Development of an immune-related gene pairs signature for predicting clinical outcome in lung adenocarcinoma
Background Lung adenocarcinoma (LUAD) is the main pathological subtype of Non-small cell lung cancer. The aim of this study was to establish an immune-related gene pairs (IRGPs) signature for predicting the prognosis of LUAD patients.
Methods We downloaded the gene expression profile and immune-related gene set from TCGA and ImmPort database, respectively, to establish IRGPs. Then, IRGPs subjected to univariate Cox regression analysis, LASSO regression analysis and multivariable Cox regression analysis to screen and develop a IRGPs signature. The receiver operating characteristic curve (ROC) was applied for evaluating the predicting accuracy of this signature by calculating the area under ROC (AUC) and data from GEO was used to validate this signature.
Results A IRGPs signature with 8 IRGPs was constructed. The AUC for 1- and 3-year overall survival in TCGA set was 0.867 and 0.870, respectively. Similar result was observed in the AUC of GEO set and Total set (GEO set [1-year: 0.819; 3-years: 0.803]; Total set [1-year: 0.845; 3-years: 0.801]). Survival analysis of three sets demonstrated high-risk LUAD patients exhibited poorer prognosis. The multivariable Cox regression indicated that risk score was independent prognostic factors.
Conclusions We developed a novel IRGPs signature for predicting prognosis of LUAD.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Posted 11 May, 2020
Development of an immune-related gene pairs signature for predicting clinical outcome in lung adenocarcinoma
Posted 11 May, 2020
Background Lung adenocarcinoma (LUAD) is the main pathological subtype of Non-small cell lung cancer. The aim of this study was to establish an immune-related gene pairs (IRGPs) signature for predicting the prognosis of LUAD patients.
Methods We downloaded the gene expression profile and immune-related gene set from TCGA and ImmPort database, respectively, to establish IRGPs. Then, IRGPs subjected to univariate Cox regression analysis, LASSO regression analysis and multivariable Cox regression analysis to screen and develop a IRGPs signature. The receiver operating characteristic curve (ROC) was applied for evaluating the predicting accuracy of this signature by calculating the area under ROC (AUC) and data from GEO was used to validate this signature.
Results A IRGPs signature with 8 IRGPs was constructed. The AUC for 1- and 3-year overall survival in TCGA set was 0.867 and 0.870, respectively. Similar result was observed in the AUC of GEO set and Total set (GEO set [1-year: 0.819; 3-years: 0.803]; Total set [1-year: 0.845; 3-years: 0.801]). Survival analysis of three sets demonstrated high-risk LUAD patients exhibited poorer prognosis. The multivariable Cox regression indicated that risk score was independent prognostic factors.
Conclusions We developed a novel IRGPs signature for predicting prognosis of LUAD.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10