This paper presents a single-ended read and differential write half select free 9T static random access memory (SRAM) cell operates in the sub-threshold region. Proposed 9T SRAM cell shows a reasonable reduction in read and write power dissipation by a factor of 1.41× and 2.1× respectively as of conventional 6T (Conv.6T) SRAM cell. The stacking of transistors at core latch network minimizes the leakage power of the cell. The read static noise margin (RSNM) and write margin (WM) are upgraded by 2.16× and 2.06× respectively as of Conv.6T cell. A forward body bias technique is utilized in read path which results to decreases in read access time by a factor of 2.72× as of standard 6T SRAM cell. The mean value of Ion/Ioff ratio of the proposed cell is improved by 2.92× as compared to the Conv.6T SRAM cell. It is attributed to a reduction in bit-line leakage current. To achieve more soundness in characteristics of the proposed 9T SRAM cell, process variation effect on RSNM, power dissipation, and read current is calculated through Monte Carlo (MC) simulation at 5000 points. The obtained results are compared with reference SRAM cells at 0.3V supply voltage.