1. Gioria, M. & Osborne, B. A. Resource competition in plant invasions: emerging patterns and research needs. Frontiers in plant science 5, 501; 10.3389/fpls.2014.00501 (2014).
2. Maron, J. L. & Marler, M. Field-based competitive impacts between invaders and natives at varying resource supply. Journal of Ecology 96, 1187–1197; 10.1111/j.1365-2745.2008.01440.x (2008).
3. Parker, I. M. & Reichard, S. H. Critical Issues in Invasion Biology for Conservation Science. In Conservation Biology, edited by P. L. Fiedler & P. M. Kareiva (Springer US, Boston, MA, 1998), pp. 283–305.
4. Weigelt, A. & Jolliffe, P. Indices of plant competition. Journal of Ecology 91, 707–720; 10.1046/j.1365-2745.2003.00805.x (2003).
5. Tesfay, Y. B. & Kreyling, J. The invasive Opuntia ficus-indica homogenizes native plant species compositions in the highlands of Eritrea. Biol Invasions 23, 433–442; 10.1007/s10530-020-02373-8 (2021).
6. Vilà, M., Williamson, M. & Lonsdale, M. Competition Experiments on Alien Weeds with Crops: Lessons for Measuring Plant Invasion Impact? Biol. Invasions 6, 59–69; 10.1023/b:binv.0000010122.77024.8a (2004).
7. Vilà, M. & Weiner, J. Are invasive plant species better competitors than native plant species? - evidence from pair-wise experiments. Oikos 105, 229–238; 10.1111/j.0030-1299.2004.12682.x (2004).
8. Roy. Biological invasions in Europe and the Mediterranean basin (1990).
9. Wilson, J. R. U. et al. Residence time and potential range: crucial considerations in modelling plant invasions. Diversity and Distributions 13, 11–22; 10.1111/j.1366-9516.2006.00302.x (2007).
10. Levine, J. M. et al. Mechanisms underlying the impacts of exotic plant invasions. Proceedings. Biological sciences 270, 775–781; 10.1098/rspb.2003.2327 (2003).
11. MacDougall, A. S. & Turkington, R. ARE INVASIVE SPECIES THE DRIVERS OR PASSENGERS OF CHANGE IN DEGRADED ECOSYSTEMS? Ecology 86, 42–55; 10.1890/04-0669 (2005).
12. Lonsdale, W. M. & Farrell, G. S. Testing the Effects on Mimosa pigra of a Biological Control Agent Neurostrota gunniella (Lepidoptera: Gracillaridae), Plant Competition and Fungi Under Field Conditions. Biocontrol Science and Technology 8, 485–500; 10.1080/09583159830009 (1998).
13. Müller-Schärer, H. The Impact of Root Herbivory as a Function of Plant Density and Competition: Survival, Growth and Fecundity of Centaurea maculosa in Field Plots. The Journal of Applied Ecology 28, 759; 10.2307/2404206 (1991).
14. Willis, A. J., Groves, R. H. & Ash, J. E. Interactions between Plant Competition and Herbivory on the Growth of Hypericum Species: a Comparison of Glasshouse and Field Results. Aust. J. Bot. 46, 707; 10.1071/BT97025 (1998).
15. Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88, 528–534; 10.1046/j.1365-2745.2000.00473.x (2000).
16. Hughes, A. R., Byrnes, J. E., Kimbro, D. L. & Stachowicz, J. J. Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecology Letters 10, 849–864; 10.1111/j.1461-0248.2007.01075.x (2007).
17. Brutsch, M. O. & Zimmermann, H. G. Control and utilization of wild opuntias. FAO Plant Production and Protection Paper, 155–166 (1995).
18. Obiri, J. F. Invasive plant species and their disaster-effects in dry tropical forests and rangelands of Kenya and Tanzania. Jàmbá: Journal of Disaster Risk Studies 3; 10.4102/jamba.v3i2.39 (2011).
19. Oduor, A. M. O., Long, H., Fandohan, A. B., Liu, J. & Yu, X. An invasive plant provides refuge to native plant species in an intensely grazed ecosystem. Biol Invasions 20, 2745–2751; 10.1007/s10530-018-1757-5 (2018).
20. Novoa, A., Le Roux, J. J., Robertson, M. P., Wilson, J. R. U. & Richardson, D. M. Introduced and invasive cactus species: a global review. AoB PLANTS 7; 10.1093/aobpla/plu078 (2015).
21. Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as Ecosystem Engineers. Oikos 69, 373; 10.2307/3545850 (1994).
22. Shackleton, C. M. et al. Assessing the Effects of Invasive Alien Species on Rural Livelihoods: Case Examples and a Framework from South Africa. Hum Ecol 35, 113–127; 10.1007/s10745-006-9095-0 (2007).
23. Ali, N., Mounir, L. & Hichem, B. S. Cactus as a Tool to Mitigate Drought and to Combat Desertification. Journal of arid land studies 24, 121–124 (2014).
24. Luo, Y. & Nobel, P. S. Growth characteristics of newly initiated cladodes of Opuntia ficusindica as affected by shading, drought and elevated CO2. Physiol Plant 87, 467–474; 10.1111/j.1399-3054.1993.tb02495.x (1993).
25. IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change ([H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., doi:10.1017/9781009325844., 2022).
26. Goldberg, D. E. & Werner, P. A. Equivalence of competitors in plant communities: a null hypothesis and a field experimental approach. American Journal of Botany 70, 1098–1104; 10.1002/j.1537-2197.1983.tb07912.x (1983).
27. Goldberg, D. E., Rajaniemi, T., Gurevitch, J. & Stewart-Oaten, A. Equivalence of competitors in plant communities: a null hypothesis and a field experimental approach. Ecology 80, 1118–1131; 10.1890/0012-9658(1999)080[1118:EATQII]2.0.CO;2 (1999).
28. Grace, J. B. On the Measurement of Plant Competition Intensity. Ecology 76, 305–308; 10.2307/1940651 (1995).
29. Gurevitch, J., Morrow, L. L., Wallace, A. & Walsh, J. S. A Meta-Analysis of Competition in Field Experiments. The American Naturalist 140, 539–572; 10.1086/285428 (1992).
30. Adler, P. B. et al. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecology Letters 21, 1319–1329; 10.1111/ele.13098 (2018).
31. Chesson, P. Mechanisms of Maintenance of Species Diversity. Annu. Rev. Ecol. Syst. 31, 343–366; 10.1146/annurev.ecolsys.31.1.343 (2000).
32. Gimeno, I. & Vilà, M. Recruitment of two Opuntia species invading abandoned olive groves. Acta Oecologica 23, 239–246; 10.1016/S1146-609X(02)01143-8 (2002).
33. Nieddu, G. & Chessa, I. DIstribution of phenotypic characters within a seedling population from Opuntia ficus-indica. Acta Hortic., 37–44; 10.17660/ActaHortic.1997.438.4 (1997).
34. Gordon, D. R., Tancig, K. J., Onderdonk, D. A. & Gantz, C. A. Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian Weed Risk Assessment. Biomass and Bioenergy 35, 74–79; 10.1016/j.biombioe.2010.08.029 (2011).
35. Zarai, Z. et al. Essential oil of the leaves of Ricinus communis L.: in vitro cytotoxicity and antimicrobial properties. Lipids in health and disease 11, 102; 10.1186/1476-511X-11-102 (2012).
36. Hedberg, I. (ed.). Flora of Ethiopia (National Herbarium [etc.], Addis Ababa [etc.], 2006).
37. Asefa, A. & Gashe, G. Role of native herbivores in the increasing abundance of Solanum marginatum L.F. (Solanaceae) in the northern Bale mountains, Ethiopia. SINET - Ethiop. J. Sci., 40, 74–87 (2017).
38. Fichtl, R. & Adi, A. Honeybee flora of Ethiopia (Margraf, Weikersheim, Germany, 1994).
39. Abebe, D., Debella, A. & Urga, K. Illustrated checklist, medicinal plants and other useful plants of Ethiopia (Ethiopian Health and Nutrition Research Institute, Addis Ababa, Ethiopia, 2003).
40. Williams, S. Bale Mountains: A Guide Book. Ethiopian Wolf Conservation Programme, Addis Ababa. (2002).
41. Aynekulu, E. et al. Plant diversity and regeneration in a disturbed isolated dry Afromontane forest in northern Ethiopia. Folia Geobot 51, 115–127; 10.1007/s12224-016-9247-y (2016).
42. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Soft. 82; 10.18637/jss.v082.i13 (2017).
43. Lenth, R. _emmeans: Estimated Marginal Means, aka Least-Squares Means_. (<https://CRAN.R-project.org/package=emmeans>., 2022).
44. Markham, J. H. & Chanway, C. P. Measuring plant neighbour effects. Functional Ecology 10, 548–549 (1996).
45. Oksanen, L., Sammul, M. & Mägi, M. On the indices of plant-plant competition and their pitfalls. Oikos 112, 149–155; 10.1111/j.0030-1299.2006.13379.x (2006).
46. Faraway, J. J. Linear Models with R (Chapman and Hall/CRC, 2004).
47. Morales, M. sciplot: Scientific Graphing Functions for Factorial Designs (<https://CRAN.R-project.org/package=sciplot>., 2020).
48. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (URL https://www.R-project.org/, 2022).
49. D'Antonio, C. Impacts and extent of biotic invasions in terrestrial ecosystems. Trends in Ecology & Evolution 17, 202–204; 10.1016/s0169-5347(02)02454-0 (2002).
50. Zheng, Y. et al. Are invasive plants more competitive than native conspecifics? Patterns vary with competitors. Scientific reports 5, 15622; 10.1038/srep15622 (2015).
51. Thomsen, M. A. & D'Antonio, C. M. Mechanisms of resistance to invasion in a California grassland: the roles of competitor identity, resource availability, and environmental gradients. Oikos 116, 17–30; 10.1111/j.2006.0030-1299.14929.x (2007).
52. La Barrera, E. de & Nobel, P. S. Carbon and water relations for developing fruits of Opuntia ficus-indica (L.) Miller, including effects of drought and gibberellic acid. Journal of experimental botany 55, 719–729; 10.1093/jxb/erh084 (2004).
53. Funk, C. et al. The Centennial Trends Greater Horn of Africa precipitation dataset. Scientific data 2, 150050; 10.1038/sdata.2015.50 (2015).