1. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).
2. Warburg, O. The Metabolism of Carcinoma Cells. J. Cancer Res. 9, 148–163 (1925).
3. Vazquez, A. et al. Cancer metabolism at a glance. J. Cell Sci. 129, 3367–3373 (2016).
4. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).
5. Liu, H., Hu, Y. P., Savaraj, N., Priebe, W. & Lampidis, T. J. Hypersensitization of Tumor Cells to Glycolytic Inhibitors. Biochemistry 40, 5542–5547 (2001).
6. Chen, X., Li, L., Guan, Y., Yang, J. & Cheng, Y. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacol. Sin. 37, 1013–1019 (2016).
7. Abdel-Wahab, A. F., Mahmoud, W. & Al-Harizy, R. M. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol. Res. 150, 104511 (2019).
8. Savic, L. J., Chapiro, J., Duwe, G. & Geschwind, J.-F. Targeting glucose metabolism in cancer: a new class of agents for loco-regional and systemic therapy of liver cancer and beyond? Hepatic Oncol. 3, 19–28 (2016).
9. Akins, N. S., Nielson, T. C. & Le, H. V. Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer. Curr. Top. Med. Chem. 18, 494–504 (2018).
10. Shen, R., Olshen, A. B. & Ladanyi, M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906–2912 (2009).
11. Shen, R. et al. Integrative Subtype Discovery in Glioblastoma Using iCluster. PLoS ONE 7, e35236 (2012).
12. Hoadley, K. A. et al. Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin. Cell 158, 929–944 (2014).
13. Hoadley, K. A. et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 173, 291-304.e6 (2018).
14. Zou, Z., Tao, T., Li, H. & Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci. 10, 31 (2020).
15. Ungefroren, H. Autocrine TGF-β in Cancer: Review of the Literature and Caveats in Experimental Analysis. Int. J. Mol. Sci. 22, 977 (2021).
16. Fucikova, J. et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 11, 1–13 (2020).
17. Mittal, V. Epithelial Mesenchymal Transition in Tumor Metastasis. Annu. Rev. Pathol. 13, 395–412 (2018).
18. Yao, D., Dai, C. & Peng, S. Mechanism of the Mesenchymal–Epithelial Transition and Its Relationship with Metastatic Tumor Formation. Mol. Cancer Res. 9, 1608–1620 (2011).
19. Carvalho, J. Cell Reversal From a Differentiated to a Stem-Like State at Cancer Initiation. Front. Oncol. 10, (2020).
20. Taylor, S. et al. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist. Updat. 23, 69–78 (2015).
21. Bailey, K. M., Wojtkowiak, J. W., Hashim, A. I. & Gillies, R. J. Targeting the metabolic microenvironment of tumors. Adv. Pharmacol. San Diego Calif 65, 63–107 (2012).
22. Zhu, L., Yang, F., Li, X., Li, Q. & Zhong, C. Glycolysis Changes the Microenvironment and Therapeutic Response Under the Driver of Gene Mutation in Esophageal Adenocarcinoma. Front. Genet. 12, (2021).
23. Xiao, C. et al. Glycolysis in tumor microenvironment as a target to improve cancer immunotherapy. Front. Cell Dev. Biol. 10, (2022).
24. El Hadi, C. et al. Polygenic and Network-based studies in risk identification and demystification of cancer. Expert Rev. Mol. Diagn. 22, 427–438 (2022).
25. R: The R Project for Statistical Computing. https://www.r-project.org/.
26. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–e47 (2015).
27. R. Gentleman. annotate. (2017) doi:10.18129/B9.BIOC.ANNOTATE.
28. Mark Dunning, A. L. illuminaHumanv3.db. (2017) doi:10.18129/B9.BIOC.ILLUMINAHUMANV3.DB.
29. Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315 (2004).
30. Carvalho, B. S. & Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).
31. Carlson, M. hgu133plus2.db. (2017) doi:10.18129/B9.BIOC.HGU133PLUS2.DB.
32. MacDonald, J. W. hugene10sttranscriptcluster.db. (2017) doi:10.18129/B9.BIOC.HUGENE10STTRANSCRIPTCLUSTER.DB.
33. MacDonald, J. W. hugene11sttranscriptcluster.db. (2017) doi:10.18129/B9.BIOC.HUGENE11STTRANSCRIPTCLUSTER.DB.
34. MacDonald, J. W. hugene20sttranscriptcluster.db. (2017) doi:10.18129/B9.BIOC.HUGENE20STTRANSCRIPTCLUSTER.DB.
35. MacDonald, J. W. hugene21sttranscriptcluster.db. (2017) doi:10.18129/B9.BIOC.HUGENE21STTRANSCRIPTCLUSTER.DB.
36. Bioconductor Core Team. human.db0. (2017) doi:10.18129/B9.BIOC.HUMAN.DB0.
37. Carlson, M. hthgu133a.db. (2017) doi:10.18129/B9.BIOC.HTHGU133A.DB.
38. Project, T. B. hgu219cdf. (2017) doi:10.18129/B9.BIOC.HGU219CDF.
39. Carlson, M. RnAgilentDesign028282.db. (2017) doi:10.18129/B9.BIOC.RNAGILENTDESIGN028282.DB.
40. Carlson, M. HsAgilentDesign026652.db. (2017) doi:10.18129/B9.BIOC.HSAGILENTDESIGN026652.DB.
41. Carlson, M. hgug4112a.db. (2017) doi:10.18129/B9.BIOC.HGUG4112A.DB.
42. Gu, Z., Schlesner, M. & Hübschmann, D. cola : an R/Bioconductor package for consensus partitioning through a general framework. Nucleic Acids Res. 49, e15–e15 (2021).
43. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS J. Integr. Biol. 16, 284–287 (2012).
44. Gu, Z. & Hübschmann, D. simplifyEnrichment: an R/Bioconductor package for Clustering and Visualizing Functional Enrichment Results. bioRxiv 2020.10.27.312116 (2021) doi:10.1101/2020.10.27.312116.