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Abstract
Keeping global warming from evolving into irreversible climate disaster requires immediate and sustained decarbonization of
global energy systems. Of urgent priority are the energy systems in low- and middle-income countries (LMICs) where billions of
people are projected to gain energy access in the next several decades. Therefore, leapfrogging traditional fossil fuel-based
electricity production in favor renewable energy technologies is a critical issue area for sustainability. In the Democratic Republic
of the Congo, political and economic challenges mean $44B in external investment is required to achieve its 2030 emissions
reduction targets. Additionally, RETs are often more expensive.

This study sought to generate, evaluate, and recommend possible national policies for the DRC government to implement to most
effectively boost growth and investment in RETs. Financial incentives were identi�ed as the policy type most practical for DRC.
Modeling the resulting energy systems for policy pathways involving a 16% RET subsidy, a 70% fossil fuel tax, and both in
combination relative to no-policy baseline scenarios, the scenarios including the tax had the lowest net costs and the highest
proportion of RETs (above 90%). Additionally, despite current reliance on hydropower to ful�ll 98% of its energy needs, hydropower
plays a very minor role in all modeled scenarios. Finally, a post-modeling market potential assessment was performed on the
technology that dominated off-grid supply across policy pathways: the 0.3 kW small solar home system (SHS). Based on learning
rates for solar PV, demand for the small SHS system in DRC (>160 million units in total) was found to be su�cient to substantially
reduce the unit cost as deployment scales.

Putting results into context, emissions reductions for the policy pathways were higher than a past study focused on distributed
RETs in DRC, and system costs were 15% higher than estimated in other analysis. These results provide a novel contribution to the
literature by demonstrating how �nancial incentive policies can in�uence RET uptake in DRC speci�cally. Ultimately, this study
yielded four policy recommendations for the DRC government:

1. Pursue �nancial incentives to catalyze DRC’s renewable energy supply

2. Tax fossil fuel energy production

3. Re-evaluate focus on hydropower

4. Promote DRC as a healthy market for solar home systems

Introduction
Compared to other world regions, energy demand in sub-Saharan Africa is expected to grow the fastest, with a population set to
double by 2050 (IEA, 2021a). Satisfying this demand will require an unprecedented increase in energy production, especially as
the global community makes progress toward achieving Sustainable Development Goal 7 (provide energy access for all) (United
Nations Development Programme, 2021). If this expansion relies predominantly on fossil fuels, then by 2050, African energy
systems will have an emissions intensity twice as high as those in the rest of the world (van der Zwaan et al., 2018). Therefore, a
critical requirement for meeting the Paris Agreement is ensuring sub-Saharan African countries leapfrog traditional fossil fuel
energy development to instead generate a large majority of their energy supply from renewable sources.

 

Achieving this leapfrogging involves intentional national energy planning strategies that prioritize renewable energy technologies
(RETs) over fossil fuels. However, these strategies remain infeasible and unrealistic while RETs are more costly. Yet, governments
can implement policies to overcome these cost disparities. A recent study showed that not only does the decarbonization of
energy supply contribute most to overall emissions mitigation but it is also highly responsive to policy signals (Bertram et al.,
2021). Many other studies model possible scenarios to achieve varying outcomes of RET penetration in the energy systems of
LMICs and then subsequently make policy recommendations to inform energy planning, such as for Chile (Ferrada et al., 2022),
Costa Rica (Godínez-Zamora et al., 2020), Egypt (Rady et al., 2018), Ethiopia (Pappis et al., 2021a), and Tanzania (Rocco et al.,
2021). This study builds on past research by taking the less commonly used inverse approach of developing model scenarios
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based on the implementation of novel policies and then analyzing the energy system outcomes. In this way, results from this
study are intended to be practical for a LMIC government.

 

In 2020, an estimated 82 million people in the Democratic Republic of the Congo (DRC) did not have access to electricity, the most
of any country in the world (IEA, 2022). Due to political, infrastructural, and economic fragility, centralized grid expansion efforts in
DRC have not led to increased energy access and the current policy environment is not favorable for private energy investment
(World Bank, 2020). DRC was selected as the country of focus for this study because it has a substantial immediate need for
energy access and insu�cient policies to attract the private investment required to enable this access.

 

The primary research question for this study is: what actions should the DRC government take to develop the most sustainable
and cost-effective energy system as demand increases? Thus, the overall research objective that follows from this question is:
generate, evaluate, and recommend possible national policies for the DRC government to implement to most effectively boost
growth and investment in renewable energy generation over the next several decades.

 

BACKGROUND
The current generation pro�le for the DRC is 98% renewable energy, almost exclusively from hydropower (IEA, 2019) but the
country generates less than �ve gigawatts (GW) of hydropower out of a potential of 100-110 GW (Oyewo et al., 2018). Thus, the
future role of hydropower is carefully considered in the current study’s scenario results. DRC has commited to a nationally
determined contribution (NDC) of 21% emissions reduction by 2030, the attainment of which is largely conditional on external
investment (MEDD, 2021).

 

In October 2021, DRC formally updated the ambition of its nationally determined contribution (NDC) to a 21% reduction in
economy-wide emissions by 2030 relative to projected business as usual emissions (BAU) (430 Mt CO2e). (DRC does not have a
more speci�c NDC sub-target focused on emissions reduction or mitigation in the energy sector.) A 19% reduction is conditional
on international funding—referred to as foreign direct investment (FDI)—representing more than $44B of the estimated $48.68B in
funding required to meet the full NDC (MEDD, 2021). DRC is not atypical: twenty-six African countries have conditional NDCs that
rely on external investment (Senshaw and Kim, 2018). Conditional funding has become a common characteristic of NDCs for
LMICs.

 

Sources from both academic and grey literature indicate that DRC is not currently conducive to external investment in RETs
because of a lack of energy policies impacting RETs explicitly (Kusakana, 2016; World Bank, 2020; UK Aid, 2019). The most recent
energy policy was passed in 2014, which liberalized on-grid electricity generation and T&D, established the Electricity Regulation
Authority (ARE) and the National Agency for Electri�cation and Energy Services in Rural and Peri-Urban Areas (ANSER), but did not
address RET cost or investment (ARE, 2014). Making DRC a favorable country for business investment will substantially increase
the chance of success for its NDC.

 

The DRC National Development Plan for 2019-2023 includes �ve major strategic pillars. Pillar IV, Territory Development, has major
objectives for the electricity sector, including leveraging greater private participation to �nance the sector and intensifying
investments in RETs. The funding section of the plan highlights accelerating reforms to improve the business climate and
implementing speci�c incentive measures offering tax and customs advantages by sector as two major strategies for attracting
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the FDI needed (UNDP, 2021). The importance of these strategies is further highlighted by DRC’s stated goals of 30% electri�cation
by 2025 and 60% electri�cation by 2030 (ANSER, 2020). Therefore, a priority gap for the DRC government to address is
understanding which policies could be introduced to improve the business environment for RET investment.

 

There are three types of RET-supporting policies: targets, regulatory, and �scal incentives/public �nancing (REN21, 2021). RET
�scal incentive policies were selected as the focus for this study because targets would be politically and legally challenging for
the DRC to implement and regulatory policies cannot be easily integrated into energy system modeling.

 

Currently, DRC has a standard value-added tax (VAT) rate of 16% that is applied to all goods and services bought or sold for use or
consumption in-country (PwC, 2022). VAT exemptions are applied to speci�c types of goods. Notably, “equipment, material, and
chemicals imported by mining and oil companies for prospecting, exploration, and research” are VAT-exempt, providing a �nancial
incentive for fossil fuel-based energy production (International Trade Administration, 2021). DRC import duties add up to an
additional 19% to the cost of RETs. In theory, RETs should be exempt from VAT and customs import duties in DRC, but this has not
been properly codi�ed. Thus, the exemption is applied inconsistently, and, in many cases not at all (USAID and Power Africa,
2019). For two scenarios in this study, a conservative 16% subsidy (cost reduction) was applied to the capital cost of RETs for
simplicity, which the DRC government could achieve through uniform application of a VAT exemption, or, if necessary, through a
partial reduction of customs import duties.

For two scenarios in this study, a 70% tax (cost increase) was applied to the capital cost of fossil fuel technologies. Fossil fuel
subsidy reform dominates the literature on applying �nancial disincentives to fossil fuel energy production (Jakob et al., 2014;
Skovgaard and van Asselt, 2019). But, unlike most other countries, DRC does not have post-tax subsidies on petroleum, coal, or
natural gas that could be eliminated (International Monetary Fund, 2015), so these approaches are not applicable. However, as
detailed in the previous section, one straightforward tactic the DRC government might employ to implement a fossil fuel tax would
be to eliminate the current VAT-exemption in place for fossil fuel-based energy production. In �nancial terms, removing the VAT-
exemption (fossil fuel subsidy) would be equivalent to introducing a 16% tax.

Methods
Various secondary datasets were used to source inputs and constraints to leverage Open Source Energy Modelling System
(OSeMOSYS), which is a bottom-up, least cost energy systems optimization model that is useful for energy infrastructure
planning (Howells et al., 2011). Figure 1 shows the Reference Energy System (RES) used in this study, detailing all the
technologies used and how they relate to each other. Parameter data values used in modelling are available in the supplementary
materials accompanying this paper, and for values not explicitly states, those from (Cannone et al., 2021) were used.

 

On- and off-grid, renewable and non-renewable energy technologies were de�ned in the model to emulate the DRC power sector.
Attributes of each technology incorporated in the model include, capacity factors, cost data, and operational life. Additionally, as
needed, constraints were applied to technologies to limit their capacity and/or activity for speci�ed year(s) to capture resource
potential limitations of DRC.

 

Five off-grid technologies were de�ned (Table 1) and constrained to limit off-grid generation to a forecasted percent of total
generation by year (Global Electri�cation Platform, 2020). Collectively, activity from these �ve technologies must ful�ll (but cannot
exceed) the annual off-grid demand for the model period, subject to additional scenario-speci�c constraints. Achieving this using
OSeMOSYS required grouping these �ve technologies and introducing constraints to force the production activity of this off-grid
technologies group to exactly meet off-grid demand for all years.
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Table 1. Off-grid technologies included in model scenarios
 

Off-grid Technology Descriptions
Off-grid Diesel Generator (Decentralized) (1kW)

Solar PV (Distributed) with 2-hour storage (mini-grid)
Medium Solar PV (Decentralized) with 2-hour storage (1kW off-grid solar home system)
Small Solar PV (Decentralized) with 2-hour storage (0.3kW off-grid solar home system)

Off-grid Hydropower

 

Table 2 provides an overview of the five scenarios modeled using OSeMOSYS. RF, FH, and RF+FH are
collectively referred to as the policy pathways.

 
Table 2. The five scenarios modeled in this study, their short names, and a brief overview of their most important
features

Full Scenario Name
Scenario Short

Name Scenario Overview
Unconstrained UNC No additional model constraints added

Business as Usual BAU No investment in off-grid renewables permitted
Renewable Friendly RF 16% capital cost reduction (subsidy) applied to all

RETs
Fossil Hostile FH 70% capital cost increase (tax) applied to all fossil fuel

technologies
Renewable Friendly and Fossil Hostile

(combined)
RF+FH Both 16% RET subsidy and 70% fossil fuel technology

tax applied

 
Scenario 1: Unconstrained

No additional constraints other than those described in the previous sections were used (i.e., the model is unrestricted in selecting
the mix of off-grid technologies described in Table 1 to meet off-grid demand for all years). An unconstrained scenario is useful
for comparison to the other scenarios because on- and off-grid demand can be met with the least cost technologies in an
environment where no new policies have been introduced.

 

Scenario 2: Business as Usual

This scenario is intended to best mirror the current energy production development trajectory for DRC into the future. Importantly,
it does not introduce constraints to maintain the current generation technology mix into the future, but rather maintains the current
policy environment. It is assumed that no investment is made in off-grid renewable technologies. To achieve this, the activity
limits placed on the grouped off-grid technologies were removed and instead placed on the diesel generator technology, forcing all
off-grid generation to be realized by this technology.

 

Scenario 3: Renewable Friendly

Capital costs for all RETs (concentrated solar power, geothermal, hydro, solar, and wind) were reduced by 16% from 2022,
simulating the introduction of VAT/customs import duty exemptions.

 

Scenario 4: Fossil Hostile
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Capital costs for all non-RETs (biomass, coal, oil, and natural gas) were increased by 70% in 2022, simulating the introduction of a
tax on energy generation from these technologies. Sensitivity testing model runs using incremental +10% increases in capital
costs from +20% to +70% found that the most pronounced change in model outputs was achieved with a 70% increase in 2022.

 

Scenario 5: Renewable Friendly + Fossil Hostile

The �nal scenario combines the capital cost changes made in scenarios four and �ve.

 

Market Potential Assessment

Based on modeling outputs, a market potential assessment was conducted on the off-grid technology that dominated all policy
pathways. This analysis not only quanti�es projected cost savings as capacity increases but also provides a tangible market
potential forecast to spur business investment (Oluleye et al., 2021).

The factor  can parametrize the learning rate (LR) of a technology in logarithmic terms, capturing the “progress ratio” for a
technology, or how much the cost of a technology is reduced when its installed capacity doubles (McDonald and Schrattenholzer,
2001). The initial number of units and initial capital cost of the technology can then be represented as A0 and UC0, respectively,
while the new cumulative number of units and new capital cost can be represented as A and UC. Therefore, for a given year, the
new capital cost incorporating learning-by-doing is calculated as

 (Eq. 1)

(Oluleye et al., 2021).

Results And Analysis
Generation and Capacity Pro�le

Figure 2 provides a view of the annual electricity production results for all �ve scenarios, while Figure 3 provides a complementary
snapshot of cumulative capacities by technology for each scenario. By 2065, production from RETs is 66.2% for UNC, 30.3%
(BAU), 81.8% (RF), 90.1% (FH), and 91.4% (RF+FH).

 
Although DRC’s planned hydropower projects are included in the BAU scenario and all subsequent scenarios, on-grid hydropower
capacity remains well below the technical potential for the country. Like geothermal, generation from on-grid utility scale solar PV
(both with and without two hours of storage) is present across all scenarios and contributes close to 50% of on-grid supply. Coal
production after 2050 contributes to as much as one-third of production for the UNC, BAU, and RF scenarios. All production from
coal ceases by 2056 in the FH and RF+FH scenarios, which is in-part replaced by production from combined-cycle gas turbine
(CCGT) natural gas plants. 

 

As expected from the constraints applied to BAU to prevent expansion of off-grid RETs, all off-grid demand is ful�lled by
distributed diesel generators. Disregarding BAU, the four other scenarios have a consistent split of which technologies supply off-
grid capacity. By 2065, these three RETs reach 42.3% or 50 GW of off-grid capacity for small SHS, 37.1% or 43.8 GW for medium
SHS, and 20.6% or 24.3 GW for decentralized hydropower.
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Total System Costs

Based on the calculations above, the updated total system costs inclusive of the policy impacts of each scenario are shown
in Figure 4. Costs for the UNC and BAU scenarios remain the same, while the RF scenario cost increased from the subsidy, and the
FH scenario cost decreased from the tax. The RF+FH scenario cost both increased from the subsidy and decreased from the tax,
but since the revenue generated from the tax exceeded the cost of the subsidy, the net change for RF+FH was a cost reduction.
Previously, before policy costs were included, the RF scenario was the cheapest overall, but with the updated system costs that
account for the policy costs, the FH scenario becomes cheapest. The policy pathway scenarios remain cost competitive with each
other when the total cost for the model period, including the government costs, is considered.

 

Emissions Pro�le

Plotting CO2e emissions over the model period demonstrates differences in emissions over time based on the emissions
associated with operational energy production technologies unique to each scenario (Figure 5). The BAU scenario has the highest
annual emissions overall for the entire duration, likely largely due to the constraint on off-grid RETs. Around 2055, BAU emissions
dip substantially, which is likely attributable to several fossil fuel plants built earlier in the modeling period meeting the ends of
their operational lives at the same time. The emissions trajectories for the remaining scenarios stay constant until around 2050
and then begin to diverge. DRC’s 2030 NDC has been projected into the future, and notably only the FH and RF+FH scenarios
achieve this level of ambition. These results show that as electricity demand increases substantially in DRC in the coming
decades, the power sector is likely to make a larger contribution to emissions than in the past, signifying the importance of more
substantial emissions mitigation actions in other sectors.

 

Considering cumulative emissions for the period from 2021 through 2065, the RF+FH scenario has the lowest level of emissions,
followed closely by the FH scenario. The RF and UNC scenarios have similar cumulative emissions, while emissions for BAU are
greatest (46% higher than the RF+FH scenario).

 

Market Potential Assessment

In four out of �ve scenarios (including RF+FH, the scenario with the highest proportion of RETs), 50 GW of small SHS cumulative
capacity is reached by the end of the model period, demonstrating a substantial contribution to off-grid generation. An off-grid
technology was prioritized for this additional assessment since off-grid supply could make up more than 40% of total energy
generation in DRC by 2030 (Global Electri�cation Platform, 2020). As a worked example, because the rated power of the small
SHS is 0.3 kW, then for a speci�ed year

 

 (Eq. 2)

 

meaning the total cumulative capacity of the small SHS in each year in kW divided by their 0.3 kW size yields the values of
A needed for Equation 1. Capital cost inputs in OSeMOSYS are represented in $/kW, so for a speci�ed year
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resulting in the initial per unit costs used for UC0 in Equation 1. Using model cost inputs and capacity outputs from the RF+FH
scenario and Equations 1, 2, and 3 yields the values in Table 3. There was no small SHS capacity added in the scenario in 2021,
so the values for A0 and UC0 used in Equation 1 are based on the initial capacity added in 2026.

Table 3. Parameters for small SHS market potential calculation using a 23% LR and Equation 1.

Year A0 (millions of units)A (millions of units) UC0 ($) UC ($)
2021 0 0 519.30 519.30
2026 0 28.25 263.36 263.36
2031 28.25 33.20 263.36 247.81
2036 28.25 58.93 263.36 199.59
2041 28.25 100.60 263.36 163.14
2046 28.25 114.01 263.36 155.62
2051 28.25 150.73 263.36 140.07
2056 28.25 166.67 263.36 134.86
2061 28.25 166.67 263.36 134.86
2065 28.25 166.67 263.36 134.86

Figure 6 plots the relationship between unit cost and manufacturing volume at all three learning rates, and the resulting curves
were �t with power function trendlines.

From an initial capital unit cost of $519.30 in 2021, the unit cost of the small SHS is projected to reduce considerably once 166
million units are deployed. For the high, mean, and low LRs, the minimized cost at that level of deployment is $51.82 (90%
reduction), $134.86 (74% reduction), and $201.08 (61% reduction), respectively. For all three learning rates, by 2031 there is at
least a 50% cost reduction when 33.2 million units are installed, which is roughly one-�fth of the total volume needed to support
off-grid demand through 2065. At a 23% LR, in later years, the trajectory of cost reduction from projected demand converges
toward the costs endogenously incorporated in the RF+FH scenario (Table 4).

Table 4. Comparison of capital unit costs for 0.3 kW SHS used as inputs for the RF+FH scenario and the demand-
based capital unit costs for the same system from the market potential assessment using a 23% LR

Year RF+FH Unit Cost ($) Market Potential Assessment Unit Cost ($)
2026 263.36 263.36
2031 173.59 247.81
2036 162.60 199.59
2041 152.30 163.14
2046 142.66 155.62
2051 135.38 140.07

 
After the initial year of 2026, the unit costs from the market potential assessment are higher than those input in the model, but the
difference between the two costs decreases over time. For the 47% LR, the market potential assessment unit costs are much lower
than the model input unit costs. As a result, for LRs greater than 23%, annual capital unit cost reductions from projected demand
are likely to be higher than those achieved by the RF+FH policies alone.
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Overall, in the context of the RF+FH scenario and the policies that enable it, the market potential assessment suggests there is
su�cient demand for small SHS in the DRC market to substantially reduce the unit cost as deployment scales. 

Discussion
Seven key takeaways summarize the results from the model runs and succeeding market potential assessment. (1) In no scenario
does on-grid hydropower come close to DRC’s potential for this renewable energy resource. (2) Instead, solar PV approaches or
hits its on-grid capacity limit in all scenarios. (3) Likewise, supply from off-grid SHS dwarfs decentralized hydro, with the 0.3 kW
SHS contributing the most of all off-grid technologies in scenarios where off-grid RETs are permitted. (4) The generation mix in
2065 is highest for the RF+FH scenario at 91.4% and next highest for FH at 90.1%. (5) Only the FH and RF+FH scenarios have
emissions pro�les that ultimately meet DRC’s projected future NDC. (6) Accounting for total discounted capital, �xed, and variable
costs for the model period, RF is the cheapest scenario, however, FH becomes the most affordable scenario once the costs and
bene�ts to the government of the policies implied by the scenarios are considered. (7) A market potential assessment on the 0.3
kW SHS shows that at only one-�fth of the total deployment in all policy pathways, more than 50% of the cost reduction from
learning-by-doing is achieved.

 

Generation and Capacity Pro�le

In the current study, the RF, FH, and RF+FH scenarios all include policies that are favorable for decentralized RETs, and renewables
made up 70%, 90%, and 91%, respectively of total energy production in 2065. Diverging from the current hydropower dominated
energy mix in DRC, hydropower comprises only a small amount of total capacity in all scenarios modeled in this study. In fact, no
scenarios included further investment in large hydropower beyond residual capacity. Despite DRC’s large hydropower potential,
and even under the hydropower capital cost reductions included in the RF and RF+FH scenarios, hydropower is not a least cost
option for meeting demand. These results are consistent with analysis by Oyewo et al. (2018), who concluded that the power
production intended for the continually delayed large hydropower Grand Inga project could instead be achieved through solar PV
and other renewables. Results from this study suggest that having hydropower play more than a very minor role in future energy
production for DRC will not be the cost-optimal solution. 

 

Total System Costs

Across the �ve scenarios, the total discounted system costs exceed the Africa Energy Outlook (IEA, 2019) cost projection. The
IEA’s sustainable development in Africa scenario estimates $199.4B in total energy costs for DRC for the period from 2019-2040
(2019). Converting to 2021 dollars as used in this study, this amounts to a total cost of $215.1B. From 2021-2040, the cheapest
scenarios in this study were RF and RF+FH, both costing approximately $247.4B, which is 15% more expensive while also
including two fewer years. Since no other future cost projections for the DRC energy system were identi�ed for comparison, this
study provides a helpful contribution to the literature on the cost of a sustainable transition. The IEA cost provides a lower bound
and this study’s total system cost is an upper bound, but with more recent data, the current study’s $247.4B output for 2021-2040
may provide a more up-to-date picture of costs.

 

Emissions Pro�le

A similar comparison to other research can be made for emissions. Relative to UNC, which includes no policy intervention, the
cumulative emissions from the FH scenario are 5.19% lower. Modeling covering �ve LMICs by Abbas et al. (2022) found that every
1% increase in environmental taxes (including market-based �nancial instruments) resulted in a 0.22-0.91% reduction in CO2e
emissions. Based on this �nding, the 70% tax on fossil fuel energy production in FH would be expected to reduce emissions 15.4-
63.7%. Therefore, DRC’s energy mix may not be as responsive to environmental tax interventions as other countries. A possible
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explanation for this difference might be DRC’s lower level of development relative to Brazil, Russia, India, China, and South Africa,
the countries covered in the Abbas et al. (2022) study. Additionally, the total emissions impact of the proposed fossil fuel tax in
this study would extend beyond the power sector, meaning emissions reductions from the FH scenario are likely underestimated.
Another reason may be that DRC’s emissions from energy production are already very low at 98% renewable, which is different
from BRICS countries. A comparison to results from countries more like DRC would be more relevant, but this was not possible
based on existing literature.

 

Market Potential Assessment

Pro�t margins for companies that manufacture SHS for distribution in developing countries are low. Viable business models must
therefore rely on large sales volumes to generate su�cient revenues to make this product segment worthwhile. The results of the
market potential assessment on a 0.3 kW sized SHS show that at volumes of more than 150 million units, which were present
across all policy pathways, unit capital costs decrease as deployment rises at expected LRs for solar PV.

 

STUDY LIMITATIONS AND FUTURE RESEARCH
Many of the results in this study are particularly sensitive to cost inputs for both RETs and non-RETs, with capital cost making the
largest difference, since this makes up more than 90% of total costs for all RETs. Where available, technoeconomic parameters
speci�c to DRC were prioritized, followed by Africa-speci�c data, and as a last resort, global data. Energy and cost data speci�c to
DRC and other sub-Saharan African countries is often out-of-date, and, when accessible, typically only as secondary datasets
from non-peer reviewed sources.

 

TEMBA was the only data source identi�ed that provided an annual energy demand projection for 2021-2070 speci�c to DRC.
According to TEMBA, total annual industrial, commercial, and residential energy demand in DRC will increase more than 32 times
over this time period (Pappis et al., 2021b). Future research is recommended to understand differences in the policy pathway
effects used in this study under alternate demand projections.

 

A review of the research base for power systems planning in West African countries found that the majority of studies have been
conducted by foreign scholars, organizations, and research agencies (Bissiri et al., 2020). This study contributes to that majority.
A key bene�t of the OSeMOSYS modeling method is its much lower complexity and learning time, which should make it easier for
uptake by LMIC energy planners. However, OSeMOSYS-based literature in West African countries is scarce (Bissiri et al., 2020). It
is hoped that the transparency of this study will spur engagement and discourse with the DRC entities who are best equipped to
leverage it for positive change.

Conclusions And Recommendations
This study set out to answer the research question of which actions the DRC government can take to build a sustainable and cost-
effective energy system. Speci�cally, this entails encouraging growth of and investment in a national energy system that uses a
high mix of renewable energy. The results and analysis of the scenarios modeled in this study highlight two policy pathways as
the most favorable for the DRC energy system: FH and RF+FH. Each has its advantages. FH had the lowest net costs for the
results period, even considering the cost reduction from the subsidy for RF+FH. In terms of renewable mix and emissions,
however, RF+FH performed better than FH. Out of the three policy scenarios, RF had the highest ratio of fossil fuel capacity, the
poorest emissions pro�le (both cumulatively and over time),and it was the costliest. In summary, four policy recommendations
addressed to the DRC government arose from this study, which satisfy the overall research objective.
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Recommendation 1: Pursue �nancial incentives to catalyze DRC’s renewable energy supply

Based on DRC’s level of development and political administrative capabilities, �nancial incentives are the most sensible policy for
increasing renewable energy capacity. Implement renewable energy �nancial incentives in the near-term to achieve compounding
results in RET growth, FDI, and development.

 
Recommendation 2: Tax fossil fuel energy production

Because a fossil fuel tax was part of both of the two most favorable policy pathways, explore implementing this policy. In
particular, a simple starting place could be eliminating the VAT exemption for fossil fuel production operations.

 

Recommendation 3: Re-evaluate focus on hydropower

Limited budgets require a careful allocation of funds. This study showed a marked lack of hydropower in the DRC energy mix
across all scenarios, with a much greater focus on solar energy. Perform additional analysis to validate results from this study:
the cheapest renewable solutions for the long-term may not involve large hydropower projects.

 

Recommendation 4: Promote DRC as a healthy market for solar home systems

The market potential assessment performed as part of this study shows that 0.3 kW SHS are deployed in the policy pathways at
su�cient volumes to drive down unit capital costs. Use the results of this study in communications with external organizations to
promote FDI in this RET, which looks to be essential for DRC’s sustainable energy evolution.
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Figures

Figure 1

Reference Energy System for the DRC power sector used in this study
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Figure 2

Electricity production for the model period in petajoules across all scenarios
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Figure 3

Annual capacity for the model period in gigawatts across all scenarios

Figure 4

Total discounted costs of all scenarios, inclusive of policy costs (tax and subsidy) for relevant scenarios
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Figure 5

Model period CO2e emissions plotted for all scenarios compared to the current 2030 NDC and future projected NDC for DRC
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Figure 6

Additional post-model capital cost reduction for a 0.3 kW SHS driven by installed capacity at three possible learning rates for solar
PV in the RF+FH scenario �t with power function trendlines
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