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Abstract
Extreme weather events are more detrimental to human culture and ecosystems than typical weather patterns. A
multimodel ensemble (MME) of the top-performing global climate models (GCMs) to simulate 11 precipitation extremes
was selected using a hybrid method to project their changes in Pakistan. It also compared the bene�ts of using all
GCMs compared to using only selected GCMs when projecting precipitation extremes for two future periods (2020–
2059) and (2060–2099) for four shared socioeconomic pathways (SSPs), SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5.
Results showed that EC-Earth3-Veg, MRI-ESM2-0 and NorESM2-MM performed best among GCMs in simulating
historical and projecting precipitation extremes. Compared to the MME of all GCMs, the uncertainty in future projections
of all precipitation indices using the selected GCMs was signi�cantly smaller. The MME median of the selected GCMs
showed increased precipitation extremes over most of Pakistan. The greater increases were in one-day maximum
precipitation by 6–12 mm, �ve-day maximum precipitation by 12–20 mm, total precipitation by 40–50 mm, 95th
percentile precipitation events by greater than 30 mm, 99th percentile precipitation events by more than 9 mm, days
when precipitation ≥ 4 mm by 0–4 days, days when precipitation ≥ 10 mm by 2–6 days, days when precipitation ≥ 20
mm by 1–3 days, and precipitation intensity by 1 mm/day, consecutive wet days by one day, consecutive dry days by
0–4 days in the northern high elevated areas for SSP5-8.5 in the late future. These results emphasize the greater
in�uence of climate change on precipitation extremes in the northern, high-elevation areas, which provide the majority
of the country's water. This emphasizes the necessity to adopt suitable climate change mitigation strategies for
sustainable development, particularly in the country's northern regions.

1. Introduction
Extreme weather events severely damage agriculture, livelihoods and properties (Agyekum et al. 2022). However, it is
challenging to de�ne extreme weather event as it varies with regional factors (Stephenson et al. 2008). The most recent
research uses extreme indices based on the recurrence of a speci�ed amount of precipitation or exceedance of speci�c
thresholds to assess extremes. However, the duration and intensity thresholds used to de�ne extremes are region-
speci�c (Data 2009). For example, the threshold de�ning heat waves in the middle latitude cannot represent heatwave
over the tropics (Perkins et al. 2012). Thus, the Expert Team on Climate Change Detection and Indices proposed twenty-
seven extreme indices for the analysis of climatic extremes globally and over speci�c regions (Sillmann et al. 2013;
Larbi et al. 2018; Klutse et al. 2021). These indices provide information about the amplitude and incidence of daily
temperature and precipitation extremes and explain whether the climate is more variable or extreme (Tank et al. 2009).

The sector having the highest risk of climate extremes is agriculture and water resources (Ahmed and Schmitz 2011; Ali
et al. 2022; di Santo et al. 2022). Climate extremes resulted in crop and cattle losses (Goodland and Anhang 2009), low
production of crops (Lal 2004; Hat�eld and Prueger 2015), disease eruption and pest infestations (Rosenzweig et al.
2001). Numerous studies attempted to solve the challenges posed by contemporary and future climate extremes (Parry
et al. 2007; Stocker et al. 2014; Sillmann et al. 2017). Recently, there has been an increase in both the frequency and
intensity of extreme climate events on a global and regional scale (Seneviratne et al. 2012; Stocker et al. 2014; Wang et
al. 2022). Particularly, extreme event analysis has indicated increased heavy precipitation events (Edenhofer et al. 2014;
Dibaba et al. 2020). According to several studies, annual and seasonal precipitation patterns have changed on a global
and local scale (Iqbal et al. 2020; Praveen et al. 2020; Šraj and Bezak 2020; McHale et al. 2021; Heureux et al. 2022).
Areas with a variety of topography, such as dry and semiarid regions, are more vulnerable to extreme precipitation
events (Qin et al. 2018; Sharafati et al. 2020; Qiu et al. 2022). Pakistan, dominated by a semiarid to an arid climate, is
experiencing extreme precipitation increase with a further expected increase in the future (Zahid and Rasul 2011; Samo
et al. 2017; Bhatti et al. 2020). Recently, some studies also indicated the dynamic changes in extreme precipitation
across the country (Abbas et al. 2018, 2022; Bhatti et al. 2020; Xu et al. 2022a). Increasing precipitation extremes have
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resulted in various hydrological and meteorological damages in the country (Hassan and Ansari 2015; Mahmood and
Jia 2016).

The global circulations models (GCMs) remained a primary tool for investigating climate change and its dynamic
mechanism (Flato et al. 2014; Agyekum et al. 2018). The Coupled Model Intercomparison Project (CMIP) was set up to
assess the effectiveness of GCMs in simulating past, present, and future climate variables under various conditions.
Recently, the CMIP6 has been released, which integrated the representative concentration pathways and shared
socioeconomic pathways (SSP) and made projections more authentic (Eyring et al. 2016). CMIP6 GCMs also improve
spatial resolution and increase parametrization schemes for climate systems (Tian − Jun et al., 2019). Evaluating past
and future climate extremes and understanding the physical processes are the primary focus of the scienti�c work done
for CMIP6 GCMs (Eyring et al. 2016; Marotzke et al. 2017). However, before using GCMs, evaluating their capabilities in
reproducing the observed climate conditions is essential. This evaluation reduces errors and provides reliable future
projections using the appropriate GCMs (Flato et al. 2014; Agyekum et al. 2018).

The accuracy of CMIP6 models in reproducing global and regional climate extremes has been evaluated in several
studies. For example, Kim et al., (2020) identi�ed CMIP6 GCMs performed well in replicating the extreme temperature
and precipitation indices. Furthermore, studies revealed that the ensemble mean of GCMs performed robustly in
reproducing extreme events during rainy months in East Africa (Akinsanola and Zhou 2019). The two approaches have
been widely used for selecting GCMs; past performance and envelope-based approach. In the �rst approach, the
selection is made based on the past performance of GCMs in simulating the historical climate (Raju and D. Kumar
2014; Salman et al. 2018). In the second approach, GCMs provide future projections within a con�dence interval is
selected (Warszawski et al. 2014). Since the envelope approach does not choose GCMs that can reliably model
historical climate, and the past performance method cannot guarantee GCM selection that can consistently simulate
future climate, neither method is ideal. Therefore, combining both approaches can solve the problem where initial
screening is done based on future projections of GCMs between the upper and lower band of the projection variety, and
then the �nal selection of GCMs is established on historical climate (Lutz et al. 2016).

Many scientists have previously assessed the ability of CMIP6 GCMs to reproduce the weather conditions over Pakistan
and its neighbours (Ali et al. 2015; Ahmed et al. 2020; Almazroui et al. 2020; Karim et al. 2020; Abbas et al. 2022).
However, the characteristics of precipitation extremes are different in different regions. Some regions may experience
increased precipitation but not precipitation extremes (Agyekum et al. 2022). From the available literature review,
studies related to the performance evaluation of CMIP6 GCMs in replicating the climate extremes in the study area are
lacking. It motivated this study to investigate CMIP6 GCMs and select top-performing GCMs that can simulate the
climate extremes in the study area for reliable projections of climatic extremes. The intention is to provide reliable future
projections with reduced uncertainties.

This study was designed to select CMIP6 models that best simulate historical distribution and future projections of
precipitation extremes indices in Pakistan. Future alteration of precipitation extremes and associated uncertainty was
estimated using the best-performing models. This study would help in understanding the capability of CMIP6 models in
replicating precipitation indices over Pakistan's diversi�ed and complex regions. This can serve as a starting point for
future research on weather extremes in the area. The extreme precipitation estimates can be used to re�ne the
projections for CMIP5 scenarios.

2. Study Area And Data
Pakistan is located in South Asia, between latitude 23.5 ° N to 37.0 °N and longitude 60.5 °E to 78 °E. It has a diverse
topography, as shown in Fig. 1. The arid to semiarid climate is observed in the southern and central plains, whereas
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humid weather is in the northern mountains (Abbas et al. 2014). Pakistan is classi�ed as an arid to a semiarid region
with signi�cant variations in temperature and precipitation. It mostly experiences two precipitation patterns: monsoons
and westerlies (Khan et al. 2014). Monsoon and westerly systems contributed nearly 95% to the country's annual
precipitation (Ullah et al. 2018). The yearly average temperature changes from 0 ℃ in the far north to 32 ℃ in the
south. The maximum temperature varies between 15 and 35 ℃, and the minimum temperature ranges between 0 and
20 ℃ (Chaudhry et al. 2009; Hamed et al. 2022a).

2.1 Datasets

2.2.1 CMIP6 GCMs
The daily precipitation simulations of CMIP6 GCMs for 1975 − 2014 were used to measure their relative performance in
the study area. Twenty CMIP6 GCMs were chosen because of their ability to provide precipitation information for past
and projected SSPs. For this study, we used the GCMs found at https://esgf-node.llnl.gov/search/cmip6/. The models'
initial variant (r1i1p1f1) was chosen for a fair assessment. The GCMs are summarised in Table S1. Shared
Socioeconomic Pathways are a new type of scenario introduced in CMPI6. SSPs consider global �nancial and
demographic shifts and greenhouse gas emissions for their climate simulations. SSP1 and SSP5 indicate more
contributions to the health sector, education sector, higher-level institutions and fast economic growth. The critical
difference between SSP1 and SSP5 is that earlier implies a speedy move to a sustainable society, and the latter implies
fossil-fuelled-based economic growth. SSP3 and SSP4 describe a low-developed economy with a high expansion in
population, resulting in the unequal allocation of resources. SSP2 represents the position between SSP1 and SSP3
(Hausfather 2018).

2.2.2 ERA5 dataset
European Centre for Medium − Range Weather Forecasts (ECMWF) developed the ERA − 5 dataset, the �fth edition of the
Copernicus Climate Change Service (C3S). Hourly precipitation data were collected from the ERA5 reanalysis for 1975–
2014 at a spatial resolution of 0.1° × 0.1°. The GCMs’ skills in modelling precipitation indices were evaluated using a
reference dataset. Observation data remained challenging due to the shortage of long − term records in developing
countries like Pakistan. Therefore, the ERA5 dataset has been used widely in the area (Zittis et al. 2016; Mistry et al.
2022; Syed et al. 2022; Waseem et al. 2022). The data was downloaded from
https://cds.climate.copernicus.eu/#!/home.

3. Methodology
This study used 11 ETCCDI extreme precipitation indices as described in Supplementary Table S2. These indices are
useful for studying global and regional climate extremes (Heureux et al. 2022; Salehie et al. 2022; Xu et al. 2022b; Khan
et al. 2022). Due to the resolution discrepancy between the several accessible GCMs and ERA5 data, bilinear
interpolation was used to bring both data sets to a common spatial resolution of 1° × 1°. This technique uses four
surrounding points around the targeted point to provide smooth interpolation (Hamed et al. 2022b). The bilinear
interpolation for performance evaluation of CMIP6 GCMs have been used worldwide (Chen et al. 2021; Iqbal et al. 2021;
Ngoma et al. 2021; Hamed et al. 2022b; Salehie et al. 2022). The models' calculated precipitation extremes varied
between the base period and the four SSPs. Similarly, ERA5 precipitation data for the reference period was used to
determine all precipitation indices. The steps to achieve the objectives are shown in the �owchart of Fig. 2.

3.1 Ranking of GCMs based on hybrid envelope approach.
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The �uctuation in GCM accuracy over time makes it di�cult to rank GCMs based on their capacity to simulate over
different periods. GCMs performing well in simulating the past climate may not be well in simulating the future.
Therefore, a hybrid approach was used in this study to select GCMs that can perform well in simulating the past and
projecting the future climate. The researchers recommend a hybrid approach for selecting GCMs due to its e�ciency in
minimizing historical, future and spatiotemporal uncertainties (Lutz et al. 2016; Salman et al. 2018). In this study, GCMs
were screened out by calculating the future projections of 11 precipitation indices by all GCMs for all four SSP
scenarios. The 97.5th percentile, median and 2.5th percentile of all GCMs for all indices for all SSPs were calculated till
the end of the 21st century. The GCMs showing values between the 95th percentile con�dence interval (CI) band for all
indices for all scenarios were initially selected.

In the second step, GCMs' skill in replicating the precipitation extremes indices for the historical period was evaluated
using Kling − Gupta E�ciency (KGE) metrics. KGE evaluates three statistical metrics as a single measure, i.e., spatial
variability ratio, Pearson's correlation and normalized variance, as represented below:

(1)

 

 

where  denotes the Pearson's correlation between GCMs simulations (s) and ERA5 data (o),  denotes the bias
stabilized by the standard deviation of observed data,  is de�ned as a fraction of variation indicating spatial variability,
and  and  show the mean and standard deviation of GCM (s) simulation and observed data, respectively (o).

Considering the capabilities and sensitivity to extremes, the KGE metric is preferred to quantify GCM's skills (Radcliffe
and Mukundan 2017). The KGE is considered a robust spatial assessment metric (Nashwan et al. 2019; Salehie et al.
2022; Sobh et al. 2022). The range of KGE values lies between 1 and ∞. A value of 1 represents the best match. The
GCMs performed better than the median for all indexes �nally chosen.

3.2 Uncertainties in projected changes
The simulations of the indices using all GCMs and selected GCMs for all SSPs were prepared to compare the
uncertainty ranges. Furthermore, spatial maps of the multimodel ensemble (MME) median, 97.5th percentile and 2.5th
percentile of all indices based on all GCMs and selected GCMs were prepared to show the difference in the spatial
variability in projections by all GCMs and the selected GCMs. In addition, maps showing the median MME of the
selected GCMs for all precipitation extreme indices for SSP1-2.6, SSP2-4.5, and SSP5-8.5 in the near and far future were
created to illustrate the spatial distribution of absolute changes in precipitation extreme indices over Pakistan.

4. Results

4.1 GCM Ranking
The future projections of all indices using all GCMs for all SSPs were used to assess the consistency in projections. For
example, the future projections of two extreme indices, Rx1day and Sdii, using all GCMs for all SSPs for 2020–2099, are
shown in Fig. 3. The projections' 2.5th and 97.5th percentile (i.e., 95% CI band) values are presented in Supplementary
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Table S3. The table also contains the 95% CI band of the projections of all indices. It shows that the projections of two
GCMs, i.e., ACCESS − ESM1 − 5 and FGOALS − g3, were out of the 95% CI band for many indices. Few GCMs also
showed projections out of the 95% CI band for one to four indices, but their projections were within the 95% CI band for
most indices. Therefore, only two GCMs, ACCESS − ESM1 − 5 and FGOALS − g3, were discarded in the initial screening
of GCM selection, considering their unrealistic projections of extreme precipitation.

The initially selected GCMs were further evaluated against the ERA5 precipitation for the historical period (1975 − 2014)
using KGE to select the best-performing GCMs. The obtained data are shown in Table S4 of the Supplementary
Materials. Then, the KGE values were used to independently rank the GCMs for each index. The rankings of the GCMs in
simulating various precipitation indicators are shown in Table 5. The GCMs were �nally selected by applying the criteria
that it was not ranked below the median rank (below 9th position) in simulating any of the precipitation indices. The
process selected EC − Earth3 − Veg, MRI − ESM2 − 0 and NorESM2 − MM. These three GCMs showed consistent
projections and also performed best in simulating past climate.
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Table 1
Ranking of GCMs for their ability to simulate the studied region's precipitation indices. Numbers in bold are the top 50th

percentile, while the �nal selection GCMs are highlighted in bold.
GCMs rx1day rx5day sdii r10mm r20mm rnnmm cdd cwd r95ptot r99ptot prcptot

ACCESS 
− CM21

13 15 15 14 13 13.5 18 9 13 13 14.5

CanESM5 18 18 18 18 18 18 16 17 18 18 18

CMCC − 
ESM2

9 7 10 5 6 6 4 7 5 5 6

EC − 
Earth3 − 
Veg − LR

10 7 2 6.5 8 2 1 1 6 7 3.5

EC − 
Earth3 − 
Veg

8 5 1 8 9 6 4 3 7.5 8.5 7

EC − 
Earth3

6 7 3 9 10 8.5 8 6 7.5 8.5 8

GFDL − 
ESM4

5 9 4.5 4 2 8.5 6 11 3 3 5

INM − 
CM4 − 8

15 13 12 16 17 15 14 12 15 14 16

INM − 
CM5 − 0

17 15 16 15 16 13.5 12 14.5 12 12 13

IPSL − 
CM6A − 
LR

3.5 4 8 2 3 4 10 18 2 2 2

KACE − 
1−0 − G

16 17 17 17 14 17 15 14.5 17 17 17

MIROC6 12 15 13 13 12 10 9 16 10.5 10 10

MPI − 
ESM1 − 
2−HR

7 10 11 6.5 4 11 17 10 10.5 11 9

MPI − 
ESM1 − 
2−LR

11 11 9 12 11 12 11 8 16 16 14.5

MRI − 
ESM2 − 0

2 1 6 1 1 1 2 4.5 1 1 1

NorESM2 
− LM

14 12 14 11 15 6 13 2 14 15 11

NorESM2 
− MM

3.5 3 7 3 7 3 4 4.5 4 4 3.5

TaiESM1 1 2 4.5 10 5 16 7 13 9 6 12

4.2 Uncertainties using all and selected GCMs
The MME mean and uncertainty in future projections of the indices using all GCMs and selected GCMs were evaluated
to show how selected GCMs reduced projection uncertainty. The MME and 95% CI band of the projections of Rx1day
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and Rx5day using all GCMs and selected GCMs for different SSPs for 2020–2099 are presented in Figs. 5 and 6 as
examples. It indicated that the CI band of selected GCMs was much thinner (with less uncertainty) than all GCMs in all
cases. Consistent �ndings across multiple indices point to sizable reductions in uncertainties when employing only
some GCMs rather than all of them.

4.3 Projected changes using all and selected GCMs
The spatial changes in precipitation indices using all GCMs and selected GCMs' MME with their 95% CI band values
were estimated to compare the relative discrepancy. Figures 6 and 8 show the outcomes for Rx1day and Rx5day,
respectively. The results for other indices are presented in supplementary materials (from �gure S1 to S9). Figure 6
shows the historical and projected changes in Rx1day based on the MME median, 2.5th and 97.5th percentiles of all
GCMs and selected GCMs for two future periods and two SSPs, 1-2.6 and 5-8.5. The MME median of all GCMs and
selected GCMs for the historical periods ranged between 5 and 44 mm. Furthermore, the MME median of all GCMs for
SSP1-2.6 and SSP5-8.5 remained almost identical in both futures, except for far future in SSP5-8.5. The median MME
of the chosen GCMs projected an increase in Rx1day across the board, with a few isolated exceptions in the country's
central and southern regions. Contrarily, all GCMs indicated a rise of up to 15 mm in median MME. SSP5-8.5 showed
the best prospective increase. The 2.5th and 97.5th percentile changes of Rx1day using all GCMs were much lower and
higher, respectively than those estimated using the selected GCMs. The average change for all GCMs in the 2.5th and
97.5th percentile were 2.79 and 11.29, respectively, while it was 0.80 and 6.16 mm, respectively, for the selected GCMs,
respectively.

The projected changes in Rx5day based on the MME median, 2.5th and 97.5th percentiles of all GCMs and selected
GCMs are presented in Fig. 8. The pattern of MME of all GCMs and selected GCMs for the future periods were like
Rx1day. The results indicate less uncertainty range in the MME median of the selected GCMs than all GCMs. The
average change (median) for all GCMs was 6.58, while it was 5.77 for the selected GCMs, respectively. The above two
�gures and the supplementary �gures (S1 to S9) revealed the superiority of the GCMs selected in this study for
projecting precipitation extremes over Pakistan.

4.4 Projection of precipitation extremes using selected GCMs
The geographical changes in precipitation indices using selected GCMs for three SSPs were estimated to show their
future projection changes. The MME median change of the selected GCMs for two future periods, compared with the
historical period 1975 − 2014, were estimated for this purpose. Results for Rx1day, Cdd, R95ptot, R10mm and sdii are
presented in Figs. 8 to 13. Results for other indexes are included in the appendices (Figures S10 to S14). The
anticipated shifts in Rx1day across Pakistan are depicted spatially in Fig. 9. Rx1day will range from − 9 mm to 13 mm
for various SSPs, depending on where in the country you are. For all SSPs and future periods, the spatial pattern
showed that Rx1day decreased or remained constant in the western arid region while increasing in the northeast high
elevated areas. However, there was a large variability in projections for different SSPs in the far future. SSP2-4.5
showed decreased Rx1day over most of the study area, while SSP5-8.5 indicated an increase of 1 to 13 mm over most
of the country. However, the discrepancy in the spatial distribution was relatively less for the near future. It was also less
between the near and far futures for SSP1-2.6. This indicates a large uncertainty in future projections of Rx1day in the
far future for higher SSPs.

Figure 9 indicates the geographical distribution of projected changes in Cdd over the study area. The results revealed a
change in Cdd over Pakistan by -15 to 15 days. A decrease in Cdd dominated most regions for all SSPs and future
periods. Similarly, a relatively more discrepancy was observed among SSP projections in the far future than in the near
future. The change was negative for SSP1-2.6 in the near future (-2.54 days), while it was 1.31 days in the far future.
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The opposite pattern was observed in SSP2-4.5 and 5-8.5, with the highest decrease in the future with − 15 and − 13
days, respectively. However, there was an increase of up to 8 days in the northern high elevated areas in the far future
for different SSPs.

Projected changes in yearly total precipitation (Prcptot) of more than 1 mm for all SSPs and both future periods are
shown in Fig. 10. The results revealed an overall increase in the study area up to 57 mm, especially in the north region.
However, a decrease of 11 mm was observed in the south and east in the near future for SSP2-4.5. The most increase
was in the northern regions in the far future for SSP5-8.5. While the Prcptot decline was more pronounced in the near
future, an increase was more pronounced in the far future across the entire study area. Figure 11 shows the projected
changes in R95ptot under three SSPs and future periods. The results showed an overall increase of up to 38 mm in both
future periods for all SSPs, except a decrease of 8 mm in the south and east in the near future for SSP2-4.5. However,
the highest increase was observed in the north in the far future for SSP5-8.5. Both indices were similar in their pattern of
increase and decrease.

Figure 12 presents projected changes in R10mm for three SSPs and two future periods. R10mm increased by two days
in both the future and present periods across most of the research area. However, a small decrease of 2 days in the
southern and eastern regions along the Indian border was observed in the near future for SSP2-4.5. In the far future,
SSP5-8.5 showed the largest 7-day increase in the north. Figure 13 shows projected changes in Sdii. It would slightly
change (± 1 mm/day) in the near future for all SSPs, except for a decrease in the central and southern regions for SSP2-
4.5. In contrast, precipitation will be more intense (an increase of Sdii by more than 1 mm/day) in the far future,
especially for SSP5-8.5.

5. Discussion
The present study evaluated CMIP6 GCMs in replicating the precipitation indices proposed by ETCCDI using a hybrid
approach. Past research has mostly focused on evaluating CMIP5 and CMIP6 GCMs and their abilities to stimulate the
country's average precipitation and temperature (Ullah et al. 2018; Almazroui et al. 2020; Iqbal et al. 2020; Waseem et al.
2022). No study assessed CMIP6 GCMs' skill in replicating precipitation extremes indices in the study area. In this study,
20 CMIP6 models were used to evaluate their skill in simulating precipitation indices through a hybrid-envelope
approach. The envelope approach suggested discarding the Fgoals − g3 and ACCESS − ESM1 − 5 in the initial screening
as their projections were out of the 95% CI band for most indices. After comparing ERA5 data from the historical era
(1975–2014) with the results of GCM simulations of precipitation indices, the KGE was used to determine a �nal
ranking for the GCMs. Three models, EC-Earth3-Veg, MRI-ESM2-0 and Nor-ESM2-MM, were most successful in
consistently simulating the precipitation indices in the future and duplicating extremes of the reference period. The
temporal analysis of extreme indices projections using the selected GCMs indicated a more signi�cant improvement in
uncertainty reduction than all GCMs. The 95% CI band of selected GCMs was much narrower than all GCMs for all
SSPs. Furthermore, the projected spatial changes in indices based on the MME median, 2.5th and 97.5th percentile of
selected GCMs showed much less uncertainty than those using all GCMs.

Generally, future projected changes in the median MME of selected GCMs revealed an increase in Rx1day, Prcptot,
R95ptot, R10mm and Sdii indices in the most study area in the far future for all SSPs. However, the greatest changes
were observed in northern high-elevated areas, followed by southern parts for SSP5-8.5 in the far future. The �ndings
are in line with those of other research efforts (Ali et al. 2015, 2019; Wu et al. 2017; Iqbal et al. 2020; Saddique et al.
2020), which revealed more wet climate in future and further increase in precipitation in northern high elevated areas.
However, an increase in the indices may prevail over more frequent �oods in the speci�ed regions, such as northern
areas. It can damage life, agriculture, food, water resources, and properties.
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Furthermore, projected changes in Cdd indicated a decrease in most areas, except in the north for different SSPs in both
future periods. The results are aligned with previous studies (Ali et al. 2019; Sajjad and Ghaffar 2019; Reddy and
Saravanan 2023). For accurate predictions of future climate extremes in the region, this study recommended the chosen
GCMs. Furthermore, the elevated northern region found an overall increase in all precipitation indices for all SSPs. This
area provides the majority of the country's fresh water. Hence, �ndings point to the detrimental effects of climate
change on the nation's water supplies. Findings from this study may help policymakers develop adaptation methods to
lessen the effects of climate change.

6. Conclusion
The purpose of this research was to identify the best CMIP6 GCMs for forecasting precipitation indicators in Pakistan.
As a result, the CMIP6 GCMS were ranked according to their ability to project the heaviest precipitation events. The
study revealed EC-Earth3-Veg, MRI-ESM2-0 and Nor-ESM2-MM as the best model for simulating future precipitation
extremes consistently and replicating historical precipitation extremes reliably. The results revealed a considerable
decline in uncertainties in the projections of all precipitation indices using MME of selected GCMs compared to all
GCMs. Most types of extreme precipitation were projected to alter signi�cantly throughout the study's period using the
chosen projection method. It was predicted that the northern areas with the highest elevation would experience the
greatest increase in extremes, followed by the southern regions. Future periods would have larger rises for SSP5-8.5.

The increased precipitation amount and intensity indicated the noticeable climate change impact in the northern sub-
Hymalayan regions, the major source of all major rivers. Flooding may become more common in the future as a result
of the predicted wetter climate. This may result in loss of agriculture and damage to infrastructures. Therefore, the
results of the study would be helpful for policymakers to combat climate change by developing mitigation strategies.
The present study employed 20 GCMs, as those were only available when the study was conducted. More GCMs can be
taken into account to �nd the best possible subset in the future. Besides, GCMs can be selected based on both
precipitation and temperature extremes to increase their applicability for a wider range of climate change impact
assessments.
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Figures

Figure 1

Map of the study area
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Figure 2

Procedures used in the research.
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Figure 3

Future projections of (a) one-day maximum precipitation (Rx1day) and (b) Simple daily intensity index (Sdii) by all
GCMs for all SSPs.
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Figure 4

Temporal evaluation of annual mean Rx1day (mm) for all GCMs (yellow) and selected GCMs (blue) for different SSPs:
(�rst row) SSP1-2.6 and SSP2-4.5 and (second row) SSP3-7.0 and SSP5-8.5. The shaded portion indicates a 95%
con�dence interval band.
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Figure 5

Consistent with Figure 4, but with Rx5day (mm).
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Figure 6

Spatial changes in Rx1day (mm) in the study area indicating 97.5th percentile, median and 2.5th percentile of all GCMs
and selected GCMs for the historical period and in the near (2020−2059) and far (2060−2099) futures for SSP1-2.6 and
SSP5-8.5.
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Figure 7

Consistent with Figure 6, but with Rx5day (mm).
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Figure 8

Spatial distribution of changes in Rx1day (mm) in study area indicating Median MME of selected GCMs in the period of
(2020−2059) and (2060−2099) for different SSPs.
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Figure 9

Consistent with Figure 8, but with Cdd (day).
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Figure 10

Consistent with Figure 8, but with Prcptot (mm)
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Figure 11

Consistent with Figure 8, but with R95ptot (mm)
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Figure 12

Consistent with Figure 8, but with R10mm (day)
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Figure 13

Consistent with Figure 8, but with Sdii (mm/day)
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