The overall pattern of immune factor staining in most of the COVpos cases supports the hypothesis that innate immune activation (autoinflammation) is a major mechanism for cardiac injury due to SARS-CoV-2 infection. (See Fig. 3)
In severe infection with SARS-CoV-2, the virus is likely disseminated to other organs via infected monocytes and circulating vesicles from infected cells (6). Because many ACE2 receptors are found in the heart, particularly on pericytes, the vasculature of the heart is a convenient target for viral proliferation and innate and adaptive immune system activation. (6, 12–15) Because of SARS-CoV-2’s molecular mimicry of humans’ proteins which have analogous peptide sequences, immune responses against SARS-CoV-2 can be directed towards human proteins. In particular, molecular mimicry was revealed between the human SARS-CoV-2 and heat shock proteins (Hsp), which has been linked to Guillain-Barré syndrome and other autoimmune illnesses. The autoimmune response of SARS-CoV-2 to Hsp further damages the vascular endothelial lining throughout target organs like the heart, leading to activation of vascular endothelium with subsequent damage, coagulation, complement activation, and leukocyte infiltration. (12–15)
Our study highlights the pivotal role of neutrophils in cardiac injury caused by SARS-CoV-2 infection. The increased presence of neutrophils and MPO in cells as well as in interstitial staining debris is evidence of NET formation. Other features include fibrin aggregates, platelets, monocytes, and complement (C4d), which were most prominent in or around venules and arterioles. This combination of factors was not seen in COVneg cases, suggesting this type of inflammation is unique to those infected with SARS-CoV-2.
Recent studies on the lung, serum, and hearts of patients hospitalized for SARS-CoV-2 disease have highlighted the pivotal role of neutrophils (16–18). Neutrophils, together with mononuclear cells, are the first cells attracted to the SARS-CoV-2-infected alveoli recruited by interferons, CCL2, IL-6, IL-1, and other cytokines. On site, they eradicate the virus-infected cells, produce proinflammatory mediators, and secrete various proteases (via NETosis or independently on NETs). One report provides evidence of massive degranulation of neutrophils in the serum. (17) Our study supports these findings as degranulation was found in the cardiac tissue, manifested by MPO positive debris in the interstitium (16). The majority of COVpos cases did not appear to have chronic myocardial injury upon histologic examination. Most cases had scattered areas of ischemic myocyte damage, confirmed by staining with C4d. Often this ischemic damage was localized to the subendocardial space. (16–18)
Many autopsy studies have been published since the SARS-CoV-2 pandemic started and illustrate a variety of pathologic features. A recent meta-analysis of 50 studies comprising 548 autopsy cases found that myocyte necrosis and edema were the most common cardiac findings (median prevalence 100% for necrosis; 55.5% for edema) in patients dying of SARS-CoV-2 infection (19). The analysis also showed evidence that SARS-CoV-2 can be found in the heart in cardiomyocytes and endothelial cells. The median prevalence of virus in these studies was 60.8%, although the amount of virus found in any study using immunohistochemistry or in situ hybridization was minimal. Direct viral infection of the heart may act to further trigger the autoinflammation that is prevalent in these cases. Further work is needed to understand the relationship between direct infection and autoinflammation.
Importantly, we saw no evidence of lymphocytic myocarditis in any COVpos or COVneg cases. The meta-analysis of cardiac findings in patients dying of SARS-CoV-2 infection emphasized the confusion associated with the diagnosis of myocarditis. In the meta analysis, no convincing evidence of lymphocytic myocarditis was found that could not be explained by the improved sampling that autopsy tissue permits relative to endomyocardial biopsy. The median prevalence of myocarditis was 0.0%. Our data support this conclusion. We saw no evidence of lymphocytic myocarditis in our study cases and all the inflammatory cells seen stained as monocytes, macrophages, or neutrophils.(19)
Some confusion about myocarditis in SARS-CoV-2 infection has been generated by the adoption of cardiovascular magnetic resonance (CMR) imaging criteria for myocarditis rather than histologic criteria.(20) CMR findings include T1 mapping abnormalities (suggesting diffuse myocardial changes such as diffuse fibrosis and/or edema); T2, short tau inversion recovery, or T2 mapping abnormalities (more specific for myocardial inflammation, as occurs in acute myocarditis); late gadolinium enhancement (LGE, suggestive of acute myocardial injury and/or myocardial fibrosis); or pericardial involvement—all of which can indicate cardiac pathologies associated with SARS-CoV-2 infection (4, 5, 6). None of these CMR findings are specific evidence of lymphocytic myocarditis according to the classic Dallas criteria (10). All could be related to the findings we report in which there is myocardial damage, ischemia, edema, fibrin thrombi, and cellular infiltrates of neutrophils, monocytes, and platelets. Our findings lend credence to the conclusions of several authors that CMR findings are more likely related to myocardial injury and edema than lymphocytic infiltration with associated myocyte damage. (4–6) We saw no evidence of lymphocytic myocarditis. By contrast, we found immunohistochemical evidence of coagulopathy, neutrophil infiltration, complement activation, and vascular injury. These features were seen only in COVpos samples and could be responsible for the imaging patterns detected.
Limitations
This is a retrospective, single institution study of a selected population without clinical information available. We selected markers based on our hypothesis that autoinflammation was the most important cause of cardiac damage. We did not investigate antibody-mediated responses or search directly for viral antigens. We plan on conducting future studies once we obtain permission to investigate these cases further by accessing their clinical records.