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Abstract
Herbicides are chemical compounds that are toxic to weed plants. Modern agriculture relies heavily on
herbicides for the control of weeds to maximize yield in crops. It is estimated that herbicide usage in the
Australian grains industry increased by more than 30% from 2002 to 2018, approximately $1.80 billion.
The increased popularity of herbicides in farming systems has not only raised concerns about their
negative impacts on the environment, human health, and agricultural sustainability due to the rapid
evolution of herbicide resistance, but also raised questions about their fate in soil. Due to excessive use
of herbicides, there is great concern about contamination which can lead to soil and water pollution,
reduced biodiversity, and depression in soil heterotrophic bacteria (including denitrifying bacteria) and
fungi. Moreover, understanding the fate of herbicides in soil is a prerequisite for the precise assessment
of its behaviour and potential environmental risk. This review illustrates a brief overview of the present
status of herbicide residues in Australian farming systems with a detailed understanding of the transport
and degradation processes of herbicides in soil. Furthermore, this review also encompasses microbial
degradation, mechanisms, factors, and microorganisms associated with degradation and recent
advancement in microbial degradation of herbicides.

Full Text
Introduction

Weeds are classi�ed as an important biological constraint to food production and one of the major yield
reducing factors (FAO, 2018). Weeds compete with crops for available resources, such as nutrient, light,
water, and space, posing a great threat to sustainable crop production. As weed control is critical in
respect to increased crop production, signi�cant approaches should be taken to check both the active
weed population and the soil seedbank (Graziani et al., 2012). Weed control includes several techniques
to destroy or supress weed populations for minimizing competition in crop �eld. These techniques
attempt to maintain a balance between costs involved for weed control and yield loss. Weed control is
generally labour intensive considering the variety of options available to eradicate or destroy alien
species from the desired �eld. Considering all the weed control techniques available, chemical weed
control is widely accepted among farming communities due to labour insensitivity (Parish, 1990).
Chemicals that are used to control, suppress, or kill plants or to severely interrupt their normal growth
processes are called herbicides (Beste, 1983). Herbicides provide quick control and when used
appropriately, increase e�ciency, reduce horsepower and energy requirements (Zimdahl, 2018). As for
example, the introduction of 2,4-D in the sugarcane industry, a single knapsack herbicide sprayer was
more effective and e�cient than 15 labours weeding with hoe (Smith et al., 2011). Atrazine allowed corn
cultivation possible and pro�table in some parts of the world where it was not possible before (Heri et al.,
2011). In addition, application of atrazine increased four-folds of the land area that farmers could grow
and manage in USA (Heri et al., 2011). Undoubtedly, the rapid development and adoption of herbicides
signi�cantly contributed to global food production, whereas increasing resistance and non-target toxicity
of herbicides has subsequently become a global concern.
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Herbicides in Australian agriculture

The Australian farming system has undergone a massive revolution over the past 25 years with the
adoption of conservation tillage, including minimal or zero till, which has reduced cultivation practices for
weed control (Congreve & Cameron, 2014). Minimal or zero till refers to sowing of seeds with minimum
soil disturbance, allowing reduced evaporation and increasing yields. This revolution has led the
foundation of modern technologies in crop production, reducing cultivation practices and options
available for weed control. However, reduced cultivation practices favours weed population which
ultimately increases dependence on chemical weed control (Allmaras et al., 1998). Moreover, Llewellyn et
al. (2012) reported that the reduced price of the predominant herbicide, glyphosate, was also responsible
for the rapid adoption of zero tillage among 78% farmers in 2008. These factors contributed signi�cantly
to the increased adoption of herbicides as a sole medium for weed control (D'Emden et al., 2006).
Research revealed that herbicide application saves water over tillage practices, allowing 27 mm of extra
water in the soil pro�le and increasing grain yields by 15-25% (Wylie, 2008). Statistics showed that
herbicide usage in Australian farming systems is gradually increasing every year (Figure 1).

At present, Australian farmers spend more than 1 billion dollar per year, which is approximately more than
50% of the annual pesticide expenditure. The increased popularity of herbicides in farming systems has
raised concerns about their negative impacts on the environment, human health, and agricultural
sustainability due to the rapid evolution of herbicide resistance. In Australia, herbicide resistant weed
populations are prevalent compared to major grain producing countries (Llewellyn & Powles, 2001).
Adaptation and evolution of herbicide resistance has enabled scientists and growers to radically rethink
about existing weed management approach due to the lack of diversity into their weed control programs.
Increased use of pre-emergent herbicides could bring diversity in the weed control program. It is estimated
that the use of pre-emergent selective herbicides in Australian winter broad acre crops has risen from less
than 1 million ha to approximately 7 million ha in a decade (D'Emden et al., 2006). The increased use of
herbicide compounds in agricultural �elds leads to the accumulation of herbicide residues in the
environment which deserves attention and requires appropriate management strategies. Development of
an e�cient and sustainable remediation technique is essential for safe crop production and
environmental cleanliness.

History and signi�cance of herbicide residues in Australian soil

Herbicides are applied to soil to control unwanted vegetation that can interfere with the growth and
development of commercial crops. Now, persistence is considered the period of time an herbicide remains
active in the soil. In general, herbicide persistence is expected until the end of crop harvest but not beyond
that. However, existing soil conditions, herbicide chemical structure as well as application method
determine the persistence of herbicides in the soil (Eleftherohorinos, 1987; Webster & Shaw, 1996). Long
term persistence of herbicides may lead to soil and ground water contamination (Juhler et al., 2001),
affect biodiversity and decrease soil heterotrophic bacteria (including denitrifying bacteria) and fungi
(Song et al., 2013). Some herbicides can remain in soil for weeks, months or even years. This is
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advantageous in regards of long term weed control. Herbicides applied in minimal or zero till systems
tend to leave a greater concentration of herbicide near the surface zone at the end of the cropping season
(Curran, 2016). This portion of herbicide that remains in the soil after use is referred to herbicide residues.
Residues could occur in higher concentrations than expected which may affect subsequent crops (Yu et
al., 2015). Their persistence can affect sensitive crop species by the residual activity of the herbicide in
subsequent years, limiting planting options for farmers.

Regular monitoring on pesticide residues in Australian soils has been carried out across the country over
the years. As a result, the Australian government banned the use of organochlorine pesticides (OCs) in
late 1970 followed by signi�cant evidence suggesting their persistence in soil (Kookana et al., 1998). A
study identi�ed residues of chlordane, heptachlor, dieldrin and DDT present in 18.40, 18.80, 39.00 and
39.60% of samples in Western Australian soils (EPAWA 1989). Harris (1987) reported dieldrin persistence
in New South Wales with an average concentration of 0.12 mg kg−1 soil. Soil contamination of DDT has
been reported in thousands of cattle dip sites in New South Wales with massive concentrations ranging
from 10000 – 100000 mg kg−1 soil (Barzi et al. 1996). Compared to the OCs, modern herbicides and their
persistence in soil did not receive much attention; therefore, herbicide persistence in soil is not fully
understood in Australia. To better understand and manage herbicide residues in the soil, Grains Research
and Development Corporation (GRDC) co-invested in a �ve-year project to conduct a National �eld Survey
of herbicide residues. The soil survey of different crop �elds from around Australia prior to sowing in
2015 and 2016 detected residues of 23 chemicals, with glyphosate and AMPA being most frequently
detected, followed by tri�uralin, 2,4- D, di�ufenican, atrazine etc (Rose et al., 2022).

From last two decades, the increased use of glyphosate worldwide led to a decent number of research
focussing the potential persistence of glyphosate in soil (Benbrook, 2016). Following the world trend,
glyphosate (15%) was the most frequently applied herbicides, followed by tri�uralin (10%), MCPA (9%),
paraquat (7%) and triasulfuron (7%) in Western Australian cropping systems from 2010 to 2014 (Harries
et al., 2020). According to (Rose et al., 2022), Glyphosate and its primary metabolite, AMPA were
frequently detected over two years (67 and 93% of samples, respectively), with median concentrations of
0.22 mg kg−1 and 0.31 mg kg−1, respectively in 2016. Maximum concentrations of glyphosate detected in
topsoils worldwide is comparatively higher than Australian concentrations detected; <1.50 mg kg−1 in
Argentina (Aparicio et al., 2013) and around 2.00 mg kg−1 in EU (Silva et al., 2018). Contributing to this
variety of results from various geographic locations, several analytical procedures have been used to
re�ect fast and reliable quanti�cation of the contaminant, with variable limits of detection, quanti�cation
and accuracy may in�uence the results (Martins-Gomes et al., 2022). Another possible explanation is
majority of glyphosate applied as preemergence application and summer fallow spraying in Australian
farming systems (Harries et al., 2020) compared to the greater use of glyphosate-resistant crops in other
parts of the world (Martins-Gomes et al., 2022). Moreover, prolonged drought conditions along with
strong adsorption, would facilitate persistence of glyphosate and AMPA in Australian agricultural soils
due to low microbial activity (Borggaard and Gimsing, 2008).
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Tri�uralin was also frequently detected (>50% sampling frequency) both in 2015 and 2016 across
Australia but the maximum residue concentration (5.35 mg kg−1) in 2016 was extremely higher than 0.59
mg kg−1 in 2015 (Rose et al., 2022).  Tri�uralin is widely used in Australian farming systems to control
grassy weeds. It is well known for long persistence in soil having half-life of (35 to 375 days) under �eld
conditions (Lewis et al., 2016); while 5.80 to 26.74 days under laboratory conditions (Chowdhury et al.,
2021). Moreover, tri�uralin has been reported to have a carryover potential of 9-24% from one season to
next in Australian farming conditions (Jolley and Johnstone, 1994); with possibilities up to 90% carryover
under prolonged drought conditions (Johnstone et al., 1998). This agrees with (Chowdhury et al., 2021)
who concluded that tri�uralin dissipation in soil may be addressed as a function of soil temperature and
moisture. 

Among others, di�ufenican was detected frequently but at lower concentrations over the two years survey
across Australian crop �elds (Rose et al., 2022). It is also a frequently used preemergence herbicide with
long half-life of 224 to 621 d in soil (Lewis et al., 2016) like as tri�uralin. The higher detection rate of
di�ufenican re�ects to its strong retention in soil reported by (Hvězdová et al., 2018) and frequency of use
in Australian farming systems. According to Pelosi et al. (2021), di�ufenican was one of the most
frequently detected pesticides in France, with a median concentration of 0.14 mg kg−1 in crop soil.
However, no carryover issues were observed with continuous di�ufenican application for four years in
central and northern Italy possibly due to rapid microbial degradation (Conte et al., 1998). Although other
herbicides such as 2,4- D was frequently detected (94% sampling frequency) in 2016 around Australian
soils but at lower concentrations mainly due to its common use in summer fallow and winter season
(Rose et al., 2022). This is normally non persistent in nature when microbial activity is su�cient
(Dehghani et al., 2014). In addition, atrazine residues were also detected in higher concentrations of New
South Wales and South Australian �eld soils compared to other regions (Van Zwieten et al., 2016). 

Pesticides are commonly applied in combinations, with approximately 70% of crop �elds worldwide (i.e.,
about 8.31 million km2) have multiple pesticide residues in the topsoil region (Tang & Maggi, 2021). Rose
et al. (2022) found that herbicide residue mixtures were prevalent in arable Australian cropping soils, with
an average of 6–7 different herbicide residues per soil sample; in respect to an average of 6.3 herbicide
applications per year to each �eld in Western Australian cropping systems (Harries et al., 2020).
Compared to that, Riedo et al. (2021) observed a median of 9 herbicide residues in arable soils under no-
till or conventional management in Switzerland. Most crop �elds in Europe have been reported to have
higher pesticide residues than in Africa, South and Southeast Asia, and Australia (Tang & Maggi, 2021).
Moreover, the agro-climatic conditions of Europe, USA and Latin America are not comparable with the
Australian context. Herbicide persistence in soil is directly related to the dissipation behaviour of the
speci�c herbicidal compound where chemical, environmental and soil properties play an important role in
determining their fate (Chowdhury et al., 2021).  Therefore, understanding the fate of herbicides in the soil
is a prerequisite for the accurate assessment of their behaviour and potential environmental risk (Gianelli
et al., 2014).

Fate of herbicides in soil
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Herbicide behaviour in soil is a complex process that varies according to soil type, soil pH, soil moisture,
aeration, organic matter, and temperature (Sinha et al., 2012). The presence of herbicides in surface and
groundwater is of great importance considering the potential impact on human health and the
environment (Papadakis et al., 2015). Herbicides can move vertically to contaminate groundwater via
leaching or laterally to intrude into surface water. Residual herbicides may also be toxic to sensitive plant
and animal species or enter the food chain due to accumulation in grains and crops (Chowdhury et al.,
2020; Singh et al., 2014). Soil has several scavenging techniques comprising chemical, physical and
biological processes to minimise the adverse effects of herbicides (Gao et al., 2013; Gu et al., 2012; Jiang
et al., 2017; Wang et al., 2014). After application, a major fraction of the applied herbicides may be
absorbed by or sorbed to soil particles or decomposed through biotic or abiotic means. 

Biotic degradation, or biodegradation, may be de�ned as degradation of complex herbicide molecules
into simple, often more water soluble and less toxic inorganic molecules by enzymatic degradation due to
the activity of bene�cial microorganisms (Porto et al., 2011; Wood, 2008). Abiotic degradation refers to
chemical transformations involved in removal of the herbicides such as photodegradation and
hydrolysis. Other processes include volatilization from soil and plants, surface runoff, plant uptake and
leaching due to gravitational force.

1. Volatilisation

Volatilisation is the loss of applied pesticides from plant, soil, and water surface in vapour form. Loss due
to volatilisation can be as high as 90% of the amount applied for some highly volatile compounds (Taylor
& Spencer, 1990), whereas others have been considered as relatively low due to inherent low vapour
pressure (Helling, 2005). Many pesticides can be transported far from their initial site of application and
may subject to leaching and runoff (Taylor & Spencer, 1990). The consistent presence of atrazine in
rainwater, despite of low vapour pressure indicates loss due to volatilisation and vapour drift (Miller et al.,
2000). Physiochemical properties of the compound coupled with existing climatic conditions determine
the extent of volatilisation (Kookana et al., 1998). Herbicide volatilisation is higher in sandy soils
compared to others. Gerritse et al. (1991) calculated the loss of organochlorines through volatilisation in
laboratory experiments and found that approximately 90-98% loss occurred from sandy soil within a
week; whereas 9-63% loss from a silt loam soil. Volatilisation loss was reported higher in hot and dry
weather when compared to cooler weather conditions. Finlayson and Silburn (1996) observed that half of
the endosulfan applied to dry soil was lost through volatilisation in dry hot weather. Whereas
volatilisation did not occur when the pesticide was applied under cooler conditions. Method of pesticide
application also plays a critical role in determining the volatilisation loss. For example, soil-applied
pesticides are less susceptible to volatilisation as compared to the foliar-applied ones, and similarly soil
incorporated pesticides are less prone to volatilisation losses than the surface-applied ones (Taylor &
Spencer, 1990). The extent of volatilisation loss is maximum during application and immediate after
application. Tri�uralin is highly volatile, however, soil incorporation immediately after application strongly
abated tri�uralin volatilisation loss (Bedos et al., 2006).
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2. Leaching

Herbicide movement in soils followed by rainfall or irrigation is often bene�cial when root uptake is
necessary for weed control. Leaching reduces losses by volatilization and photodegradation, depending
on the herbicide chemical properties. Thus, limited leaching may increase soil persistence. Deeper
migration reduces the residual herbicide in the upper vadose zone (extends from the top of the ground
surface to the water table), and so could lessen persistence in crop production. Such leached chemicals
no longer contribute to weed control and may contaminate groundwater or surface water via lateral
discharge. Since microbial activity is much lower in the subsurface horizons and in groundwater
compared to the vadose zone, herbicide persistence generally is much longer once it moves below the
vadose zone. It is believed that low temperature and absence of degrading microorganisms are
responsible for the increased persistence of atrazine under vadose zone (Radosevich et al., 1996). The
persistence of atrazine in groundwater is quite long (Klint et al., 1993), undoubtedly it is the most detected
pesticides in water samples in Australia (Schult, 2012) and USA (Rosecrans & Musgrove, 2020). 

Leaching potential has long been predicted based on herbicide and soil characteristics by using various
laboratory methods such as adsorption, soil leaching column, and soil thin-layer chromatography tests.
Rapid degradation greatly reduces the potential loss by leaching. For example, the herbicide �orasulam
has very high potential mobility; 68-92% leached through a soil column with the rate of degradation (DT),
often expressed as DT50 and DT90 values, were recorded 2-10 and 16-34 days, respectively. It was judged
unlikely to contaminate groundwater (Vencill, 2002). Most herbicide leaching occurs during mass �ow of
water through the soil matrix, ensuring ample exposure of chemical to soil and soil biota surfaces.

3. Abiotic degradation 

Photodegradation

Photodegradation is one of the primary abiotic degradation processes that occurs only in the presence of
light. Photodegradation can be often termed as photolysis which may be affected by various
environmental factors including soil temperature, moisture, soil type, pH and humic substances (Wang et
al., 2014). Verhoeven (1996) de�ned photodegradation as “the photochemical transformation of a
molecule into lower molecular weight fragments, usually in an oxidation process”. Photodegradation of
herbicides involves breakdown of organic matter through some organic reactions with the absorption of
light occurring generally in surface soils, surface water and in the atmosphere (King et al., 2012).
Hydroxylation or decarboxylation (direct photodegradation) and indirect photodegradation by the
production of reactive radical species are the major types of organic reactions taking place during
photolysis (Fantke & Juraske, 2013). Reactive radical species produced by those oxidation process can
degrade persistent compounds in soil (Lutze et al., 2015). 

Direct photodegradation may be de�ned as the chemical transformation of a molecule by fragmentation,
to and from electron transfer or intramolecular transformation after absorbing radiation (Schwarzenbach
et al., 2003). Conversely, photosensitisers absorb radiation and transfer energy to the herbicides from
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their excited state during indirect photodegradation, which is followed by several processes as for direct
photodegradation.

Several factors have been identi�ed to in�uence herbicide photodegradation of surface and groundwater
including chemical properties, land topography, soil characteristics, weather, and agricultural operations
(Konstantinou et al., 2001) listed in Table 1.

Table 1. Factors responsible for exposure to solar radiation and photodegradation (King et al., 2012).
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Factor Potential in�uence References

Ozone Possible slight increase with stratospheric ozone thinning.

Potential decreases with high tropospheric ozone.

(Smith et al., 2010)

Latitude Generally negative relationship.

High latitudes susceptible during summer months due to
ozone thinning.

(Brandt et al., 2010;
Moody et al., 2001;
Pancotto et al., 2003)

Season In grasslands, highest rates during summer in grasslands
if seasonally dry, but rates may be higher in spring in
areas with summer monsoons.

In temperate deciduous forests, highest directly before
defoliation in spring or after senescence in autumn.

In tropical deciduous forests, highest during dry season.

(Brandt et al., 2010;
Henry et al., 2008;
Rutledge et al., 2010)

Elevation Most likely positive relationship due to higher proportion
of short-wave radiation and higher total irradiance at high
elevations.

May be negative relationship in areas where cloud,
canopy, or snow cover increases with elevation to the
point where litter is shaded.

(Blumthaler et al., 1997)

Cloud cover Most likely negative relationship.

Modest cloud cover can increase diffuse radiation and
potentially increase rates on mostly sunny days

(Madronich et al., 1998)

Leaf area
index

Generally negative relationship, but especially so with
broadleaf architecture.

(Rozema et al., 1999)

Canopy
architecture

Higher rates with vertically distributed structure (e.g.,
grasslands) than horizontally distributed structure (e.g.,
broadleaf forests).

(Rozema et al., 1999)

Landscape
patchiness

Higher rates in open areas versus under shrubs or trees. (Köchy & Wilson, 1997)

Evenness Rates per unit mass potentially greater with increased
evenness.

(Mlambo & Mwenje,
2010; Throop & Archer,
2007)

Soil
re�ectivity

Sandy soils may increase albedo and lead to increased
rates in adjacent litter.

(Rozema et al., 1999)

Snow No photodegradation when buried.

Potential increase in photodegradation in standing dead if
surrounded by snow due to albedo.

No reference found

Soil
cover/burial

Decreased rates with increasing soil burial. (Barnes et al., 2012;
Brandt et al., 2010;
Throop & Archer, 2007)
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Photodegradation of the soil surface is quite different from the aquatic system because soil contains a
minimum fraction (<5%) of organic matter and a major fraction (>95%) of minerals. Organic and mineral
content are the most important parameters affecting herbicide degradation on the soil surface. Mineral
particles occupy the major share of the soil particles in which mainly crystalline and non-crystalline
amorphous minerals dominate with an array of hydroxyl groups (Parlar, 1990). Various soil clay minerals
containing iron associated with the production of reactive radicals, for example, the hydroxyl radicals
which may in�uence the photodegradation of herbicides in soil (Katagi, 2004; Mantzos et al., 2017;
Sleiman et al., 2017). In photodegradation of herbicides, light penetration is limited to a layer of 0.1 to 0.5
mm of soil (Hebert & Miller, 1990; Miller et al., 1989). The degradation rate of metazachlor and
quizalofop-p-ethyl herbicides were quick under sunlight irradiation compared to dark conditions (Mantzos
et al., 2017). Frank et al. (2002) reported signi�cant differences in half-lives of chemicals in various soil
depths. Katagi (2004) found the evaluated depth for direct and indirect photolysis are 0.23 and 0.28 mm,
respectively for lab conditions whereas 0.32 and 0.62 mm in the �eld conditions for most of the
herbicides. Ismail et al. (2015) observed the reduction of deltamethrin half-life was higher in presence of
light compared to dark. Zhang et al. (2010) found a positive trend between soil depth and half-life of
pyrene increasing from 19.80 to 37.46 d as soil depth was increased from 1 to 4 mm. Temperature may
have very little or no effect on the herbicide photodegradation. According to Rering et al. (2016),
temperature did not signi�cantly in�uence the photochemical degradation of imazosulfuron. 

Hydrolysis

Hydrolysis is the chemical breakdown of a molecule with addition of H2O, H3O+, and OH- i.e., water
molecules. It is one of the major abiotic degradation processes taking place under certain circumstances,
such as within groundwater or due to low microbial activity in soil (Wolfe et al., 1990). Hydrolysis rate in
soil may be different than in water as soil organic matter content (Stevenson, 1994), clay content (Yaron,
1978), pH (Muller et al., 2007) and temperature (Getzin, 1981) were found to in�uence hydrolysis of
herbicides. Hydrolytic reactions are mainly pH dependant and can be mediated either chemically or
biologically (Kookana et al., 1998). Karpuzcu et al. (2013) found the average rate of chlorpyrifos
hydrolysis was 0.02 µmol/g/day at pH 7.2 and 30 °C. On the other hand, an increasing rate of hydrolysis
has been observed under acidic conditions for azimsulfuron (Boschin et al., 2007), metsulfuron-methyl
and most of the sulfonylurea herbicides (Morrica et al., 2001). Hydrolysis of dimethyl disulphide was
faster in neutral or mid-alkaline compared to acidic solutions under constant temperature conditions (Han
et al., 2017). However, some exceptions exist regarding the dependency of hydrolysis of some pesticides
on soil pH. Shabtai and Mishael (2017); Zhang and Pehkonen (1999) reported that rapid hydrolysis of
diazinon in both acidic and alkaline conditions followed half-lives of 0.5, 171 and 6 days at a pH
concentration of 3.1, 7.3 and 10.4. It is best to study the hydrolysis of herbicides in a pH range which
exists in the �eld soil, aquifers, and environment to know the fate of these chemicals.

Soil organic matter, clay content and type have strong in�uence on the hydrolysis of herbicides. Liao et al.
(2017) reported that abiotic degradation of methyl parathion was signi�cantly related to the natural
organic matter and solution pH. Another study reported that higher concentrations of dissolved organic
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matter (DOM) resulted in signi�cant reduction on the rate of chlorpyrifos hydrolysis (Adams et al., 2016).
The in�uence of clay mineral content in degradation of herbicides are also investigated by several
researchers (Shabeer et al., 2014). Baglieri et al. (2013) stated that the catalytic activity of clay minerals
was mainly responsible for the adsorption of triclopyr, whereas the rate of the reaction depends on the
type of clay, exchangeable cation, and the state of hydration. Moreover, hydrolysis allows us to
understand the possibility of surface and underground water contamination through the indiscriminate
use of herbicides. Basically, when these chemicals leached into the deeper layer due to gravitational force
where microbial activity is limited then abiotic degradation is the main process that ultimately determine
the fate of herbicides. Among the environmental factors, pH and temperature are most important factors
that in�uence hydrolysis of herbicides. Several studies indicated that pH and temperature regulate the
rate of hydrolysis for most of the sulfonylurea herbicides, i.e., pyrazosulfuron ethyl (Singh & Singh, 2013;
Zheng et al., 2008), halosulfuron methyl (Grey et al., 2018; Zheng et al., 2008), prosulfuron, primisulfuron
methyl, rimsulfuron, and thifensulfuron methyl (Dinelli et al., 1997), rimsulfuron, sulfosulfuron,
nicosulfuron, prosulfuron, ethametsulfuron-methyl and metsulfuron-methyl (de Lafontaine et al., 2014),
sulfosulfuron, nicosulfuron and rimsulfuron (Cessna et al., 2015).

Oxidation and reduction

Variations of oxidation number in a molecule are referred as oxidation and reduction; where increase
represents oxidation and decrease represents reduction. Alternatively, loss or gain of electrons in a
molecule can be denoted as oxidation and reduction reactions. Pesticides can only be oxidized or
reduced in the soil upon presence of a chemical with adequate redox potential. 

Oxidative mechanisms in soils are governed by both oxidative enzymes (Dec & Bollag, 2000) and abiotic
catalysts such as metal oxides. However, manganese oxides and hydroxides are major contributors due
to their reactivity and frequency in soils (Li et al., 2003). MnOOH and MnO2 are capable to oxidize a
variety of organic contaminants such as phenol (Lin et al., 2009), aniline (Laha & Luthy, 1990) or triazine
(Shin & Cheney, 2004).

4. Biotic degradation 

Microbial degradation

Microorganism is a broad term that includes bacteria, fungi, archaea, protists, and viruses, typically
representing only 0.1% of the total volume of soil. However, they are involved in some major remediation
processes that recycle the waste and pollutants in the environment (Torstensson, 1988). Microorganisms
are present in soil regardless of the textural classes and types but in different densities. For example,
bacteria may be present in between 102 to 106 per gram soil (Delgado-Baquerizo et al., 2018) and fungal
hyphae may also exist as some many thousands of metres per gram soil. Thus, the total biomass of
microorganisms in soil could be several tonnes per hectare (Torstensson, 1988). Microorganisms were
reported to play a vital role in waste decomposition (Schneider et al., 2010), regulation of plant growth
(Hayat et al., 2010), nutrient cycling (Van Der Heijden et al., 2008) and degradation of various dangerous
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contaminants and pesticides (Pino & Peñuela, 2011; Zhao et al., 2009). Recent studies suggested the
need for rapid exploration of novel microorganisms, their diversity, and innovative ecological functions
for the development of bioremediation strategies (Graham et al., 2016; Hua et al., 2015; Martiny et al.,
2015; Prosser et al., 2007). 

The microbial distribution in soil is regulated by several biotic and abiotic factors. Modi�cation in
environmental conditions may alter the equilibrium distribution of the microbial population. This may be
the possible reason for the differences in adaptability of microbial populations in different geographical
locations (Verma et al., 2014). For instance, the abundance, composition, diversity, and enzymatic activity
of microorganisms present in the rhizosphere can be expressed as a subset of overall soil microbial
community, which is in�uenced by the localised physiochemical properties of the soil (Marschner et al.,
2004), that may be different from the bulk soil (Foster, 1986).  This is re�ected where plant root exudates
have been reported to shape the composition and abundance of the rhizosphere microbial community
(Wu et al., 2017).  

Microorganisms involved in microbial degradation of herbicide

The removal of pollutants from the soil by various activities of microorganisms is often referred to by
several terms, bioremediation, biodegradation, biomineralization, bioaccumulation, biotransformation, or
co-metabolism (Finley et al., 2010; Park et al., 2003; Shakoori et al., 2000). In agricultural context, the over-
reliance of chemical compounds leads to the accumulation of toxic compounds in environment which
needs to be removed by any means. In this regard, a special group of microorganisms are reported to do
this task by enzymatic transformation into non-toxic compounds, are of special importance (Wang et al.,
2005; Wood, 2008). Plants, animals, and fungi (Eukaryota) typically remediate pollutants and
contaminants through accidental metabolism by broad-spectrum enzymes. Some bacterial extracellular
enzymes can decompose ring-based compounds into simple compounds for transport across the cellular
membrane for metabolism (Fenner et al., 2013). The differences in degradation are due to the sensitivity
of chemical products among the eukaryota. For example, the application of organophosphate ester
hampers the nervous system of insects but has no effect on microbes. One hypothesis would be that it
could be used as a source of carbon and phosphorous if proper metabolizing enzyme accommodates in
that microorganism (Fenner et al., 2013). Bacteria predominates the microbial community regardless of
the soil depth as they can utilize alternative electron acceptors in such oxygen de�cit conditions
(Boopathy, 2000). Moreover, bacteria have the greatest capability to produce new metabolic pathways by
the evolution of new enzymes for rapid metabolism (Copley, 2009). Bacteria can transfer clusters of
genes evolved in a bacterium to other organisms by cell-to-cell contact, which is known as horizontal
gene transfer (Emamalipour et al., 2020). This approach allows the development of a protection system
against toxic pollutants due to the continuous exposure to various environmental stress and to take
advantage of a broader variety of carbon compounds (Nayak et al., 2018; Parsek et al., 1995; Verma et al.,
2014).  This is more common among bacteria but also possible between other organisms, where bacteria
serve as donor while fungi, plants, and animals serve as recipients (Garcia-Vallvé et al., 2000; Rancurel et
al., 2017). There is signi�cant evidence of the generation of new bioremediation pathways within the
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microbial community by the transmission of genes responsible for biodegradation (Zhao et al., 2017).
Nguyen et al. (2018) reported the intra-�eld evolution and inter-�eld exchange of 2,4-D catabolic plasmids
and genes within a restrained local environment. Bacterial strains engaged in bioremediation processes
have been isolated from different locations of the world. These include strains from Bacillus (Eissa et al.,
2014), Pseudomonas (Lakshmi et al., 2008), Arthobacter (Evy et al., 2012), Ralstonia (Hay & Focht, 2000),
Rhodococcus (Park et al., 2003), Alcaligenes (Yang et al., 2005), Nocardiopsis (Pravin et al., 2012)
Micrococcus and Lactobacillus (Azizi, 2011) and Acetobacter (Shakoori et al., 2000). These organisms
are highly adaptive in nature and have the capability to degrade a wide range of toxic compounds with
the evolution of mutants potentially leading to new metabolic pathways (Suenaga et al., 2001). Laemmli
et al. (2000) identi�ed a 2,4-D degrading gene cluster, tfdII located on plasmid pJP4 of Ralstonia
eutropha. Various species within Pseudomonas, Arthrobacter, Alcaligenes, Cytophaga, Actinobacter,
Moraxella and Klebsiella have been reported to have such types of plasmids (Sayler et al., 1990). 

Although microbial degradation of pesticides greatly focused on bacteria, various fungal strains
belonging to different genera including Aspergillus (Mohamed et al., 2011), Trichoderma (Sene et al.,
2010), Penicillium (Peng et al., 2012), Fusarium (Sene et al., 2010), Streptomyces (Mohamed et al., 2011),
Phanerochaete (Chirnside et al., 2011), Rhizopus (Sene et al., 2010), Trametes (Bastos & Magan, 2009),
Lentinus (Nwachukwu & Osuji, 2007) and Mortierella (Badawi et al., 2009) have also been reported to
degrade a wide range of pesticides. Fungi mediated bioremediation has been reported to be appropriate
due to their extended mycelial networks, low speci�city to catabolic enzymes and independency towards
utilizing organic compounds as growth substrate (Harms et al., 2011). Fungal degradation of pesticides
is also regulated by several environmental factors including soil moisture (Bastos & Magan, 2009),
temperature (Yang et al., 2011; Yu et al., 2011), pH (Yu et al., 2011), aeration (Hussain et al., 2007) and
composition of the medium (Kataoka et al., 2010). Identi�cation and characterization of pesticide
degrading fungal strains is a prerequisite for the better understanding of fungal bioremediation. Literature
shows that fungal strains have been identi�ed capable of degrading various pesticides including alachlor
(Chirnside et al., 2011), pendimethalin (Yu et al., 2011), bensulfuron-methyl (Yu et al., 2011), atrazine
(Sene et al., 2010), chlorophenol (Zouari et al., 2002), simazine (Fragoeiro & Magan, 2008), tri�uralin
(Fragoeiro & Magan, 2008), metsulfuron-methyl (He et al., 2006), chlorsulfuron (Boschin et al., 2003),
isoproturon (Badawi et al., 2009), diuron (Badawi et al., 2009), linuron (Badawi et al., 2009), glyphosate
(Arfarita et al., 2011), metolachlor (Munoz et al., 2011), lindane (Quintero et al., 2008), methyl-parathion
(Marinho et al., 2011), endosulfan (Hussain et al., 2007), dichloro diphenyl trichloro ethane (DDT)
(Thomas & Gohil, 2011), heptachlor (Xiao et al., 2011), acetamiprid (Wang et al., 2012) and dieldrin
(Fragoeiro & Magan, 2008).

Apart from the isolation and characterization of fungal strains capable of degrading a wide range of
pollutants, still there are limitations constraining their wider application. Research suggests that fungi
mediated degradation is a slow process and often complete removal of the pollutants is not possible
(Sasek & Cajthaml, 2005). This might be due to the time required for the adaptation of the fungal strain in
a contaminated environment (Kulshreshtha et al., 2014). Moreover, variations in climatic conditions also
play a dominating role in this context. Metabolic process and mechanisms governed by biodegradation
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processes need to be addressed under variable environmental conditions which ultimately contribute to
fungal biodegradation in site speci�c conditions. The changes in environmental conditions will affect the
physiology of the fungal species ultimately affecting the degradability of the pesticides. Another
important aspect regarding fungal biodegradation is that incomplete degradation of the pollutants may
lead to the possibility of increased metabolite toxicity compared to the parent pollutant compound
(Boopathy, 2000). Accidental accumulation of those metabolites in the environmental components may
have serious consequences (Badawi et al., 2009; Xiao et al., 2011).

Mechanisms involved in microbial degradation of herbicide

Soil microbes are an indispensable part of the ecosystem, maintaining biogeochemical cycles through
novel transformations in the biosphere (Whitman et al., 1998). As a part of the transformation process,
various organic and inorganic compounds deposited in soil are converted to simple compounds through
a variety of metabolic pathways adopted by speci�c microorganism or groups of microorganisms. Under
aerobic conditions, herbicides are primarily converted to CO2 due to oxidation, but other chemicals may
also form. Microorganisms require energy for the various metabolic activities they perform within the soil,
and they mainly rely on the organic compounds as a source of energy. The question remains about how
microorganisms develop their ability to degrade herbicide compounds. Since microbes catabolize
herbicide compounds for assimilation as energy source, their interaction with the herbicidal compounds
is signi�cant (Table 2). Catabolic metabolism is mainly dependant on the suitable chemical structure of
herbicidal compounds to be utilised as an energy source by the microorganisms. In this regard, selection
of the degrading microorganism is the determining factor whether the herbicide compound will be
degraded or not. 

Table 2. Mechanisms involved in herbicide degradation (Torstensson, 1988).

Degradation mechanism Outcome

1. Direct decomposition of
herbicides through adaptation
where herbicide compounds
serve as energy sources
(catabolism).

Repeated application of same herbicide results in faster
degradation. May also arise some serious consequences like
persistence of some speci�c herbicides ex. Phenoxy acids, EPTC
(S-Ethyl dipropylthiocarbamate), TCA (Trichloroacetic acid),
dalapon.

2. Accidental transformation
through peripheral metabolic
process (co-metabolism).

All herbicides may be degraded by this mechanism.

3. General activities by
microorganisms such as,
modi�cation of pH, production of
different free radicals and other
reactive compounds.

Degradation of herbicides due to the in�uence of
microorganisms on biological and non-biological reactions.
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In the case of incidental transformation, herbicide degradation rate depends on the availability of other
carbon sources which implies that metabolism rate can be altered by the amount of herbicides or carbon
sources. This type of metabolism is more common where the amount of herbicide is comparatively lower
than the other available carbon sources. Horvath and Alexander (1970) reported an approach of
degradation of stable and non-degrading chemicals by increasing the concentration of the primary
substrate for the degradation of chlorinated pesticides. Under the above circumstances, the consequence
of adaptation and co-metabolism ultimately determines the microbial degradation of herbicides. So,
these two phenomena are of primary interest in determining the mechanisms behind microbial activities
in soil. These two phenomena are further described below.

Adaptation

Microbial degradation of herbicide depends on the frequency of herbicide application in soil. Repeated
application of the same herbicide in the same �eld results in increased microbial degradation, suggesting
adaptation because of selection (Fang et al., 2015). As a result of the enhanced degradation of herbicides
in soil, soil applied herbicides are losing their e�cacy (Zablotowicz et al., 2006) and microorganisms are
hereby accounted for undermining the effectivity of herbicide compounds. There is some controversy
regarding the rapid degradation of several herbicides by soil microorganisms. This rapid breakdown of
herbicide has been reported to be disadvantageous by several researchers whereas others have described
it as an uncommon phenomenon having little impact on agriculture (Fox, 1983). 

There is a range of opinion available to describe how microorganisms build up their capacity to degrade
a certain herbicide. According to Kaufman et al. (1983), a speci�c signal derived from the applied
herbicide or other chemicals is responsible for the microbial adaptation to speci�c herbicides. Some
chemicals may act as a motivator in enzyme secretion which further degrades other chemicals. The
phenylurea hydrolase-encoding genes puhA and puhB were identi�ed in the linuron-degrading
actinomycetes Arthrobacter globiformis D47 (Turnbull et al., 2001) and Mycobacterium brisbanense JK1
(Khurana et al., 2009), respectively. Again, it is not mandatory for the herbicide compound to be
substrates for the metabolism process governed by enzyme secretion. Traditional culture-based
laboratory investigations mainly concentrated on the monoculture of substrates, but the complete
degradation of herbicides is faster and more e�cient in microbial consortia rather than single
microorganism (Kumar et al., 2021). Regarding this, continuous investigations not only revealed the
involvement of microbial communities in the remediation of toxicants in the soil but also broaden the
possibility to study the interaction between different microbial species (Torstensson, 1988). These
innovative studies further laid the foundation of exploring the adaptation mechanism behind herbicide
selectivity of the microorganisms in stress conditions. Herbicide degradation usually shows an initial lag
phase where no degradation occurs, followed by a sharp decrease in the concentration (Figure 2). The
period between herbicide application and initiation of biodegradation is termed as the acclimation period
where basically no signi�cant degradation is observed. Zhao et al. (2018) observed a prolonged lag
phase followed by higher concentrations of atrazine application, however repeated application of
atrazine resulted in faster degradation with decreased half-life (Fang et al., 2015). 



Page 16/44

This may be due to the multiplication of herbicide degrading organisms during the �rst application to
such a level that increased the degradation rate of herbicide at later applications. Other proposals
identi�ed genetic alterations taking place within the microorganism for enzyme synthesis as the main
reason for the initial time lapse (Torstensson, 1988). Alterations are mainly due to changes in
chromosomal or extra-chromosomal DNA sequences. A speci�c type of extra-chromosomal DNA,
commonly known as plasmid, has been identi�ed to be responsible for the degradation of herbicides
(Laemmli et al., 2000). These special types of DNA are smaller than bacterial chromosome and have
been reported to bear speci�c genetic information for biodegradation of herbicides which may be absent
in chromosomal genes (Verma et al., 2014). Plasmids are capable of intercellular movement in some
microbial communities and provide a pathway for the transfer of the biodegrading genes to other
members of the bacterial community (De Souza et al., 1998). Manipulation and transportation of these
genes from one organism to other members of the microbial community in such conditions has opened a
new horizon in the context of bioremediation.

Co-metabolism

Co-metabolism is an accidental degradation of an herbicide by an enzyme or co-factor associated with
the degradation of another compound (USEPA, 2000). The energy derived at this process is neither
su�cient to support microbial growth nor activate relevant enzymes involved in the degradation process
(Tran et al., 2013). Co-metabolism is mainly dependant on the substrate metabolism of other
compounds. This type of biodegradation is highly sophisticated as only the microorganisms capable to
degrade the concerned contaminant are accelerated (Hazen, 2010). This process can be accelerated at
low very concentrations particularly to an undetectable limit i.e., parts per trillion, which is the most
important advantage (Hazen, 2010).  For example, methanotrophs (prokaryotes that metabolize methane
for their sole carbon and energy source) have been reported to produce an enzyme called methane
monooxygenase, which is capable of oxidizing over 300 compounds (Hazen, 2010). In contrast, some
evidence suggest that metabolites produced from this speci�c type of metabolic pathway may act as
inhibitors of microbial degradation (Powell et al., 2011). Microbial co-metabolism may be the effective
approach to remove various types of toxic pollutants from soil (Tran et al., 2013). According to
Torstensson (1988), majority of the herbicides used in agriculture may be degraded by co-metabolism. 

Research suggests that no lag phase has been observed in co-metabolic pathways (Moreira et al., 2012).
Moreover, adaptation is absent in co-metabolism which makes it prominent that repeated application of
herbicides did not affect co-metabolic degradation at all. Synthetic chemicals which are not degraded by
individual microbial species may be mineralized further via the co-metabolic transformations governed
by the combined activity of several microbial species. Co-metabolism of herbicides generally occurs in
slow rate due to the lower populations of co-metabolizing microorganisms which will not increase in
respect to the chemicals applied (Janke & Fritsche, 1985). Even, a single microorganism can co-
metabolize a pollutant completely (Juhasz & Naidu, 2000). These co-metabolizing microorganisms can
be considered as a good option for the development bioremediation strategies.
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Factors affecting microbial degradation of herbicide

1. Temperature

Temperature plays a major role in the ecological distribution of microorganisms interlinked with the
metabolic activities and degradation of herbicides in soil (Robador et al., 2016). Davidson and Janssens
(2006) demonstrated the rapid increase of soil microbial respiration with temperature rise. The increased
microbial activity could accelerate degradation of pollutants such as herbicides, and the rate of
degradation was faster in warmer regions than in the cooler parts due to increased microbial activity with
less seasonal variation throughout the year (Racke et al., 1999). In laboratory conditions, generally the
effect of temperature variations on herbicide degradation is of minimum attention and 25 °C has been
used as a standard temperature (Racke et al., 1999). Wang and Xie (2012) showed that the optimum
temperature range for atrazine degradation was 20-40 °C. Low temperature induces accumulation of
toxic pollutants in the environment (Ma et al., 2011).  James et al. (1999) reported that triasulfuron may
persist in soils at low temperature. In contrary, Levy et al. (2007) blamed the dry and hot weather in
summer of 2003 in Germany for the accumulation of isoproturon in soil due to drastic changes in soil
microbial community structure and function. Rapid degradation of clopyralid was observed by Tomco et
al. (2016), possibly due to high temperature (14.4 and 16.9 °C) in Alaskan soils. Temperature regulates
enzymatic activities required for various biochemical processes in soil, yet very little information is
available related to sensitivity of enzymatic activities to varying temperatures in the environment (Trasar-
Cepeda et al., 2007). According to Wallenstein et al. (2010), enzyme activation mainly depends on the
physical and chemical interactions with soil clay, minerals and organic matter. Studies related to
temperature effect on speci�c enzyme activation for the degradation of herbicide compounds found that
higher or lower than the optimum temperature will slow down the degradation process. The optimum
temperature for herbicide degradation may vary between chemicals but will generally be in the range of
20-30 °C (Jordan, 1990). Dong and Sun (2016) reported that atrazine residue concentration decreased
with increasing temperature, increasing degradation rate and half-life by 3-4 times from shifting
temperature 5 °C to 35 °C.  Degradation of �orasulam was strongly in�uenced by temperature with half-
life ranging from 1.0-8.5 days at 20-25 °C to 6.5-85 days at 5 °C (Krieger et al., 2000).

2. Soil moisture

Soil microorganisms require moisture for their growth and metabolism. There is a direct relationship
between soil microbial activity and moisture content; a decrease in moisture content reduces microbial
activity, and rewetting causes a large and rapid increase in activity (Speight & El-Gendy, 2018). Therefore,
degradation process is slow in dry soils and generally increases with increasing moisture content (Dong &
Sun, 2016). This may be due to the low microbial activity prevailing under extreme dry conditions (Miles
et al., 1984). Since moisture content has signi�cant impact on soil microbial activities, herbicide
degradation would be expected to be faster in wet soils. Generally, moisture contents between 50-80%
�eld capacity (FC) levels are considered optimal for microbial activity (Morgan & Atlas, 1989). Atrazine
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degradation was reported to be 3-4 times higher when soil moisture content was increased from 5% to
20% (Dong & Sun, 2016). 

Whereas extreme soil moisture conditions are considered unfavourable for microbial growth and
metabolism process, fungal and bacterial oxidative enzymes for degradation are inhibited at low O2

levels in saturated soils. Excess moisture can accelerate anaerobic transformation of herbicides by
reducing the oxygen level, which could hamper the transformation of herbicides (Schroll et al., 2006).
Alternatively, soil moisture may not necessarily have any signi�cant effect on the transformation of some
herbicides. For example, the half-life of rimsulfuron was reported to be 22.5 and 24.5 days under aerobic
and anaerobic conditions, respectively (Schneiders et al., 1993). Some herbicides are reported to be
accumulated under anaerobic conditions, e.g., clopyralid (Zhao et al., 2011) whereas others breakdown
rapidly, e.g., atrazine (Pal et al., 2006).

3. Soil pH

Soil pH has substantial effects on the reactivity, activity, and persistence of applied herbicides in soil,
speci�cally at extreme pH conditions such as less than 4.5 or higher than 7.5 (Monaco et al., 2002). The
basic principle is that herbicide degradation is dependent on the charge of the herbicide molecules and
herbicides bearing a positive charge will have a strong a�nity to the negatively charged soil clay
particles. Whereas herbicides bearing a negative charge will be repelled by soil colloids and exposed to
transformation (Ross & Lembi, 1999). Again, soil pH has a major in�uence not only on the growth and
activity of microorganisms but speci�cally on the growth of microbes responsible for herbicide
transformation (Raeder et al., 2015). Optimization of pH in soil is a di�cult task depending on the soil
type as variation in the soil pH is comparatively less than in water. In addition, enzymes have an
operational pH range and changes to pH cause inhibition due to denaturation. As most microbial species
survive in the pH range of 4.5-7.5 (Msimbira & Smith, 2020), optimization of pH is critical in soil
experiments in regards of biodegradation of herbicides. 

Tariq et al. (2003) observed highest degradation of HCH isomers (α and γ) in soil slurry with an initial pH
of 9.0. Accelerated biodegradation of endosulfan was reported through optimization of pH to 8.0 (Arshad
et al., 2008). Optimum condition for biodegradation of pesticides varies with compounds and organisms,
but the degradation rate is slow at acidic pH compared to alkaline and neutral pH conditions because
acidic pH increases stability of various chemical groups (Reid et al., 2000). Another possible reason may
be the reduced activity of bacteria or enzyme involved in the biodegradation process under low pH
(Roberts, 1998).

4. Soil organic matter

Although microorganisms represent only 1 to 8% of the soil organic carbon (Roder et al., 1988), they are
responsible for the maintenance of C, N and P cycles and other physio-chemical activities in soil through
decomposition, mineralisation, and immobilization processes (Sarathchandra et al., 1988). Increase in
mineralisation of the herbicides may contribute to the reduction of organic matter content of soil. Low



Page 19/44

organic matter content of soil may result in slower microbial degradation of tri�uralin with high
adsorption capacities and as a result less tri�uralin available for degradation in soil (Tiryaki et al., 2004).
To boost microbial activity in soil, organic matter content in soil should be replenished (Perucci et al.,
2000). According to Burns (1975), at least 1.0% of organic matter should present in soil to ensure the
activity of indigenous microorganisms that can involve in the transformation of toxic compounds in soil.
To increase the organic matter content in soil, application of various organic amendments such as
sawdust, municipal waste compost and synthetic biological waste are frequently practiced in different
countries (Palma et al., 2002; Said-Pullicino et al., 2004; Vorkamp et al., 2002). Organic amendments e.g.,
sawdust have higher C:N ratios than compost, resulting in increased microbial activity as
microorganisms require carbon and nitrogen as a nutrient for growth and reproduction (Zhang et al.,
2021). Addition of organic amendments in the soil has recently gained increasing interests (Scotti et al.,
2015), which facilitates development and functioning of terrestrial ecosystems (Izquierdo & Bedmar,
2008). However, this could lead to a change in the fate and behaviour of herbicides applied in the same
soil (García-Jaramillo et al., 2016). 

Organic amendment addition will either slow down the microbial degradation process through adsorption
(Doyle et al., 1978) or accelerate the remediation process by increasing the microbial metabolic activity
(Hance, 1973). Although, herbicide sorption is reported to increase with the addition of organic
amendments in soil, dissolved organic matter (DOM) content is also enriched which gradually in�uences
sorption and movement of herbicides in soil (Cox et al., 2001). Marín-Benito et al. (2018) agrees with this
statement as they concluded that soil amendment with green compost not only increased half-life (DT50)
of triasulfuron in soil due to rapid adsorption by soil particles but also accelerated persistence by
blocking leaching into the soil.

5. Herbicide structural properties and concentration

Physical and chemical properties of herbicide mainly determine its possibility of biodegradation in the
environment. Addition of polar groups such as, OH, COOH, and NH2 on the phenyl ring makes the
herbicidal compound more susceptible to microbial activity (Chowdhury et al., 2008). On the other hand,
Cork and Krueger (1991) revealed substituents like halogen and alkyl groups make compounds resistant
to microbial degradation. In addition, water solubility and adsorptivity of the herbicide compound are
important factors under consideration in this context. Solubility and adsorptivity are inversely related in
many herbicide compounds. Herbicides which are likely soluble in water are more prompt to microbial
degradation than those which are generally insoluble in water. Chlorinated hydrocarbons such as DDT,
pentalene and dieldrin are insoluble in water, sorbed tightly to soil particles and thus are relatively
unavailable for microbial degradation (Chowdhury et al., 2008). Again, there is some exception with
glyphosate and paraquat which are highly water soluble but adsorbed to soil particles tightly (Williams et
al., 2014). Several physical, chemical, and structural parameters that determine the possibility of
degradation are listed in Table 3.
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Table 3. Effect of physical, chemical, and structural properties on the degradability of herbicides
(Boettcher et al., 2001).

Properties Degradation

Rapid Slow

Solubility in
water

Soluble Insoluble 

Size Relatively small Relatively large

Functional
group
substitutions

Few More

Rapid reduction In oxidized environment In reduced environment

Rapid oxidation In reduced environment In oxidized environment

Origin Biologically Either man made or synthetic

Aliphatics Up to 10 C-chains, straight chains.
Aromatic compounds with one or two
nuclei

High molecular weight alkanes,
branched chains, polyaromatic
hydrocarbons

Substitutions
on organic
molecules

Alcohols, aldehydes, acids, esters,
amides, amino acids

Alkanes, ole�ns, ethers, ketones,
dicarboxylic acids, nitriles, amines,
chloroalkanes

Substitution
position

p-position, o- or p- di-substituted
phenols

m- or o- position, m- di-substituted
phenols

     

6. Dissolved organic matter (DOM) 
Dissolved organic matter (DOM) is the fundamental portion of organic matter having the ability to
dissolve in �eld conditions, and which plays a major role in transportation of pollutants in soil (Kalbitz et
al., 2000). Photosynthesis is the primary driver of DOM production in soil which includes organic litter
and humus substances accumulated through pedogenesis (Guggenberger et al., 1994; McDowell &
Likens, 1988). Soil microbial communities are the substantial agent contributing to the formation of
DOM. Guggenberger et al. (1994) investigated DOM structure and fractionation and revealed that DOM
may be predominately of microbial origin. Solubility and mobility of various organic compounds and
metals are enhanced by DOM (Blaser, 1994; Marschner, 1999; Piccolo, 1994; Zsolnay, 1996) followed by
accelerated biodegradation of organic compounds (Raulund‐Rasmussen et al., 1998). Previous studies
have shown that even a small fraction of DOM can signi�cantly in�uence the dissipation of various
organic compounds, especially DDT and some polychlorobiphenyls (PCBs) (Caron et al., 1985; Hassett &
Anderson, 1979). Whereas contradictory results were also reported on the behaviour of the fate of
cationic pesticides in soil and water which may be due to the differences in experimental conditions
(Barriuso et al., 1992; Klaus et al., 1998; Seol & Lee, 2000). Most studies focussed on the behavioural
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pattern of herbicides in water bodies while very little is known about their interaction in soil in presence of
DOM (Said-Pullicino et al., 2004). Adsorption and desorption behaviour of atrazine, dimefuron and
carbetamide herbicides was in�uenced by the nature of DOM as per observations of Barriuso et al.
(1992). They identi�ed a positive relation between soil adsorption capacity and soil organic carbon
content which led them to conclude physio-chemical properties of DOM i.e., pH, organic carbon content
and conductivity had a strong in�uence on the sorption behaviour of herbicides. Pre-treatment with DOM
solution increased soil adsorption of less soluble atrazine and dimefuron. This increased adsorption may
be due to the increased soil carbon content that contributed adsorption of some organic compounds
from DOM solution. On the other hand, Pennington et al. (1991) observed that DOM extracted from
different soil samples had no signi�cant interaction with the tested herbicides i.e., alachlor, bromacil and
metribuzin which may be due to the variation in physio-chemical characteristics of herbicide compounds.

Approaches used to study microbial degradation of herbicide

Recent improvement in microbiology allows us to use various molecular and proteomic approaches to
investigate speci�c microbial catabolic pathways for the biodegradation of herbicides (Ghosal et al.,
2016). As mentioned earlier, some bacteria are capable to produce extracellular enzymes to metabolize
complex organic and inorganic compounds to obtain energy and carbon as a part of their assimilation
process. Catabolic genes play an important role in shaping the genetic foundation of herbicide
biodegradation, with subsequent identi�cation of these genes permitting application of molecular
technology to investigate their function (Widada et al., 2002). Microbial genes which are known to
degrade herbicides are listed in Table 4. Generally, those catabolic genes are situated on chromosomes,
however several have been located to plasmids.

Table 4. Isolated bacterial and fungal genes with host organisms (Ortiz-Hernández et al., 2013; Singh &
Walker, 2006).
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Gene
name

Host Enzyme

Bacterial gene

opdA Agrobacterium radiobacter Organophosphorus hydrolase

opd Pseudomonas diminuta Organophosphorus hydrolase 

adpB Nocardia sp. Aryldialkylphosphatase

Phn Bacillus cereus Phosphonatase 

ophB Burkholderia sp. JBA3 Organophosphorus hydrolase 

Imh Arthrobacter sp. scl-2 ND 

Mpd Ochrobactrum sp. Yw28 and Rhizobium
radiobacter

ND 

opdE Enterobacter sp. Organophosphorus hydrolase 

opaA Alteromonas spp. Organophosphorus acid
anhydrolase

pepA Escherichia coli Aminopeptidase A

hocA Pseudomonas montelli ND 

pehA Burkholderia caryophilli Phosphonate monoesterase 

ophC2 Stenotrophomonas sp. SMSP-1 ND 

OpdB Lactobacillus brevis Organophosphorus hydrolase 

Oph Arthrobacter sp.  ND 

Mph Arthrobacter sp. L1 Methyl parathion hydrolase

MphB Burkholderia cepacia Methyl parathion hydrolase

Fungal gene

A-opd Aspargillus niger ND 

P-opd Penicillium lilacinum ND 

ND= not determined

Researchers are placing more emphasis on the sequencing of whole genomes from a wide range of
microbial populations in the soil to investigate novel genes and degradative elements responsible for the
degradation of pesticides. This has provided new insights into the identi�cation of herbicide degrading
genes from both culturable and non-culturable microorganisms and provided an increased understanding
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of innovative metabolic pathways under various environmental conditions, which is essential for the
successful implementation of bioremediation techniques. Li et al. (2007) identi�ed several microbial
enzymes, such as organophosphorus hydrolase isolated from bacteria, capable of hydrolysing
organophosphate pesticides and utilizing this as a source of carbon. The identi�ed gene (opd gene,
homologue to mpd gene) is highly preserved within plasmid containing 996 nucleotides and is
responsible for organophosphorus hydrolases (OPH). Hydroxylation of methyl-parathion was accelerated
through the secretion of a speci�c enzyme methyl-parathion hydrolase. Cui et al. (2001) isolated the gene
responsible for hydroxylation of methyl-parathion from the bacterial strains of Achrobacter,
Ochrobactrum, Pseudaminobacter and Achrobacter by comparing the same gene belonging to
Pleisomonas sp. To date more than 300 genes have been isolated from various culturable bacterial
strains worldwide engaged in biodegradation of aromatic compounds (Bhatt et al., 2019). More and more
emphasis has been given to DNA and RNA quanti�cation to identify the number of potential biodegrading
genes. It is believed that a positive correlation may exist between the relative abundance of biodegrading
genes and their ability to degrade contaminants in the environment. Quantitative studies related to DNA
and RNA can signi�cantly promote biodegradation of herbicides by identifying the bulk of genes
associated in bioremediation. This can allow the manipulation of the environment to promote the
increase in the numbers of organisms involved in biodegradation. Repeated application of atrazine
resulted in the increase of the microbial population responsible for herbicide degradation (Fang et al.,
2015; Yale et al., 2017). Similar results were observed in case of herbicide MCPA (2-methyl-4-
chlorophenoxyacetic acid) (Bælum et al., 2008) and glyphosate (Lancaster et al., 2010). Perhaps
potential research using DNA and RNA approaches in the identi�cation of biodegrading genes might
result in novel understanding related to the management of biodegradation which could lead to
regulation of extent and rate of biodegradation (Lovley, 2003). 

The absence of degrading microorganism could make the scenario di�cult; favouring the herbicide
compound persist in soil longer than usual. However, recent research approaches pointed out the
possibility of developing genetically modi�ed microorganisms for herbicide degradation (Hussain et al.,
2018; Verma & Jaiswal, 2016). These genetically modi�ed super microorganisms may degrade the
herbicide faster than the usual. Although adaptability of the microorganisms in the contaminated site
may be an issue which could lead this strategy ill-fated. Moreover, the potential risk associated with
genetically modi�ed microorganisms to open environment raised common safety concerns and
legislative issues (Hussain et al., 2018).

Conclusion
In Australia, herbicides applied in minimal or zero till systems tend to maintain a greater concentration of
herbicide near the surface zone at the end of the cropping season, which may result in higher residual
concentrations, affecting crops subsequently sown. Currently, there is no option available to combat this
problem other than using crop rotation to avoid incompatible crop-herbicide combinations which includes
routine rotation of fallow and pre-emergent herbicides, reliable record keeping helping identify potential
residue issues, and use of tolerant crops or crop cultivars in rotations after dry seasons. Little is known
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about the environmental fate of herbicides in Australian soil. Persistence of herbicides in soil could
potentially affect sensitive crops in rotation, investigation on critical concentrations at which level
causing damage to sensitive following crops could help farmers in selecting crop rotation strategies. In
addition, environmental factors are known to have a crucial effect on the persistence of herbicides in soil.
Again, persistence of herbicides in soil is directly related with the presence or absence of degrading
microorganisms in soil, the shift in microbial community structure and diversity upon herbicide exposure
could generate valuable information about potential groups of microorganisms bene�tted by herbicide
application. 

Despite the widespread use of herbicides and consequently their undesirable presence in the
environment, microbial degradation pathways of herbicides and their genetic bases remain poorly
understood. Enzymes form a critical aspect in the degradation process as the degradation of the
herbicide compound is governed through this. Since enzymatic degradation of herbicides poses as a
promising approach, necessity of extensive research regarding identi�cation of degradable enzymes
should be given utmost priority. Microbial communities possess greater genetic and metabolic diversity
compared to a single strain in the degradation process. Moreover, the genetic expression and e�ciency of
the metabolic pathways are largely determined by the native environmental factors. So, priority
investigations should be carried out for the identi�cation and isolation of target genes considering native
environmental factors so that the generated data could be applied in the actual �eld conditions for the
successful removal of herbicide residues in soil.
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Figures

Figure 1

Year wise breakdown of herbicide cost in Australian agriculture over total pesticide expenditure,
expressed in billion dollars (APVMA, 2021).
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Figure 2

Degradation of herbicides in soil over period of time (Boettcher et al., 2001).


