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Abstract
Background: There are many studies indicating that alterations in the abundance of certain gut microbiota are associated with colorectal cancer (CRC).
However, a causal relationship has not been identified due to confounding factors such as lifestyle, environmental, and possible reverse causal associations
between the two. Furthermore, certain host gene mutations can also contribute to the development of CRC. However, the association between genes and gut
microbes in patients with CRC has not been extensively studied.

Methods: We conducted a two-sample Mendelian randomization (MR) study to reveal the causal relationship between gut microbiota and CRC. We obtained
SNPs associated with gut microbiome abundance as instrumental variables (IVs) from a large-scale, multi-ethnic GWAS study, and extracted CRC-related
datasets from an East Asian Population genetic consortia GWAS(AGWAS) study and FinnGen consortium, respectively. We analyzed a total of 166 bacterial
features at four taxonomic levels, including order, family, genus, and species. The inverse-variance-weighted (IVW), weighted median, MR-Egger, and simple
median methods were applied to the MR analysis, and the robustness of the results were tested using a series of sensitivity analyses. We extracted IVs of gut
microbiota with direct causal association with CRC for SNP annotation to identify the genes in which these genetic variants were located to reveal the possible
host gene-microbiome associations in CRC patients.

Results: The findings from our MR analysis based on CRC-associated GWAS datasets from AGWAS revealed causal relationships between 6 bacterial taxa
and CRC at a locus-wide significance level (P < 1 × 10-5). The IVW method found that family Porphyromonadaceae, genera Anaerotruncus, Intestinibacter,
Slackia, and Ruminococcaceae UCG004, and species Eubacterium coprostanoligenes group were positively associated with CRC risk, which was generally
consistent with the results of other complementary analyses. The results of a meta-analysis of the MR estimates from the AGWAS and the FinnGen datasets
showed that family Porphyromonadaceae and genera Slackia, Anaerotruncus, and Intestinibacter replicated the same causal association. Sensitivity analysis
of all causal associations did not indicate significant heterogeneity, horizontal pleiotropy, or reverse causal associations. We annotated the SNPs at a locus-
wide significance level of the above intestinal flora and identified 24 host genes that may be related to pathogenic intestinal microflora in CRC patients.

Conclusion: This study supported the causal relationship of gut microbiota on CRC and revealed a possible correlation between genes and pathogenic
microbiota in CRC. These findings suggested that the study of the gut microbiome and its further multi-omics analysis was important for the prevention and
treatment of CRC.

1. Introduction
Colorectal cancer (CRC) is a common malignancy of the digestive system that mainly originates from epithelial cells. It currently ranks third in incidence
among common malignancies worldwide and is the second leading cause of tumor-related deaths.[1, 2] In recent years, the incidence of CRC has increased in
many Asian countries including China.[3] It has become imperative to identify as many risk factors associated with CRC as possible for the prevention and
treatment of CRC.

The human gastrointestinal tract hosts a large population of microorganisms that can interact with each other as well as with the intestinal microenvironment
and other species in the environment. The relative abundance of certain gut microbiota may change under the influence of gene, drugs, and various metabolic
and environmental factors, which can lead to a decrease in beneficial commensal flora and an increase in conditionally pathogenic and disease-causing
bacteria,[4] causing further changes in flora metabolism that can lead to disease in the intestine or in other target organs through a series of complex
mechanisms. Several animal models have found an association between intestinal flora and CRC. In a study by Wong et al, feces from CRC patients and non-
CRC patients were fed to healthy mice by gavage, and the results showed that the ratio of Th1 to Th17 cells, level of inflammatory markers, number of polyps,
and proliferation levels of intestinal mucosal cells were significantly higher in mice fed feces from CRC patients compared to controls.[5] The association
between intestinal flora and CRC has also been found in CRC patients with familial adenomatous polyposis (FAP), a precancerous condition of hereditary
CRC. Dejea et al. found E. coli that formed biofilms as the predominant flora in surgically resected tissue from the colon of FAP patients, demonstrating that
intestinal flora can form biofilms that induce upregulation of colonic epithelial interleukin 17 expression, causing abnormal alteration of colonic epithelial
DNA, heterogeneous proliferation of epithelial cells, and subsequent progression to malignant tumor.[6] However, it is difficult to prove the causal association
between gut microbiota and CRC by randomized controlled trials due to confounding factors such as diet, lifestyle, and the underdeveloped technology used in
fecal transplantation experiments. In addition, recent studies have found a correlation between abnormal expression of genes related to CRC occurrence and
the abundance of pathogenic bacteria[7, 8]. However, most studies have focused only on the association between a limited number of genes and gut microbes
or specific bacteria[9, 10]. Therefore, the association of host genes with the gut microbiome in CRC needs to be further discovered and studied.

Mendelian randomization (MR) uses genetic variants in non-experimental data to infer the causal effect of an exposure on an outcome. The idea of MR is to
use genome-wide association studies (GWAS) to obtain single-nucleotide polymorphisms (SNPs) that exhibit strong correlations with specific outcomes that
can serve as a tool to infer causal associations between exposure factors and outcomes. These SNPs can be used to test for causal associations between
exposure factors and outcomes while avoiding the effects of confounding factors because they are based on random Mendelian genetic variation. Biological
genotypes are formed by random assignment during meiosis, a process that is generally not influenced by external factors. We therefore conducted an MR
study to evaluate the causal association of gut microbiota on CRC. Annotation of the SNPs of the intestinal flora validated by MR analysis can find associated
genes.

2. Methods

2.1 Data sources
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We obtained SNPs associated with gut microbial abundance from the MiBioGen consortium's GWAS study, which included 25 cohorts of 18,340 subjects from
countries including the United States, Italy, and South Korea, and which focused on identifying genetic loci that influence the relative abundance of gut
microbes by analyzing the 16SrRNA sequencing profiles of their subjects.[11] We obtained a dataset of genetic variants associated with CRC from a large
GWAS study of East Asian populations, which included three cohorts with a total of 6692 CRC patients and 27278 controls.[12] In addition, we obtained the
CRC risk-related dataset from the FinnGen consortium for validation, which included 7427 CRC patients and 25600 controls (Table 1).[13] The GWAS studies
selected for this MR analysis were ethically approved, and materials such as informed consent forms were available in the supplemental materials of the
respective original publications.

2.2 Study Design
Our overall study design was shown in Fig. 1. We screened eligible SNPs from the GWAS dataset of the MiBioGen consortium using specific criteria as
instrumental variables (shown in 2.3) for the gut microbiota. As shown in the Fig. 2, our MR study design satisfied the three necessary assumptions,[14] and
also followed the requirements of STROBE-MR.[15] (Supplementary Table 1)

2.3 Instrument selection
First, we screened for SNPs associated with bacterial abundance from the GWAS study at the locus-wide significance level (P < 1 × 10− 5) for each bacterial
taxa at four taxonomic levels: order, family, genus, and species. Second, we screened and removed SNPs located on chromosome 23 and also removed SNPs
containing multiple alleles (> 2) to avoid unwanted effects on our MR analysis results. Third, we removed SNPs with a minor allele frequency (MAF) of less
than 0.01. Fourth, we used samples from the 1000 Genomes European Project as a reference to examine the linkage disequilibrium (LD) between instrumental
variables (IVs), following the criteria of r2 < 0.01 and window size > 10,000 kb, thus avoiding the effect of LD between IVs. Fifth, some IVs may be strongly
correlated (P < 5 × 10− 8) with confounders or outcome events, referred to as horizontal pleiotropy, and the reliability of the results would be affected if these
SNPs were included as instrumental variables for MR analysis.[16] Therefore, we obtained SNPs significantly associated with confounding characteristics
(such as BMI and age) using PhenoScanner to preliminarily exclude the effect of horizontal pleiotropy. As a result, we did not detect SNPs with strong
correlations with other confounding factors. Finally, we used SNPs that met all the above criteria as IVs for downstream MR analysis. We also screened for
SNPs associated with gut microbial abundance from the GWAS study at a genome-wide significance level (P < 5 × 10− 8) to include as IVs to make the analysis
more comprehensive. The screening process for instrumental variables was shown in Fig. 3.

2.4 Efficacy estimation of instrumental variables
The regression R2 value is often used in MR studies as a measure of how much the variance in the exposure outcome can be explained by the IVs. It is
calculated as R2 = 2×EAF×(1-EAF)×beta^2/(2×EAF×（1-EAF）×beta^2) + 2×EAF×（1-EAF）×se×N×beta^2.[17, 18] Weak IVs in MR studies can cause bias in the
causal association between exposure factors and outcome events. The F-statistic, derived from the regression of exposure outcomes on instrumental
variables, can respond to the degree of correlation between exposure factors and outcomes and detect weak IVs. It is used to represent the degree of bias
when estimating causal associations and is calculated using the formula F = R2×（N-2）/(1-R2), where N represents the sample size of the exposed data.[19] An
F-statistic less than 10 indicates the presence of weakly predictive instruments. This is derived from the observation that when F < 10, the bias of the IV
estimate is more than 10% of the bias in the observational association estimate (relative bias > 1/10).

2.5 Statistical Analysis
We first obtained eligible SNPs as IVs using the process outlined above. For bacterial taxa containing only one IV, we used the Wald ratio for MR analysis. For
bacterial taxa containing multiple IVs, we used the inverse-variance-weighted (IVW) approach as the main analysis method to examine the correlation between
bacterial taxa and CRC. The IVW method is commonly used for obtaining variant-specific causal estimates, and can combine the effect values of multiple IVs
into one estimate and provide a more accurate analysis of the causal relationships among variables. We also used the weighted median method, MR-Egger,
simple median method, and MR-PRESSO as complementary analysis methods. The weighted median method is characterized by consistent results even when
the weight of invalid IVs reach 50% (or < 50%).[20] The MR-Egger method has relatively low statistical power,[21] similar to the IVW method, except that the
regression model contains an intercept term θ0 and the p-value of this intercept term can help identify horizontal pleiotropy.[22] We also applied the MR-
PRESSO global test to detect horizontal pleiotropy, which is implemented using a weighted regression of all the genetic variants and then computing a
residual sum of squares (RSS). Each IV would be removed in turn and the corresponding RSS value would be calculated. If the RSS value decreased
significantly from the previous iteration and reached statistical significance (p < 0.05), it would suggest that the SNP exhibited horizontal pleiotropy. We tested
for outlier SNPs using the MR-PRESSO outlier test and recalculated the estimates after removing any outliers, thus avoiding pleiotropic effects on our MR
analysis.[23]

We detected potential reverse causal associations between SNPs associated with the gut microbiota and CRC using the MR Steiger Filtering Test.[24] We used
a series of sensitivity analyses to test the robustness of the results. We quantified heterogeneity by calculating Cochran's Q statistic, which considers a result
to be heterogeneous if the p-value is less than 0.05.[25] The I2 statistic can also be used to quantify the degree of heterogeneity, and is calculated as I2 =(Q-
Q_df)/Q. It can be assumed that there is heterogeneity if I2 is greater than 25%.[25, 26] The results of the analysis, based on the random effects model of the
IVW method, may be more reliable if there is a high degree of heterogeneity among SNPs.[27] We assessed the heterogeneity between variant-specific causal
estimates using meta-analysis techniques and identified outliers using scatter and funnel plots. In addition, we performed Leave-one-out analysis on IVs, in
which all IVs of bacterial taxa were removed one by one, and recalculated MR estimates using all remaining SNPs to examine the correlation between the gut
microbiota and CRC.
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We performed MR analysis with the FinnGen consortium dataset to verify the accuracy of our results and meta-analyzed the MR estimates from the FinnGen
and MiBioGen datasets. We used the mRnd online tool to calculate statistical power,[28] which represents the ability to detect a particular magnitude of causal
effect in a given sample size and should generally be greater than 80% to have confidence in the results. All statistical analyses were performed using the
TwoSampleMR[29] and MR-PRESSO packages[23] in R4.2.0.[30]

2.6 SNP annotation
The online network tool was used for SNP annotation[31]. g:SNPense maps a list of human SNP rs-codes to gene names, receives chromosomal coordinates
and predicted variant effects. Mapping is enabled only for variants that overlap with at least one protein coding Ensembl gene. All underlying data are
retrieved from the Ensembl Variation data.

3. Results

3.1 Instrumental Variables Selection
11,237 SNPs at the locus-wide significance level (P < 1 × 10− 5) and 1,035 SNPs at the genome-wide significance level (P < 5 × 10− 8) were selected based on
166 bacterial features in the MiBioGen consortium. After identifying and removing SNPs in LD, the remaining 2,271 SNPs at the locus-wide significance level
and 12 SNPs at the genome-wide significance level were used as IVs. We extracted the effect allele, other allele, beta, SE, and p-value of these SNPs for MR
analysis.

3.2 Mendelian Randomization Analysis

3.2.1 Locus-wide significance level
The results of the IVW analysis showed that the family Porphyromonadaceae (OR = 1.26, 95% CI, 1.03–1.55, P = 0.0267), genera Anaerotruncus (OR = 1.17,
95% CI, 1.01–1.36, P = 0.0390), Intestinibacter (OR = 1.31, 95% CI, 1.09–1.57, P = 0.0038), Slackia (OR = 1.24, 95% CI, 1.06–1.45, P = 0.0071), and
Ruminococcaceae UCG004 (OR = 1.27, 95% CI, 1.03–1.57, P = 0.0232), and species Eubacterium coprostanoligenes group (OR = 1.25, 95% CI, 1.00–1.56, P = 
0.0467) exhibited significant causal associations with CRC risk. The results of weighted median method showed that the genus Intestinibacter (OR = 1.28, 95%
CI, 1.00–1.64, P = 0.0520) significantly increased the risk of CRC. According to the results of the simple median method, genus Intestinibacter (OR = 1.39, 95%
CI, 1.08–1.78, P = 0.0093) and species Eubacterium coprostanoligenes group (OR = 1.62, 95% CI, 1.14–2.30, P = 0.0073) were positively associated with CRC
risk, which was consistent with the results of the IVW analysis. The MR estimates from supplementary analysis all supported their negative effect on CRC
(Table 2). Details on the SNPs used as bacterial features are shown in Supplementary Table 2. The F-statistics of the SNPs were all greater than 10, indicating
no weak IVs were included. MR analysis based on the FinnGen database showed that family Porphyromonadaceae (OR = 1.50, 95% CI, 1.11–2.03, P = 0.0079)
and genus Slackia (OR = 1.17, 95% CI, 1.02–1.36, P = 0.0298) were risk factors for CRC (Table 2). We combined MR estimates from both the AGWAS and
FinnGen databases by meta-analysis and found that genus Anaerotruncus (OR = 1.16, 95% CI, 1.01–1.33, P = 0.0303) and genus Intestinibacter (OR = 1.31,
95% CI, 1.12–1.52, P = 0.0005) were positively associated with CRC. However, we found no associations between genus Ruminococcaceae UCG004 (OR = 
1.13, 95% CI, 0.96–1.32, P = 0.1560) and species Eubacterium coprostanoligenes group (OR = 1.09, 95% CI, 0.94–1.28, P = 0.2656) with CRC. In summary, we
found that family Porphyromonadaceae, genus Slackia, genus Anaerotruncus, and genus Intestinibacter all exhibited a significant causal association with
CRC risk (Fig. 4).

The results of the MR steiger filtering test (Supplementary Table 3) did not reveal an inverse causal association between the bacterial taxa mentioned
previously and CRC. There was no significant heterogeneity among SNPs for gut microbiome-CRC association, with low heterogeneity among all SNPs that
served as IVs in all bacterial taxa (I2 < 25%, p Cochran’s Q > 0.01) except genus Slackia(I2 = 39%, p Cochran’s Q = 0.11)and genus Anaerotruncus༈I2 = 45%, p
Cochran’s Q = 0.06༉(Table 3). Visualized scatter and funnel plots are shown in Supplemental Fig. 1–12. Neither the Egger Intercept test nor the MR-PRESSO
Global test detected significant horizontal pleiotropy. Similarly, the MR-PRESSO outlier test did not find any outlier SNPs that could lead to horizontal
pleiotropy. The results of the Leave-one-out analyses showed no significant effect of individual SNPs on gut microbiome-CRC association. We had 97%, 99%,
72%, and 100% statistical power to detect ORs of 1.26, 1.24, 1.17, and 1.31 for associations of family Porphyromonadaceae, genus Slackia, genus
Anaerotruncus, and genus Intestinibacter with CRC in the MiBioGen consortium, respectively. We had 100%, 99%, 60%, and 97% statistical power to detect the
corresponding ORs of 1.41, 1.23, 1.07, and 1.24 in FinnGen.

3.2.2 Genome-Wide statistical significance level
We first performed MR analysis of the 12 eligible SNPs in aggregate using IVW (OR = 1.01, 95% CI, 0.88–1.15, P = 0.9062), the weighted median method (OR = 
0.96, 95% CI, 0.79–1.16, P = 0.6493), MR Egger (OR = 0.79, 95% CI, 0.46–1.35, P = 0.4124), and the simple median method (OR = 1.12, 95% CI, 0.93–1.35, P = 
0.2284), none of which suggested that gut microbes were associated with CRC risk. Heterogeneity among IVs was low (p Cochran's Q = 0.5720, I2 = 0), and the
Egger intercept test and the MR-PRESSO Global Test results showed no significant levels of pleiotropy (Egger intercept p = 0.3820, MR-PRESOO global test p = 
0.604). We did not find any bacterial taxa associated with CRC risk (Table 4.), We could not perform further tests for heterogeneity and pleiotropy because the
number of IVs in each bacterial feature was less than 2.

3.3 SNP annotation
We annotated the SNPs at a locus-wide significance level of the four intestinal flora and identified 24 host genes that may be related to pathogenic intestinal
microflora in CRC patients. (Table 5)
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4. Discussion
The human intestine is a diverse and nutrient-rich micro-ecological system, consisting of 100 trillion microbes mixed with digestive secretions, epithelial cells,
and food-borne abiotic components. The intestinal flora regulates itself in healthy individuals to maintain the balance among the intestinal micro-ecological
system while providing energy for the body through the digestion and absorption of food. The results from studies on intestinal flora in recent years have
shown that changes in the structure, abundance, and function of intestinal flora are closely associated with many diseases including CRC.[32] There are
significant differences in the number and species of intestinal flora between CRC patients and healthy people.[33] The degree of intestinal flora imbalance is
positively correlated with the progression rate of CRC.[34] Several observational studies have found significant differences in gut flora composition between
healthy patients and CRC patients at different stages of the disease from proliferative polyps and early cancer to metastatic malignancies, supporting the role
of gut flora in the development of CRC.[35] However, other risk factors for CRC such as obesity, diet, lifestyle, and geography can also influence the composition
of the gut microbiome. We thus do not know whether the alterations in the gut microbiome in CRC patients is secondary to the tumor or an active process that
contributes to tumorigenesis. This potential reverse causal association prevents us from determining the direction of effect of the gut microbiome on CRC. In
addition, previous studies have shown that microbiota can influence gene expression and that gene expression correlates with the abundance of gut
microbiota, but studies on the association between broad gut microbiota and genes in CRC are limited [36, 37].We conducted this study to explore the causal
association of the gut microbiome on CRC and identify possible associations between pathogenic bacteria and host genes in CRC. The results of the meta-
analysis based on combining the MR estimates from the AGWAS and FinnGen datasets showed that the family Porphyromonadaceae and genera Slackia,
Anaerotruncus, and Intestinibacter have a direct causal association on CRC.

The family Porphyromonadaceae contains a variety of genera such as Parabacteroides, Odoribacter and Porphyromonas that are rarely seen in healthy
populations.[38] Zackular et al constructed a mouse model that replicated the progression of CRC from chronic inflammation to heterogeneous hyperplasia to
adenocarcinoma.[39] Their analysis of the gut microbiome composition of the mouse model showed a significantly elevated abundance of genus Odoribacter
(belonging to family Porphyromonadaceae).[40] Baxter et al analyzed the gut microbial composition of the feces of several CRC patients (serving as the
experimental group) and that of healthy individuals (serving as the control group), and then transplanted the feces into healthy mice to observe the differences
in the number of tumors in the mice. The results showed a positive correlation between the genus Parabacteroides (belonging to family
Porphyromonadaceae) and the incidence of CRC in the experimental group in contrast to the control group.[41] These studies suggest a pathogenic role of
family Porphyromonadaceae in CRC, on the basis of which our study further revealed its causal association to CRC. However, because the family
Porphyromonadaceae is relatively rare, research on its pathogenic mechanisms is limited and further studies on its role in the development of CRC are needed
in the future.

For the genus Anaerotruncus, Loke et al compared intestinal microbial composition and metabolomic differences between paired tumor tissue and normal
tissue in 17 Asian CRC patients and found that the relative abundance of genus Anaerotruncus could influence steroid and terpene biosynthesis as well as bile
metabolism, resulting in increased tumor-associated metabolites such as S-Adenosylmethionine (SAM) and S-Adenosyl-Homocysteine (SAH)[42]. Similarly,
Satoh et al identified significantly higher levels of SAM in tumor tissues of CRC patients compared to normal tissues.[43] Loke et al revealed that gut
microbiota dysbiosis caused local metabolic abnormalities at the primary tumor site, leading to significant upregulation of SAH levels.[42] Sibani et al. found
that SAM and SAH levels were positively correlated with tumor number in animal models and could be used as a measure of abnormal cell transformation.[44]

In addition, Anaerotruncus stimulates an increase in lipopolysaccharides (LPS) in humans which can disrupt the integrity of gastrointestinal epithelial cells
and lead to impaired intestinal mucosal barrier function. Upregulated LPS promotes the release of pro-inflammatory cytokines and inhibits tight junction
proteins, increasing oxidative stress and abnormal differentiation of colorectal epithelial cells.[45, 46] Enterotoxigenic Bacteroides fragilis (ETBF) is a Gram-
negative anaerobic bacterium and Liu et al [47] found that increased abundance of ETBF was closely associated with colorectal cancer. ETBF can produce B.
fragilis toxin (BFT), which when bound to intestinal mucosal epithelial receptors, can promote the activation of Wnt and NF-KB signaling pathways, facilitating
cell proliferation and DNA damage, leading to abnormal cell transformation.[48–51] ETBF can also cause the release of reactive oxygen species from
inflammatory cells and promote the expression of cytokines and chemokines, leading to DNA damage which in turn promotes the development of CRC. These
findings suggest that the genus Anaerotruncus plays an important role in the pathogenesis of CRC and can influence host gene expression, which is
consistent with our results. Therefore, we speculate that the altered relative abundance of the genus Anaerotruncus affects local metabolism, leading to
increased levels of metabolites such as SAM and SAH, which in turn cause host gene damage and results in the transformation of normal cells to tumors.

Similarly, previous studies have found that genera Slackia and Intestinibacter are associated with CRC. Huo et al compared the gut microbial composition of
tissue samples from patients with and without CRC recurrence and found that the relative abundance of genus Slackia was significantly higher in patients
with CRC recurrence than in patients without recurrence, suggesting that it is a potential biomarker for prognosis in CRC patients.[52] For genus Intestinibacter,
many studies have found a significant increase in the abundance of this bacterium both in animal models with CRC and in the fecal and mucosal tissues of
CRC patients.[40, 41, 53] For example, Fusobacterium nucleatum (FN) (belonging to genus Intestinibacter) can be involved in the development and metastasis of
CRC through multiple mechanisms. KOSTIC et al found that Clostridium perfringens suppressed anti-tumor immune responses by recruiting myeloid
suppressor cells, tumor-associated macrophages, and regulatory T cells.[54]

Previous observational studies have found an association between the gut microbiota and CRC, but the results cannot be used as evidence to support a direct
causal association due to the influence of certain confounding factors such as the environment, diet. The significant advantage of our MR study is the
selection of genetic variants significantly associated with the composition of the gut microbiota as IVs, which do not directly contribute to CRC and are not
influenced by other risk factors for CRC. This means that any association between IVs with CRC must arise via the variant’s association with the gut
microbiota, thus implying a causal effect of the gut microbiota on CRC. We identified host genes that may be associated with the abundance of gut microbes
by SNP annotation. Sambhawa Priya et al [55]used multi-omics integration to identify human disease-specific host gene-microbiome associations and found
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that gut microbes are associated with individual host genes. 755 significant host gene-microbial associations were identified in CRC, including the PCSK5
gene, which was consistent with our findings, and on this basis, we found that this gene may be associated with genus Anaerotruncus abundance

However, there are still unavoidable limitations of the present MR study. First, our MR analysis based on IVs at the genome-wide statistical significance level
(P < 5 × 10− 8) did not identify any causal association of the gut microbiome on CRC. All causal associations revealed by our MR study were obtained based on
IVs at the locus-wide significance level (P < 1 × 10− 5), which may have an impact on the accuracy of the results. Second, the causal association of genus
Anaerotruncus on CRC did not reach the desired statistical power threshold of 80%, so the correlation needs to be further clarified. Third, since detailed
baseline characteristics of study subjects (e.g., age, tumor markers, tumor stage, etc.) were not provided in the GWAS study of CRC, we could not further
investigate the effect of gut microbiome on different subgroups of the population. Fourth, although we identified possible gene-gut microbiome associations
through SNP annotation, future studies such as animal models are needed to further validate the causal association between genetic alterations and
pathogenic microbiome.

In conclusion, this MR study demonstrates that several gut microbes are positively associated with CRC risk and can serve as potential biomarkers, on the
basis of which this study also identified possible gene-gut microbiome associations in CRC. Further study of the pathogenic mechanisms of these intestinal
flora and verification of the causal association between host genetic alterations and intestinal flora abundance will be important for optimizing the diagnosis
and treatment of CRC in the future.
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Tables
Table 1. Detailed information of studies and datasets used for analyses.

Data Source  Phenotype Sample
Size

Cases  Population Adjustment

MiBioGen
consortium

gut
microbial

18340 / the United States, Canada, Israel, South Korea,
Germany,
 Denmark, the Netherlands, Belgium, Sweden,
Finland and the 
 United Kingdom

 age, sex,
 technical covariates, and genetic principal
components

AGWAS CRC 33970 6692 Asian age, sex

FinnGen CRC 33027 7427 European age, sex

 

Table 2. MR results of causal links between gut microbiome and CRC risk (P < 1 × 10-5).
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Data source Classification Nsnp Methods OR (95%CI) p−value

MiBioGen
consortium

family Porphyromonadaceae.id.943 11 Inverse variance weighted (fixed
effects)

1.26(1.03,1.55) 0.0267 

        Inverse variance weighted
(multiplicative random effects)

1.26(1.02,1.56) 0.0337 

        Weighted median 1.25(0.93,1.67) 0.1337 

        MR Egger 1.28(0.83,1.96) 0.2923 

        Simple median 1.4(0.94,2.08) 0.1003 

MiBioGen
consortium

genus  Anaerotruncus.id.2054 10 Inverse variance weighted (fixed
effects)

1.17(0.96,1.42) 0.1121 

        Inverse variance weighted
(multiplicative random effects)

1.17(1.01,1.36) 0.0390 

        Weighted median 1.14(0.88,1.49) 0.3184 

        MR Egger 1.08(0.63,1.85) 0.7807 

        Simple median 1.15(0.87,1.51) 0.3265 

MiBioGen consortium Intestinibacter.id.11345 10 Inverse variance weighted (fixed
effects)

1.31(1.09,1.57) 0.0038 

        Inverse variance weighted
(multiplicative random effects)

1.31(1.14,1.5) 0.0001 

        Weighted median 1.28(1,1.64) 0.0520 

        MR Egger 1.06(0.5,2.26) 0.8849 

        Simple median 1.39(1.08,1.78) 0.0093 

MiBioGen consortium Slackia.id.825 9 Inverse variance weighted (fixed
effects)

1.24(1.06,1.45) 0.0071 

        Inverse variance weighted
(multiplicative random effects)

1.24(1.01,1.51) 0.0357 

        Weighted median 1.15(0.91,1.44) 0.2363 

        MR Egger 0.62(0.24,1.64) 0.3692 

        Simple median 1.14(0.88,1.48) 0.3161 

MiBioGen consortium RuminococcaceaeUCG004.id.11362 9 Inverse variance weighted (fixed
effects)

1.27(1.03,1.57) 0.0232 

        Inverse variance weighted
(multiplicative random effects)

1.27(1.07,1.51) 0.0053 

        Weighted median 1.30(0.99,1.71) 0.0580 

        MR Egger 2.09(0.62,7.13) 0.2754 

        Simple median 1.32(0.99,1.74) 0.0563 

MiBioGen consortium Eubacteriumcoprostanoligenesgroup.id.11375 12 Inverse variance weighted (fixed
effects)

1.25(0.99,1.58) 0.0583 

        Inverse variance weighted
(multiplicative random effects)

1.25(1.00,1.56) 0.0467 

        Weighted median 1.28(0.92,1.79) 0.1387 

        MR Egger 0.86(0.31,2.38) 0.7746 

        Simple median 1.62(1.14,2.30) 0.0073 

FinnGen family Porphyromonadaceae.id.943 11 Inverse variance weighted (fixed
effects)

1.50(1.11,2.03) 0.0079 

        Inverse variance weighted
(multiplicative random effects)

1.50(1.18,1.92) 0.0011 

        Weighted median 1.44(0.95,2.2) 0.0892 

        MR Egger 1.51(0.7,3.23) 0.3177 

        Simple median 1.42(0.93,2.17) 0.1062 

FinnGen genus  Anaerotruncus.id.2054 10 Inverse variance weighted (fixed
effects)

1.12(0.81,1.55) 0.4987 
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        Inverse variance weighted
(multiplicative random effects)

1.12(0.72,1.73) 0.6149 

        Weighted median 0.91(0.56,1.49) 0.7151 

        MR Egger 1.64(0.38,7.03) 0.5247 

        Simple median 0.89(0.55,1.45) 0.6506 

FinnGen   Intestinibacter.id.11345 10 Inverse variance weighted (fixed
effects)

1.30(0.99,1.71) 0.0610 

        Inverse variance weighted
(multiplicative random effects)

1.30(0.98,1.72) 0.0641 

        Weighted median 1.27(0.86,1.88) 0.2207 

        MR Egger 2.12(0.6,7.54) 0.2790 

        Simple median 1.35(0.93,1.97) 0.1110 

FinnGen   Slackia.id.825 9 Inverse variance weighted (fixed
effects)

1.17(0.94,1.46) 0.1557 

        Inverse variance weighted
(multiplicative random effects)

1.17(1.02,1.36) 0.0298 

        Weighted median 1.24(0.94,1.64) 0.1302 

        MR Egger 0.56(0.16,1.98) 0.4003 

        Simple median 1.24(0.92,1.67) 0.1514 

FinnGen   RuminococcaceaeUCG004.id.11362 9 Inverse variance weighted (fixed
effects)

0.94(0.73,1.22) 0.6549 

        Inverse variance weighted
(multiplicative random effects)

0.94(0.72,1.23) 0.6687 

        Weighted median 0.79(0.56,1.12) 0.1839 

        MR Egger 0.86(0.21,3.5) 0.8353 

        Simple median 0.79(0.55,1.14) 0.2153 

FinnGen species Eubacteriumcoprostanoligenesgroup.id.11375 12 Inverse variance weighted (fixed
effects)

0.96(0.71,1.30) 0.7951 

        Inverse variance weighted
(multiplicative random effects)

0.96(0.77,1.19) 0.7138 

        Weighted median 0.86(0.57,1.28) 0.4482 

        MR Egger 1.05(0.25,4.35) 0.9509 

　 　 　 　 Simple median 0.90(0.61,1.34) 0.6130 

 

Table 3. Evaluation of heterogeneity and directional pleiotropy using different methods.



Page 12/17

Data
source

Classification Bacterial taxas Heterogeneity  Horizontal pleiotropy  　

I2
(%)

Cochran’s
Q 

p-
value

Egger
intercept

SE Pvalue MR−PRESSO
Global Test p

MiBioGen
consortium

family Porphyromonadaceae.id.943 8  10.89  0.37  0.00  0.02  0.94  0.5

MiBioGen
consortium

genus Anaerotruncus.id.2054 0  5.33  0.80  0.01  0.02  0.76  0.797

MiBioGen
consortium

genus Intestinibacter.id.11345 0  5.17  0.82  0.02  0.03  0.59  0.844

MiBioGen
consortium

genus RuminococcaceaeUCG004.id.11362 0  5.31  0.72  -0.04  0.05  0.44  0.779

MiBioGen
consortium

genus Slackia.id.825 39  13.13  0.11  0.07  0.05  0.20  0.134

MiBioGen
consortium

species Eubacteriumcoprostanoligenesgroup.id.11375 0  10.88  0.54  0.03  0.03  0.47  0.571

FinnGen family Porphyromonadaceae.id.943 0  6.64  0.76  0.00  0.03  0.99  0.80 

FinnGen genus Anaerotruncus.id.2054 45  16.28  0.06  -0.03  0.05  0.60  0.07 

FinnGen genus Intestinibacter.id.11345 2  9.22  0.42  -0.04  0.05  0.46  0.45 

FinnGen genus RuminococcaceaeUCG004.id.11362 8  8.73  0.37  0.01  0.06  0.89  0.40 

FinnGen genus Slackia.id.825 0  3.41  0.91  0.07  0.06  0.28  0.92 

FinnGen species Eubacteriumcoprostanoligenesgroup.id.11375 0  5.51  0.90  -0.01  0.04  0.91  0.90 

 

Table 4. MR results of causal links between gut microbiome and CRC risk (P < 5 × 10-8).
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Data
source

Classification   Nsnp Methods OR (95%CI) p−value 　 Heterogeneity 　

　 　 　 　 　 　 　 I2
(%)     Cochran’s

Q 

p-value

MiBioGen
consortium

total   12 Inverse
variance
weighted
  (fixed
effects)

1.01(0.88,1.15) 0.906175 0 9.420471 0.571954

        Inverse
variance
weighted
 (multiplicative
random
effects)

1.01(0.89,1.14) 0.898653      

        Weighted
median

0.96(0.79,1.16) 0.64935      

        MR Egger 0.79(0.46,1.35) 0.412427      

        Simple
median

1.12(0.93,1.35) 0.228353      

MiBioGen
consortium

family Peptostreptococcaceae 1 Wald ratio  4.74(0.81,27.82) 0.085157 – – –

MiBioGen
consortium

genus Oxalobacter.id 1 Wald ratio  0.81(0.60,1.11) 0.198543 – – –

    Enterorhabdus.id 1 Wald ratio  1.11(0.74,1.66) 0.617075 – – –

    Erysipelatoclostridium 1 Wald ratio  1.20(0.73,1.99) 0.4751 – – –

    RuminococcaceaeUCG009 1 Wald ratio  1.36(0.87,2.12) 0.1755 – – –

    Bifidobacterium 1 Wald ratio  0.88(0.59,1.33) 0.5427  – – –

    RuminococcaceaeUCG013 1 Wald ratio  1.29(0.41,4.13) 0.6629  – – –

    Tyzzerella3 1 Wald ratio  0.92(0.63,1.34) 0.6599  – – –

    Allisonella 1 Wald ratio  0.9(0.54,1.5) 0.6729  – – –

MiBioGen
consortium

order Bifidobacteriales 1 Wald ratio  0.88(0.58,1.33) 0.5427  – – –

MiBioGen
consortium

species Eubacteriumcoprostanoli
genesgroup

1 Wald ratio  0.8(0.44,1.46) 0.4634  – – –

 

Table 5. SNP annotation of intestinal flora IVs
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　 　 id chr start end strand gene_ids gene_names

family Porphyromonadaceae rs10119172   -1 -1   ENSG00000264615 RN7SL592P

    rs1029811   -1 -1   / /

    rs10762312 10 69812107 69812107 + ENSG00000197467
 ENSG00000289193

COL13A1
 /

    rs10858364   -1 -1   / /

    rs12700163 7 2609042 2609042 + ENSG00000106012 IQCE

    rs17065783 3 62049912 62049912 + ENSG00000144724 PTPRG

    rs2066088 1 1.65E+08 1.65E+08 + ENSG00000185630 PBX1

    rs2401072   -1 -1   / /

    rs35233670 17 65754785 65754785 + ENSG00000154240 CEP112

    rs35961441 1 2.41E+08 2.41E+08 + ENSG00000226919
 ENSG00000182901

/
 RGS7

    rs7330827   -1 -1   / /

genus Slackia rs1006200   -1 -1   / /

    rs10409783 19 4555774 4555774 + ENSG00000167680 SEMA6B

    rs11957560 5 31268861 31268861 + ENSG00000113361
 ENSG00000254138

CDH6
 /

    rs12440440 15 33749695 33749695 + ENSG00000198838 RYR3

    rs16894137   -1 -1   / /

    rs35156985 7 99854092 99854092 + ENSG00000021461 CYP3A43

    rs4492265 7 13484058 13484058 + ENSG00000229618 /

    rs7710333 5 1.78E+08 1.78E+08 + ENSG00000246596
 ENSG00000290968

/
 /

    rs8901 17 76270929 76270929 + ENSG00000185262 UBALD2

  Anaerotruncus rs10150232 14 29948802 29948802 + ENSG00000184304,
 ENSG00000257904

PRKD1
 /

    rs11018566   -1 -1   / /

    rs12056802 8 73800865 73800865 + ENSG00000104343
 ENSG00000258677

UBE2W
 /

    rs1272208 9 76015978 76015978 + ENSG00000099139 PCSK5

    rs1431492 3 1.51E+08 1.51E+08 + ENSG00000144893 MED12L

    rs4669806 2 12060626 12060626 + ENSG00000224184 MIR3681HG

    rs6563550 13 37484276 37484276 + ENSG00000230390 LINC01048

    rs7675045 4 1.72E+08 1.72E+08 + ENSG00000174473 GALNTL6

    rs7963258 12 1.13E+08 1.13E+08 + ENSG00000089169 RPH3A

    rs9347879   -1 -1   / /

  Intestinibacter rs10805326   -1 -1   / /

    rs11109097 12 97534659 97534659 + ENSG00000255794 RMST

    rs112879476   -1 -1   / /

    rs16938435 9 21502924 21502924 + ENSG00000171889 MIR31HG

    rs2098844   -1 -1   / /

    rs2702387   -1 -1   / /

    rs4327025 15 91903453 91903453 + ENSG00000176463 SLCO3A1

    rs447950   -1 -1   / /

    rs6875660 5 1.6E+08 1.6E+08 + ENSG00000135083 CCNJL

　 　 rs9348442 　 -1 -1 　 / /
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Supplementary Materials
The Supplementary Materials, Tables S1-S3 and Figures S1-S12 are not available with this version.

Figures

Figure 1

Overview of study design
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Figure 2

Schematic diagram of the present Mendelian randomization study.

Figure 3

The whole workflow of MR analysis.
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Figure 4

Association of genetically predicted Gut Microbiome with risk of CRC and combined MR estimates from both AGWAS and FinnGen databases by meta-
analysis (A) genus Anaerotruncus (B) genus Intestinibacter (C) family Porphyromonadaceae (D) genus RuminococcaceaeUCG004 (E) genus Slackia (F)
species Eubacteriumcoprostanoligenesgroup.


