1 Rodrigues, J. M. in Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems (eds Manuel M. Mota & Paulo Vieira) 5-14 (Springer Netherlands, 2008).
2 Zhao, L. L., Mota, M., Vieira, P., Butcher, R. A. & Sun, J. H. Interspecific communication between pinewood nematode, its insect vector, and associated microbes. Trends Parasitol.30, 299-308, doi:10.1016/j.pt.2014.04.007 (2014).
3 Zhao, L. L. et al. A native fungal symbiont facilitates the prevalence and development of an invasive pathogen-native vector symbiosis. Ecology94, 2817-2826, doi:10.1890/12-2229.1 (2013).
4 Maehara, N. & Futai, K. Effect of fungal interactions on the numbers of the pinewood nematode, Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae), carried by the Japanese pine sawyer, Monochamus alternatus (Coleoptera: Cerambycidae). Fundam. Appl. Nematol.20, 611-617 (1997).
5 Zhao, B. G., Tao, J., Ju, Y. W., Wang, P. K. & Ye, J. L. The role of wood-inhabiting bacteria in pine wilt disease. Journal of Nematology43, 129-134 (2011).
6 Zhao, L. L. et al. Ascarosides coordinate the dispersal of a plant-parasitic nematode with the metamorphosis of its vector beetle. Nat. Commun.7, 8, doi:10.1038/ncomms12341 (2016).
7 Tomminen, J., Halik, S. & Bergdahl, D. R. INCUBATION-TEMPERATURE AND TIME EFFECTS ON LIFE STAGES OF BURSAPHELENCHUS-XYLOPHILUS IN WOOD CHIPS. Journal of Nematology23, 477-484 (1991).
8 Cha, D. J., Kim, J. & Kim, D. S. Nematicidal Activities of Three Naphthoquinones against the Pine Wood Nematode, Bursaphelenchus xylophilus. Molecules24, 9, doi:10.3390/molecules24203634 (2019).
9 de la Fuente, B., Saura, S. & Beck, P. S. A. Predicting the spread of an invasive tree pest: The pine wood nematode in Southern Europe. J. Appl. Ecol.55, 2374-2385, doi:10.1111/1365-2664.13177 (2018).
10 Firmino, P. N., Calvao, T., Ayres, M. P. & Pimentel, C. S. Monochamus galloprovincialis and Bursaphelenchus xylophilus life history in an area severely affected by pine wilt disease: Implications for forest management. Forest Ecology and Management389, 105-115, doi:10.1016/j.foreco.2016.12.027 (2017).
11 Huang, X., Hu, L. J. & Wu, X. Q. Identification of a novel effector BxSapB3 that enhances the virulence of pine wood nematode Bursaphelenchus xylophilus. Acta Biochim. Biophys. Sin.51, 1071-1078, doi:10.1093/abbs/gmz100 (2019).
12 Qiu, X. W. et al. Silencing of cyp-33C9 Gene Affects the Reproduction and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus. Int. J. Mol. Sci.20, 14, doi:10.3390/ijms20184520 (2019).
13 Li, Y. X. et al. Comparative Transcriptome Analysis of the Pinewood Nematode Bursaphelenchus xylophilus Reveals the Molecular Mechanism Underlying Its Defense Response to Host-Derived -pinene. Int. J. Mol. Sci.20, 16, doi:10.3390/ijms20040911 (2019).
14 Espada, M. et al. Identification and characterization of parasitism genes from the pinewood nematode Bursaphelenchus xylophilus reveals a multilayered detoxification strategy. Mol. Plant Pathol.17, 286-295, doi:10.1111/mpp.12280 (2016).
15 He, L. X., Wu, X. Q., Xue, Q. & Qiu, X. W. Effects of Endobacterium (Stenotrophomonas maltophilia) on Pathogenesis-Related Gene Expression of Pine Wood Nematode (Bursaphelenchus xylophilus) and Pine Wilt Disease. Int. J. Mol. Sci.17, 14, doi:10.3390/ijms17060778 (2016).
16 Ma, H. B., Lu, Q., Liang, J. & Zhang, X. Y. Functional analysis of the cellulose gene of the pine wood nematode, Bursaphelenchus xylophilus, using RNA interference. Genet. Mol. Res.10, 1931-1941, doi:10.4238/vol10-3gmr1367 (2011).
17 Qiu, X. W., Wu, X. Q., Huang, L. & Ye, J. R. Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus. Int. J. Mol. Sci.17, 14, doi:10.3390/ijms17010125 (2016).
18 Tang, J. et al. Bxy-fuca encoding alpha-L-fucosidase plays crucial roles in development and reproduction of the pathogenic pinewood nematode, Bursaphelenchus xylophilus. Pest Manag. Sci.76, 205-214, doi:10.1002/ps.5497 (2020).
19 Bustin, S. A. Developments in real-time PCR research and molecular diagnostics. Expert review of molecular diagnostics10, 713-715, doi:10.1586/erm.10.65 (2010).
20 Jozefczuk, J. & Adjaye, J. in Methods in Enzymology, Vol 500: Methods in Systems Biology Vol. 500 Methods in Enzymology (eds D. Jameson, M. Verma, & H. V. Westerhoff) 99-109 (2011).
21 Singh, C. & Roy-Chowdhuri, S. in Clinical Applications of PCR, 3rd Edition Vol. 1392 Methods in Molecular Biology (eds R. Luthra, R. R. Singh, & K. P. Patel) 161-176 (2016).
22 Wen-Kai, W. U., Cheng-Qian, L. I. U., Zhi-Gang, Z. & Shan, L. U. The Selection of Reference Genes in Chlamydomonas reinhardtii P.A. Dangeard by Real-Time Quantitative PCR. Plant Physiology Communications45, 667-672 (2009).
23 Condeelis, J. ELONGATION-FACTOR 1-ALPHA, TRANSLATION AND THE CYTOSKELETON. Trends in Biochemical Sciences20, 169-170, doi:10.1016/s0968-0004(00)88998-7 (1995).
24 Thellin, O. et al. Housekeeping genes as internal standards: use and limits. J. Biotechnol.75, 291-295, doi:10.1016/s0168-1656(99)00163-7 (1999).
25 Lu, Y. et al. Identification and Validation of Reference Genes for Gene Expression Analysis Using Quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). Plos One8, doi:10.1371/journal.pone.0068059 (2013).
26 de Jonge, H. J. M. et al. Evidence Based Selection of Housekeeping Genes. Plos One2, doi:10.1371/journal.pone.0000898 (2007).
27 Sun, H.-f. et al. Selection of housekeeping genes for gene expression studies on the development of fruit bearing shoots in Chinese jujube (Ziziphus jujube Mill.). Molecular Biology Reports36, 2183-2190, doi:10.1007/s11033-008-9433-y (2009).
28 Huis, R., Hawkins, S. & Neutelings, G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol.10, 14, doi:10.1186/1471-2229-10-71 (2010).
29 Silver, N., Best, S., Jiang, J. & Thein, S. L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol.7, 9, doi:10.1186/1471-2199-7-33 (2006).
30 Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlations. Biotechnol. Lett.26, 509-515, doi:10.1023/b:bile.0000019559.84305.47 (2004).
31 Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome biology3, RESEARCH0034 (2002).
32 Andersen, C. L., Jensen, J. L. & Orntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res.64, 5245-5250, doi:10.1158/0008-5472.can-04-0496 (2004).
33 Xie, F., Xiao, P., Chen, D., Xu, L. & Zhang, B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant molecular biology (2012).
34 Viglierchio, D. R. & Schmitt, R. V. ON THE METHODOLOGY OF NEMATODE EXTRACTION FROM FIELD SAMPLES - BAERMANN FUNNEL MODIFICATIONS. Journal of Nematology15, 438-444 (1983).
35 Kikuchi, T. et al. Genomic Insights into the Origin of Parasitism in the Emerging Plant Pathogen Bursaphelenchus xylophilus. PLoS Pathog.7, 17, doi:10.1371/journal.ppat.1002219 (2011).
36 Baermann, G. A simple method for the detection of Ankylostomum (nematode) larvae in soil tests. (1917).
37 Freckman, D. W., Mankau, R. & Ferris, H. NEMATODE COMMUNITY STRUCTURE IN DESERT SOILS - NEMATODE RECOVERY. Journal of Nematology7, 343-346 (1975).
38 Zhou, L. F. et al. Identifying Virulence-Associated Genes Using Transcriptomic and Proteomic Association Analyses of the Plant Parasitic Nematode Bursaphelenchus mucronatus. Int. J. Mol. Sci.17, 17, doi:10.3390/ijms17091492 (2016).
39 Zhou, L. F., Chen, F. M., Ye, J. R. & Pan, H. Y. Selection of Reliable Reference Genes for RT-qPCR Analysis of Bursaphelenchus mucronatus Gene Expression From Different Habitats and Developmental Stages. Front. Genet.9, 11, doi:10.3389/fgene.2018.00269 (2018).
40 Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. & Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology8, 14, doi:10.1186/gb-2007-8-2-r19 (2007).
41 Kulathunga, D. G. R. S. et al. Immunolocalization of arginine kinase (AK) in Toxocara canis, Toxocara vitulorum, and Ascaris lumbricoides. Parasitology Research111, 663-671, doi:10.1007/s00436-012-2884-z (2012).
42 Qi, X. L. et al. The effect of silencing arginine kinase by RNAi on the larval development of Helicoverpa armigera. Bull. Entomol. Res.105, 555-565, doi:10.1017/s0007485315000450 (2015).
43 Wang, F., Wang, Z. Y., Li, D. L. & Chen, Q. L. Identification and Characterization of a Bursaphelenchus xylophilus (Aphelenchida: Aphelenchoididae) Thermotolerance-Related Gene: Bx-HSP90. Int. J. Mol. Sci.13, 8819-8833, doi:10.3390/ijms13078819 (2012).
44 Hunter, T. & Garrels, J. I. CHARACTERIZATION OF MESSENGER-RNAS FOR ALPHA-ACTIN, BETA-ACTIN AND GAMMA-ACTIN. Cell12, 767-781, doi:10.1016/0092-8674(77)90276-8 (1977).
45 Liang, P., Guo, Y., Zhou, X. & Gao, X. Expression Profiling in Bemisia tabaci under Insecticide Treatment: Indicating the Necessity for Custom Reference Gene Selection. PLOS ONE9, e87514, doi:10.1371/journal.pone.0087514 (2014).
46 Yang, C., Pan, H., Liu, Y. & Zhou, X. Selection of Reference Genes for Expression Analysis Using Quantitative Real-Time PCR in the Pea Aphid, Acyrthosiphon pisum (Harris) (Hemiptera, Aphidiae). Plos One9, doi:10.1371/journal.pone.0110454 (2014).
47 Ladror, D. T. et al. Methylation of yeast ribosomal protein S2 is elevated during stationary phase growth conditions. Biochemical and Biophysical Research Communications445, 535-541, doi:10.1016/j.bbrc.2014.01.040 (2014).
48 Lu, J. et al. Selection and Validation of Reference Genes for RT-qPCR Analysis of the Ladybird Beetle Henosepilachna vigintioctopunctata (vol 9, 1614, 2018). Front. Physiol.10, 1, doi:10.3389/fphys.2019.00981 (2019).
49 Wang, Z. et al. Evaluation and Validation of Reference Genes for Quantitative Real-Time PCR in Helopeltis theivora Waterhouse (Hemiptera: Miridae). Sci Rep9, 10, doi:10.1038/s41598-019-49479-1 (2019).
50 Dzaki, N., Ramli, K. N., Azlan, A., Ishak, I. H. & Azzam, G. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti. Sci Rep7, doi:10.1038/srep43618 (2017).
51 Zaros, L. G. et al. Evaluation of reference genes for real-time PCR studies of Brazilian Somalis sheep infected by gastrointestinal nematodes. Genetics and Molecular Biology33, 486-490, doi:10.1590/s1415-47572010000300018 (2010).
52 Yuan, M. et al. Selection and Evaluation of Potential Reference Genes for Gene Expression Analysis in the Brown Planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) Using Reverse-Transcription Quantitative PCR. Plos One9, 10, doi:10.1371/journal.pone.0086503 (2014).
53 Shakeel, M., Zhu, X., Kang, T. H., Wan, H. & Li, J. H. Selection and evaluation of reference genes for quantitative gene expression studies in cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Asia-Pac. Entomol.18, 123-130, doi:10.1016/j.aspen.2015.01.001 (2015).
54 Robledo, D. et al. Analysis of qPCR reference gene stability determination methods and a practical approach for efficiency calculation on a turbot (Scophthalmus maximus) gonad dataset. Bmc Genomics15, doi:10.1186/1471-2164-15-648 (2014).
55 Nakayama, T. et al. Assessment of suitable reference genes for RT-qPCR studies in chronic rhinosinusitis. Sci Rep8, 9, doi:10.1038/s41598-018-19834-9 (2018).
56 Xie, F. L., Xiao, P., Chen, D. L., Xu, L. & Zhang, B. H. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology80, 75-84, doi:10.1007/s11103-012-9885-2 (2012).
57 Wu, H., Taki, F. A., Zhang, Y., Dobbins, D. L. & Pan, X. Evaluation and identification of reliable reference genes for toxicological study in Caenorhabditis elegans. Molecular Biology Reports41, 3445-3455, doi:10.1007/s11033-014-3206-6 (2014).
58 Li, R. M. et al. Reference Gene Selection for qRT-PCR Analysis in the Sweetpotato Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Plos One8, 8, doi:10.1371/journal.pone.0053006 (2013).
59 Bansal, R. et al. Quantitative RT-PCR Gene Evaluation and RNA Interference in the Brown Marmorated Stink Bug. Plos One11, doi:10.1371/journal.pone.0152730 (2016).
60 Lu, J. et al. Selection and Validation of Reference Genes for RT-qPCR Analysis of the Ladybird Beetle Henosepilachna vigintioctomaculata. Front. Physiol.9, 11, doi:10.3389/fphys.2018.01614 (2018).
61 Luo, J. et al. Assessment of suitable reference genes for qRT-PCR analysis in Adelphocoris suturalis. J. Integr. Agric.17, 2745-2757, doi:10.1016/s2095-3119(18)61926-4 (2018).