical cell segmentation using Attention U-Net and graph-
based Random Walk (RW). Attention U-Net was utilized to separate nuclei
from the cellular clumps and graph-based RW was exploited to extract the
cytoplasm. On ISBI 2014 dataset, the proposed approach gained DSC scores of
0.93 and 0.917 for the nucleus and cytoplasm, respectively. The experimental
results demonstrated that the proposed approach was effective and reliable for
segmenting overlapping cervical cells.

To address the problem of limited data for cervical cell segmentation since
the instance segmentation task required voluminous pixel-level annotations,
Zhou et al. [133] proposed a novel semi-supervised method, Mask-guided Mean
Teacher framework with Perturbation-sensitive Sample Mining (MMT-PSM),
which utilized both labeled and unlabeled data for cervical cell segmenta-
tion. MMT-PSM consisted of a teacher network and a student network using
the same backbone. The teacher’s self-ensemble predictions from augmented
samples were used to generate reliable pseudo-labels to supervise the stu-
dent network. Moreover, mask-guided feature distillation was leveraged to
reduce the interference of the background noise. Experiments demonstrated
the proposed MMT-PSM outperformed other semi-supervised methods and
significantly improved the segmentation accuracy.

Mahyari et al. [134] designed a three-phase scheme for the segmentation
of overlapping cells. In the first phase, a self-created residual CNN model was
used to generate probabilistic image maps for cell components. In the second
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phase, high-probability nuclei nodes were used as seeds for a multi-layer ran-
dom walker image segmentation for nuclei-seeded region growing. In addition,
a cytoplasm approximation could be acquired by thresholding the cytoplasm
probabilistic output maps. In the last phase, the Hungarian algorithm was
applied to refine the individual pixel locations for the final cell segmentation.
On the extended ISBI 2014 dataset, the proposed three-phase method achieved
the highest segmentation performance with a DSC of 0.97 over nine different
segmentation techniques.

3.5 Whole slide image analysis

Automated WSI analysis has been widely studied in digital histopathological
images for cancer diagnosis since the histopathological examination is the most
reliable diagnostic basis and the gold standard for clinical diagnosis of cancer
[135, 136]. In general, automated WSI analysis is realized by multiple instance
learning (MIL) [137], in which each tissue specimen is represented as a bag of
instances and each instance is a small image patch extracted from the WSI.
MIL belongs to weakly-supervised learning and there is only the slide-level
label for all patches in the same WSI. The core of MIL algorithms is to associate
the slide-level label (e.g., normal specimen or cancerous specimen) with patch-
level features. MIL-based WSI analysis has the potential to improve diagnostic
accuracy and has been well studied in histopathology [138, 139].

However, it is still arduous work to perform WSI analysis in cytopathology
since the lesion area is continuous in histopathological WSI, and even the
presence of a single isolated diseased cell may lead to an abnormal sample in
cytopathological WSI. Thus, it is important to leverage an object detection
algorithm to search abnormal cells and collect cell-level features. Both cell-level
features and patch-level features are crucial for the final slide-level prediction,
as shown in Fig. 18. It was not until 2021 that automated cervical cytology
screening entered the thorough WIS analysis stage with the presence of the
first DL-based WSI analysis methods in cervical cytology screening [140]. In
the past two years, several DL-based WSI analysis method for cervical cytology
successively emerged.
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Fig. 18 The process of cervical WSI analysis.
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Table 6: Summary of deep learning-based studies for cervical WSI analysis. Accu-
racy (Acc), Precision (Pre), Recall (Rec), Specificity (Spec), Sensitivity (Sens), Area
Under Curve (AUC), F1-score (F1).

Reference Method Dataset Result
Chen et al.
(2021) [141]

Unit-level CNN (VGG16,
ResNet50) + attention module

Private dataset (264 positive
slides and 108 negative slides in
total)

AUC = 0.851

Lin et al.
(2021) [140]

DP-Net + SGL + RRS Private dataset (19,303 WSIs in
6 classes from 4 centers)

Sens = 0.907, Spec = 0.80, AUC = 0.925.

Zhou et al.
(2021) [142]

Hierarchical pathology screening
(RetinaNet + Patch Encoder
Module + SVM)

Private dataset (237 WSIs for
traing and 361 WSIs for testing)

Acc = 0.905, F1 = 0.867, Sens = 0.891

Zhu et al.
(2021) [143]

AIATBS (YOLOv3 + Xception
+ Patch-based models + U-Net
+ XGBoost + logical decision
tree)

Private dataset (81,727 WSIs
retrospective samples for train-
ing and 34,403 prospective clin-
ical samples for clinical valida-
tion)

Sens = 0.9474

Cao et al.
(2021) [144]

AttFPN + ResNet50 Private dataset (325 cases) AUC =0 .934, Sens = 0.913, Spec = 0.906, and
Acc = 0.909.

Cheng et al.
(2021) [145]

LR and HR model (ResNet50) +
RNN

Private dataset (3,545 WSIs with
79,911 annotations for training
and validation, 1,170 WSIs for
testing)

Spec = 0.935, Sens = 0.951

Wei et al.
(2021) [146]

YOLCO + Transformer Private dataset (2,019 WSIs) AUC = 0.872

Pirovano et al.
(2021) [147]

Tile classification and local-
izaiton + Slide level aggregation

Private dataset (40 slides) Acc = 0.775, Spec = 0.83

Kanavati et al.
(2022) [148]

EfficientNet + RNN Private dataset (1,503 WSIs for
training, 150 for validation, and
1,468 WSIs of different settings
for testing)

Full agreement set: AUC = 0.960, Acc = 0.907,
Sens = 0.850, Spec = 0.911;
Equal Balance-rev set: AUC = 0.915, Acc = 0.885,
Sens = 0.839, Spec = 0.920;
Clinical Balance-rev set: AUC = 0.890, Acc = 0.903,
Sens = 0.886, Spec = 0.904

Geng et al.
(2022) [149]

FCOS + ResNet34 Private dataset (2,625 WSIs)
2-category task: Sens = 0.9784,
Spec=0.8550, Pre = 82.55;
5-category task: Acc = 79.74

Zhang et al.
(2022) [150]

RetinaNet + SE-ResNeXt-50
+ graph attention network +
supervised contrastive learning

Private dataset (3,485 negative
WSIs and 3,462 positive WSIs)

Acc = 0.8579, AUC = 0.9252, Rec = 0.8263, Pre
= 0.8815, F1 = 0.8528
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In [141], an automatic WSI diagnosis was proposed using unit stochastic
selection and attention fusion. Chen et al. first constructed a unit-level CNN
based on VGG16b and ResNet50 to extract features of each unit (patch or
cell). Next, they leveraged a UOI selection method to select the representa-
tive features of the WSI and employed an attention module to fuse all units’
features for WSI diagnosis. The authors evaluated the proposed framework on
three different types of pathological images. For the diagnosis of cervical cyto-
logical WSIs, the proposed method achieved good performance with a mean
AUC of 0.851.

Lin et al. [140] presented the first work for the specific analysis of cervical
whole slide images. Firstly, an efficient deep learning-based dual-path network
(DP-Net) was designed for lesion detection. Inspired by medical domain knowl-
edge that different precancerous cervical cells belonged to different groups
(epidermal group and basal group), a synergistic grouping loss (SGL) was
proposed for fine-grained cell classification. Then, a slide-level classifier called
rule-based risk stratification (RRS) was introduced to perform the final WSI
diagnosis, which simulated the clinical diagnostic criteria of cytopathologists.
To evaluate the proposed method, a large number of samples were collected
from multiple medical centers to construct the cervical WSI dataset (19,303
WSIs). The proposed method achieved a high sensitivity of 0.907 and a
specificity of 0.80, showing strong robustness for practical cervical cytology
screening.

Zhou et al. [142] proposed a hierarchical framework for case-level automatic
diagnosis of cervical smears, which consisted of three stages. In the first stage, a
large number of cytological images were extracted from the scanned WSI, and
cell-level detection was performed for each image using RetinaNet. In the sec-
ond stage, top-k regions with the highest confidence were selected and fed into
the subsequent Patch Encoder Module (PEM) for image-level classification. In
the last stage, the confidence scores of all images in each case were collected
and used as the feature vectors to train an SVM classifier for final case-level
diagnosis. Experiments showed that the proposed framework presented better
accuracy than applying object detection and classification network directly.

Zhu et al. [143] developed an AI-aided diagnostic system for automated
cervical cytology screening, called AIATBS, which could help cytologists inter-
pret in strict accordance with TBS standards. This system integrated five
AI models including YOLOv3 for object detection, Xception for further fine-
grained classification, DenseNet-50 for patch-based classification, U-Net for
nucleus segmentation, and XGBoost model together with the logical decision
tree for final slide-level diagnostic decisions. This paper also presented a digi-
tal pathology image quality control (DPIQC) system to ensure the quality of
digitized images. AIATBS system was validated at 11 medical centers, and the
outstanding performance demonstrated its adoption applicability and robust-
ness for routine assistive diagnostic screening which could reduce the workload
of cytologists, and improve the accuracy of cervical cancer screening.
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Fig. 19 First WSI analysis framework in cervical cytology screening, DP-Net with syner-
gistic grouping loss and rule-based risk stratification [140].

Cao et al. [144] devised a three-phase framework for automatic cervical
cytology screening. Firstly, they proposed a novel attention feature pyramid
network (AttFPN) to automatically detect abnormal cervical cells. AttFPN
leveraged both channel and spatial attention for multi-scale feature fusion to
improve the accuracy of abnormal cervical cells at different scales. Then, the
image-level classification results were obtained by using the ResNet50 accord-
ing to the corresponding probability prediction of detected abnormal cervical
cells. At last, The classification results of all image patches in the same WSI
were summarized to determine the ultimate case-level result. Extensive exper-
iments demonstrated that AttFPN was effective for abnormal cell detection
and the whole system had the potential for routine cervical cancer screening
programs.

In [145], Cheng et al. proposed a robust WSI analysis method for cervi-
cal cancer screening by imitating the diagnosis process of cytopathologists,
in which suspicious cells were found at low magnification and then scruti-
nized for confirmation at high magnification, as illustrated in Fig. 20. They
utilized a low-resolution model cascaded with a high-resolution model to rec-
ommend the 10 most suspicious lesion cells in each WSI. Then, an RNN-based
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WSI classification model was constructed by integrating the extracted fea-
ture representations of the top 10 lesion cells. The proposed system achieved
93.5% specificity and 95.1% sensitivity on multi-center WSI datasets with 1170
samples.

Fig. 20 Robust WSI analysis method using a combination of low resolution model and
high resolution model [145].

Wei et al. [146] proposed a progressive framework for cervical WSI anal-
ysis based on affluent semantic and location features. They devised a novel
lightweight detection model, YOLCO which was adapted from the YOLOv3
detection algorithm to acquire the cell-level and patch-level predictions at the
same time. To make the network lighter for practical application, they utilized
depthwise separable convolution and inline connection network (InCNet) to
replace general CNN. Then, these local predictions were integrated as an input
WSI-level feature vector to a transformer architecture for diagnosis results.
The experimental results on 2,019 samples demonstrated that the framework
achieved a high AUC score of 0.872 with higher detection speed showing its
effectiveness and efficiency.

Pirovano et al. [147] devised an explainable region classifier in cervical cyto-
logical WSIs. A created dataset and a novel loss were proposed to train an
efficient region classifier to perform weakly supervised localization for malig-
nancy regions in WSIs. Besides, they extended their approach to a more
general detection task for cell abnormality and a real clinical slide dataset.
The results demonstrated its effectiveness and potential to be applied in the
current workflow of cytopathologists.
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Kanavati et al. [148] developed a DL-based method for WSI analysis of
LBC specimens. They utilized a CNN model together with an RNN model to
realize the slide-level classification. EfficientNetB0 [151] model was employed
to extract features of all tiles in one WSI. The output of the CNN model
was adjusted as the input of the RNN model, which then gave a final WSI
diagnosis. On 1468 collected test WSIs, the proposed method achieved AUCs
in the range of 0.89–0.96, which fully demonstrated its effectiveness for cervical
WSI diagnosis.

Geng et al. [149] developed a two-stage learning framework for analyz-
ing gigapixel cervical WSIs including a patch-level feature learning module
and a WSI-level feature learning module. Patch-level model leveraged a one-
stage object detector FCOS [152] and WSI-level feature learning module
utilized a modified ResNet34. The proposed approach achieved state-of-the-art
classification performance on both 2-class and 5-class tasks.

Zhang et al. [150] developed a deep learning-based framework for cervical
cancer screening which explored the relationships between the suspicious cells
and took advantage of other cells for comparison. This system comprised of
a ranking and feature extractor based on RetinaNet [89] and SE-ResNeXt-
50 [153] model, and a graph attention network (GAT) to model the intrinsic
relationships between different patches. They also proposed a supervised con-
trastive learning strategy to enhance the feature learning capacity for better
classification. Extensive experiments validated the effectiveness of the proposed
GAT and contrastive learning strategy, which outperformed other prevalent
WSI classification approaches.

4 Challenges and opportunities

Despite significant progress in automated cervical cytology screening in recent
years, there are still considerable challenges and opening issues that need to be
resolved. Furthermore, the development of DL technology and computational
cytology is accelerating the advancement of this field. This section further
discusses the prospects and potential research directions in automated cervical
cytology screening.
Stain Normalization. Due to the variations in staining procedures, stain-
ing durations, imaging environments, and scanning instruments, there always
exists diverse image styles of the collected cytological images. Such image
style inconsistency makes it difficult to build robust and generalized DL-based
models of cervical cytology since training data and testing data may have dif-
ferent image styles causing the low performance of trained models in actual
deployment. Stain normalization is an ideal way to eliminate the differences
in image style. Traditional stain normalization methods such as color transfer,
stain spectral matching, color deconvolution, etc. need one or several template
images to estimate stain parameters, but a few template images cannot repre-
sent the color distribution of the entire reference dataset. Therefore, DL-based
stain normalization methods using generative adversarial networks (GANs) are
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a better substitute because the whole dataset of the target style is leveraged
as the template to execute color normalization by image-to-image translation.
For example, Chen et al. [154] proposed a two-stage domain adversarial style
normalization framework for cervical cytopathological images and Kang et al.
[155] presented StainNet by using StainGAN [156] and distillation learning to
complete the stain normalization of cervical cell images.
Image Super-Resolution. Image super-resolution is another promising
research direction for cervical cytology images. Out-of-focus and low-resolution
images will interfere with the precise diagnosis in cervical cytology screening.
However, in real-world screening programs, blur field of view (FoV) caused by
scanning too fast without proper focusing is a frequent occurrence in scanned
images. In addition, the acquisition of high-resolution digital slides needs
advanced scanners which increases the financial burden in remote and under-
developed regions. To address this problem, single-image super-resolution
(SISR) brings an effective solution by converting low-resolution slides into
high-resolution slides. Two DL-based SISR methods, PathSRGAN [157] and
STSRNet [158] have been proposed for cervical cytopathological images. Both
stain normalization and image super-resolution are urgently needed image
preprocessing tools to assist DL-based diagnoses to improve inter-laboratory
comparability and facilitate the development of CAD systems in cervical
cytology screening.
Effective Feature Extractor. Feature extractors are used to learn dis-
criminative features of cytology images in computational cytology [159]. The
feature representation capability of the feature extractor will greatly affect
the downstream tasks (cervical cell identification, abnormal cell detection, and
cell region segmentation). During the initial period of rapid development of
deep learning, researchers aimed to enhance the feature extraction ability of
deep neural networks by either increasing the depth or width of the network
[13, 14, 160, 161]. In the past few years, attention mechanism has been intro-
duced into the field of computer vision and various visual attention module has
been proposed [162–164]. visual attention modules which make DL-based mod-
els focus on lesion-related parts while inhibiting irrelevant information have
been widely employed in automated cervical cytology screening [132, 141, 144].
Most recently, with the successful practice of transformer [165] in multiple
computer vision tasks [166–168], vision transformer quickly spread in various
research fields. CVM-Cervix [66] demonstrates the superior performance of the
vision transformer to serve as an effective feature extractor for cervical cell
classification. More vision transformer-based approaches in automated cervical
cytology screening are expected in the future.
Incorporating Medical Domain Knowledge. Since experienced
cytopathologists can often give fairly accurate diagnoses, it’s not surprising
that their knowledge may guide DL-based models to do their assigned tasks
better. The specialized knowledge of cytopathologists for cervical cytology
refers to the cytological characteristics they learned, the way they browse the
slides, the features they pay special attention to, and the training process
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they experienced [169]. A simple way to realize the incorporation of medical
domain knowledge is to combine the hand-crafted features with DL models
since the manual features contain cytological characteristics related to diag-
nosis which are definitely pointed out in guidelines and criteria of cervical
cytology, as mentioned in Section 3.2.3. Besides, Lin et al. presented a syner-
gistic grouping loss and a rule-based risk stratification system using the cell
grouping rules in TBS criterion[140]. Cheng et al. devised a DL-based model
mimicking the cytopathologists’ habits of viewing specimens [145]. Cao et al.
attention-guided network, AttFPN, to pay special attention to lesion-related
areas [144]. Moreover, Chen et al. [105] built TDCC-Net by leveraging the
diagnosis experience of cytopathologists that normal cells in the same image
should be used as a reference for better identification of abnormal ones. All
the above studies make good use of medical domain knowledge to guide the
construction of the DL model so as to achieve excellent results. There is a
wealth of untapped medical knowledge that could be leveraged to develop
high-performance and interpretable DL models.
Annotation-Efficient Learning. Unlike natural images, the annotation of
medical images requires specialized medical knowledge. The extensive annota-
tion work can be a heavy burden for cytologists, making it difficult to obtain
a large-scale dataset of high quality in cervical cytology screening. To address
limited and noisy labels, annotation-efficient learning has emerged which
is generally accomplished by transfer learning, domain adaptation, weakly
supervised learning(multiple instance learning), semi-supervised learning, and
self-supervised learning [170]. Wang et al. proposed a novel annotation-efficient
learning method for medical image segmentation based on noisy pseudo labels
and adversarial learning [171]. Hu et al. utilized semi-supervised contrastive
Learning to segment MRI and CT images [172]. For cervical cytology, several
semi-supervised learning based methods have also been proposed to detect
abnormal cell detection or segment overlapping cells [106–108, 133]. These
approaches have successfully improved the labeling efficiency and exhibit high
accuracies which are comparable with full-supervised methods. More meth-
ods deserve to be explored and studied in cervical cytology screening by using
annotation-efficient learning.
Multi-modal Data Fusion. With the recent advancements in multi-modal
deep learning technologies, significant progress has been made in the field of
cancer diagnosis and prognosis analysis [173, 174]. Multi-modal data fusion
aided decision is also a good choice to realize slide-level diagnosis in cervi-
cal cytology screening. In addition to cervical cytopathological images, clinical
data such as electronic medical records (EMRs) is also a critical reference in the
final slide-level diagnosis. EMR contains a great deal of helpful personal infor-
mation (Age, duration of menstrual period, medical history, cytology screening
record, etc.) that can be utilized to guide more accurate diagnosis. At present,
there is no related work of multi-modal data-based diagnosis in cervical cytol-
ogy but this is a potential task in the future. Combining natural language
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processing (NLP) and computer vision (CV) technology to extract image fea-
tures and clinical text features, and building a multi-modal classification model
to realize the interactive fusion of multi-source data are meaningful to realize
the precise diagnoses and personalized recommendations for cervical cytology.
Internet of Medical Things (IoMT). IoMT is an emerging challenge of the
conventional internet of things (IoT) which enables the connection of medical
devices, software applications, and health systems that collect and exchange
healthcare data [175]. IoMT can provide significant benefits by increasing
access to care, improving the quality of medical service, and reducing health-
care costs, particularly for patients in remote or underdeveloped regions. IoMT
also enables the integration of deep learning algorithms into healthcare, allow-
ing for real-time disease diagnosis and personalized treatment plans based on
individual patient data. Liu et al. proposed a Dental IoMT system based on
intelligent hardware, deep learning, and mobile terminals, aiming to explore
the feasibility of in-home dental health [176]. Guo et al. proposed a hybrid
intelligence-driven IoMT system to diagnose pathological myopia for remote
patients by combining conventional machine learning with deep learning [177].
In automated cervical cytology screening, there are also some works that
designing smart scanners and IoMT systems to promote digital pathology in
rural areas and remote hospitals [178–181]. The design of a universal and
efficient cytopathological IoMT system is the ultimate pursuit for automated
cervical cytology screening and there is still a long way to go.
Federated learning. In order to successfully apply the DL-based model to
the actual clinical screening programs, strong generalization is a guarantee.
Currently, most DL methods can achieve considerable performance on their
internal datasets whereas the results are less than satisfactory when applied to
clinical environments [19]. With the improvement of medical services and the
promotion of IoMT, there are increasing concerns about the security and pri-
vacy of healthcare data. The lack of data privacy has restricted data sharing
among medical institutions and further affected the construction and veri-
fication of the DL-based model with superior generalization [18]. Recently,
federated learning (FL) has been proposed to address the above issue which
allows multiple parties to collaborate on the training of a shared model with-
out sharing their data [182]. IoMT and FL can work together to improve the
accuracy of DL-based models and guarantee generalization while maintaining
patient data privacy and security. For example, a COVID-19 IoMT System is
proposed by using FL and blockchain [183] and a novel skin disease detection
system is presented with the integration of federated machine learning [184].
Overall, IoMT together with FL has the potential to revolutionize cervical
cytology screening for cancer prevention and timely treatment.

5 Conclusion

In this survey, an overview of cervical cytology and its current screening pro-
cedures is first introduced. Then, we offer a comprehensive collection of public
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image datasets for cervical cytology. Next, the most relevant DL-based image
analysis methods in automated cervical cytology screening have been analyzed.
From these summarized approaches, different learning paradigms (transfer
learning, ensemble learning, semi-supervised and weakly supervised learning)
have been applied to multiple tasks (cell identification, abnormal cell or sus-
picious area detection, cell component or overlapping cell segmentation, and
WSI diagnosis) in cervical cytology screening. Since the primary objective of
this review is to aid the advancement of automated tools that can effectively
facilitate cervical screening procedures. The primary objective of this survey
is to aid the advancement of CAD tools that can effectively facilitate auto-
mated cervical cytology screening programs. Additionally, this work provides
insights into potential directions for future research including data prepro-
cessing, feature representation, model design, clinical application, and privacy
security.
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