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Abstract
Social connection is a basic human need and particularly important during adolescence. How a lack of
connection impacts adolescent behaviour is unclear. To address this question, we employed experimental
short-term isolation, �rst, to assess how isolation affects reward seeking and reward learning in
adolescents aged 16-19 years and, second, whether virtual interactions remediate isolation effects.
Isolation was associated with faster decisions to exert effort for rewards and higher reward learning,
especially from social feedback. These effects were stronger in participants who reported higher levels of
loneliness following isolation. Virtual interactions remediated effects only partially and were associated
with lower learning from social feedback. We explored predictors of sensitivity to isolation and found that
participants with lower neural reward sensitivity at baseline showed stronger effects of isolation. These
results demonstrate that, in adolescents, isolation is associated with higher reward responsiveness, a key
driver of motivation and decision-making.

Introduction
Social connection is a basic human need1,2. However, we are not always able to obtain the kind of social
contact that satis�es our social needs. Reports on loneliness, the subjectively perceived lack of social
connection1, have shown that, across the world, adolescents are the age group most affected by
increasing levels of loneliness3–5. Over the past two decades, longitudinal research has revealed
associations between adolescent loneliness and depression6–11 and drug use12–15. However, the
direction of causality is unclear, and bi-directional effects between loneliness and mental ill health have
been reported8. Experimental designs enable a better understanding of causality, but such approaches
have so far been limited to studies in animal models. These studies have consistently shown that
isolating adolescent animals primarily affects dopaminergic brain reward circuits and alters reward
seeking and reward learning16,17. It is unclear to what extent these �ndings can be translated to human
adolescents. As well as reporting high levels of loneliness, young people also report more social media
use than other age groups18. It has been proposed that there might be a connection between the use of
virtual social interactions and loneliness19, while others have proposed that virtual social interactions
might be a potential remedy for rising chronic isolation and loneliness19. The displacement
hypothesis20,21 proposes that virtual social interactions displace real-life social interactions, increasing
social isolation and loneliness. An alternative, although not mutually exclusive, stimulation
hypothesis22,23 proposes that virtual social interactions offer opportunities to strengthen existing real-life
relationships and create new, effective and supportive relationships. 

Here, we employed an experimental approach24 using social isolation of up to four hours in human
adolescents to induce subjective feelings of loneliness and assess how they are associated with changes
in reward processing (Fig. 1). Participants �rst underwent a baseline session without any isolation during
which we measured reward seeking and reward learning. Subsequently, participants underwent two
isolation sessions (order counterbalanced across participants): a total isolation session (iso total), which
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involved isolation from any real-life and virtual social interactions, and an isolation session in which
participants were isolated from in-person social interactions but had access to any form of virtual social
interactions via phone and/or other devices, using any platform they wanted (iso media). 

This design allowed us to compare effects of both types of isolation to a baseline unaffected by
experience of isolation, and compare effects of being totally isolated to being isolated with access to
virtual interactions while keeping other factors (such as spending time alone in a room) constant (see
Methods section for details on procedures during isolation). Using this approach, we asked two main
questions: (Q1) Is isolation associated with changes in reward seeking and reward learning? and (Q2)
Does access to virtual social interactions remediate the effects of isolation on reward processing? If
virtual social interactions are su�cient for ful�lling social needs, they should remediate the effects of
social isolation similarly to real-life social interactions. Finally, we also sought to explore whether trait
neural reward sensitivity predicted individual differences in sensitivity to isolation.

Results
At baseline and after each isolation session, participants underwent a reward seeking (effort-based
decision making - EBDM) and a reward learning (probabilistic reinforcement and reversal learning - RL)
task. During the baseline session, participants also underwent functional magnetic resonance imaging
(fMRI) to provide a measure of neural reward sensitivity which was used in preliminary analyses testing
for predictors of individual differences in sensitivity to isolation. All procedures, methods and hypotheses
were preregistered on the Open Science Framework (OSF; https://osf.io/kbgsv).

All participants (N = 40; age range = 16–19 years; mean age = 17.1; std = 0.9; 22 female) were socially
well-connected in that they reported having frequent social interactions (number of face-to-face or virtual
interactions that were primarily social in nature in the past month: mean 35.8 (SD 31.9); minimum 10)
and several close relationships (mean 7.5 (SD 4.2); minimum 2). Participants reported average levels of
pre-existing loneliness for their age group25,26 (University of California, Los Angeles (UCLA) loneliness
scale: mean 35.8 (SD 6.2); maximum 48 out of 80).

Adolescents Show Increased Loneliness And Decreased Positive
Mood Following Isolation
Every hour during the two isolation sessions, participants received an electronic reminder to self-report
loneliness, mood, boredom and social craving (see methods section Questionnaires for details on the
selection of timing of ratings). After three hours in both isolation sessions, compared with at the start of
the session, participants reported signi�cantly increased loneliness (iso total: t(39) = 5.87, P < 0.001,
Cohen’s d = 1.06; iso media: t(39) = 4.59, P < 0.001, d = 0.68; Fig. 2) and decreased positive mood (iso
total: t(39) = − 6.41, P < 0.001, d = 0.75; iso media: t(39) = − 7.05, P < 0.001, d = 0.82). The increase in
loneliness over time in isolation was higher in the iso total session than in the iso media session (beta (b) 
= 3.48, t = 2.68, 95% con�dence interval (CI) = 0.93, 6.03, P = 0.008). However, the decrease in positive
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mood over time in isolation was not signi�cantly different between the iso media and iso total sessions
(b = 0.04, t = 0.11, CI=-0.59, 0.66, P = 0.913). Fig. S4 in the supplementary materials depicts effects of
isolation on boredom, social craving, negative mood and state anxiety.

Adolescents Show Increased Reward Seeking Following Isolation
To measure reward seeking, we used an effort-based decision making (EBDM) task with three factors:
reward (high/low), effort (high/low) and context (social/non-social). Response times (RTs) while
participants chose whether to undergo an effortful task have previously been shown to be indicative of
strength of preference27 and are here used as the main measure of reward seeking (see Methods for
details). There was a 4-way interaction (b = 0.84, t = 2.45, CI = 0.17, 1.51, P = 0.015) between session
(baseline, iso total, iso media), reward (high, low), context (social, non-social) and effort (high, low) on
RTs in the EBDM task (the time it took participants to decide whether to complete a trial). Pairwise
comparisons (Bonferroni corrected p < 0.0063 (0.05/8)) showed that participants were signi�cantly faster
in deciding to undergo trials in the iso total session compared with baseline, when rewards were high (all
p-values < = 0.005, range Cohen’s d = 0.60–0.82); see Fig. 3 and Fig. S1 and Table S3 in the
supplementary materials for full results). Mean RTs for low reward conditions were only faster in the iso
total compared to baseline session when effort was low and only in the social context (t(28)=-3.48, P = 
0.002, d = 0.71; all other p-values were above the Bonferroni corrected alpha level of 0.01). This indicates
that, after total isolation, participants were speci�cally faster in trials where rewards were high instead of
showing generally decreased response times across all conditions.

Note that the number of trials from which RTs were calculated was lower in the low reward conditions
because participants decided to carry out fewer low reward trials. None of the RTs in the iso media
session were signi�cantly different from baseline (all ps > 0.008).

We performed sensitivity analyses to assess whether order effects might have contributed to changes in
response times between sessions (see supplementary materials Sensitivity Analyses Reward Seeking)
and found no evidence that order effects were driving the main result of decreased response times to
high rewards after total isolation.

Next, we explored whether self-reported loneliness at baseline and after three hours of isolation (in the iso
total and iso media session) interacted with session effects by adding it as a predictor in a model with
the three factors described above. We found a main effect of loneliness (b=-0.01, t=-2.70, CI=-0.02, -0.004,
P = 0.007), indicating that, across all sessions, higher feelings of loneliness were associated with faster
response times in the EBDM task (Fig. 4). We also found an interaction between context and loneliness in
the iso media session (b = 0.27, t = 2.08, CI = 0.01, 0.53, P = 0.039), indicating that participants who
reported higher loneliness showed slower response times in the social context in the iso media session
(Fig. 4). We also tested whether self-reported boredom at baseline and after three hours of isolation (in
the iso total and iso media session) interacted with session effects to assess whether effects of session
might have been driven by unspeci�c effects of boredom during isolation. Self-reported boredom did not
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show any main effects or interactions with effects of session on RTs in the EBDM task (see
supplementary materials Exploratory analyses for results).

Adolescents Show Increased Reward Learning Following Isolation

We used a probabilistic reinforcement and reversal learning task28 to measure how isolation affects the
ability to learn stimulus–reinforcement associations, and to reverse them, based on probabilistic
feedback. Feedback was given either via social cues (facial expressions) or non-social cues (symbols).
Data analysis involved, �rst, selecting a model that best captured participants’ behaviour by comparing
model �ts between three different reversal learning models for each session (baseline, iso total, iso
media) and condition (social, non-social). Three models were compared: (i) a reward-punishment
model29, which is based on the classic Rescorla-Wagner model of conditioning30, but expanded with
separate learning rates for reward and non-reward trials, here treating non-wins as non-rewards; (ii) an
experience-weighted attraction model31, which is also based on the Rescorla-Wagner model, but includes
a stickiness parameter that captures perseveration bias (which can arti�cially drive learning rate
asymmetries32). This model also includes an ‘experience’ weight parameter that decouples acquisition
and reversal; and (iii) a �ctitious update model33, which is an approximation to the Hidden Markov Model
formulation based on Hampton et al. 200634 but which has been further extended33,35 to include an
update rule for the unchosen option, taking into account the knowledge individuals gain about the
unchosen option, here with separate learning rates for positive prediction errors (learning_pos; outcome
better than expected) and negative prediction errors (learning_neg; outcome worse than expected). See
Methods for a full description of all models and model �tting.

We found that model �t was best for the �ctitious update model for each session and condition (see
Table S5 in the supplementary materials for results of model �tting). We then assessed the model �t of
the winning model (i.e., the �ctitious update model) by running posterior predictive checks. To do this, we
generated simulated data for each participant using the �tted model and checked if the predictions were
similar to the actual data from each participant. Overall, the model predictions captured the real data well
(see Fig. S3 in the supplementary materials for examples).

Population-level Parameters
As a next step, we extracted the population-level mean posterior distributions (i.e., mean across all
participants’ posterior distributions) of each parameter estimated by the model: learning rate
(learning_pos and learning_neg) and inverse temperature (beta; a measure of exploration). To compare
the posterior distributions between the different conditions, we then calculated the pairwise difference
between the mean posterior distributions for each parameter and each condition. Figure 6 depicts the
mean posterior distributions for each parameter (Fig. 6A) and the difference distributions between each
parameter in each session for each feedback type (Fig. 6B-D). For the difference distributions between the
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different sessions, we calculated the posterior probability of µ1 − µ2 > 0 (sum values > 0 / total number of
values) in which 0 indicates no difference between conditions. A probability of 50% for a difference in
either direction indicates chance.

Learning_pos rates (positive prediction errors - outcome better than expected). There was a 79%
probability for a higher learning rate from social feedback, and a 57% probability for a higher learning rate
from non-social feedback, in the iso total compared to baseline session. There was a 61% probability for
a lower learning rate from social feedback, and a 52% probability for a lower learning rate from non-social
feedback, in the iso media compared to baseline session. For the difference distribution between iso total
and iso media, there was a 90% probability for a higher learning rate from social feedback in the iso total
compared to the iso media session and a 60% probability for a higher learning rate from non-social
feedback. Thus, in sum, the results indicate a higher probability for higher learning_pos rates from social
feedback in the iso total compared to baseline and iso media session.

Learning_neg rates (negative prediction errors - outcome worse than expected). There was an 86%
probability for a higher learning rate from social feedback, and a 62% probability for a higher learning rate
from non-social feedback, in the iso total compared to baseline session. There was a 74% probability for
a higher learning rate from social feedback, and a 67% probability for a higher learning rate from non-
social feedback, in the iso media compared to baseline session. For the difference distribution between
iso total and iso media, there was a 65% probability for a higher learning rate from social feedback in the
iso total compared to the iso media session and a 57% probability for a lower learning rate from non-
social feedback. In sum, the results indicate a higher probability for higher learning_neg rates from social
feedback in both isolation sessions (iso total and iso media) compared to baseline.

Beta (inverse temperature - a measure of exploration). There was a 66% probability for a higher beta in
the social feedback condition, and an 86% probability for a higher beta in the non-social feedback
condition, in the iso total compared to baseline session. There was a 99% probability for a higher beta in
the social feedback condition, and a 94% probability for a higher beta in the non-social feedback
condition, in the iso media compared to baseline session. For the difference distribution between iso total
and iso media, there was a 99% probability for a lower beta in the social feedback condition in the iso
total compared to the iso media session and a 72% probability for a lower beta in the non-social feedback
condition. In sum, the results indicate a higher probability for higher beta (indicating less exploration) in
the iso media session compared to baseline and the iso total session, regardless of feedback type.

Individual-level Parameters

Finally, following methods of Crawley et al.36, we extracted learning rate (learning_pos and learning_neg)
and inverse temperature (beta; a measure of exploration) for each participant to assess effects of session
and condition on these parameters. There was a signi�cant session-by-condition interaction for the
learning_pos parameter (b = 0.20, t = 31.93, CI = 0.18, 0.21, P < 0.001), indicating that participants showed
higher learning rates in the iso total session compared with baseline, and that this effect was stronger for
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learning from social feedback compared with non-social feedback. The session-by-condition interaction
for the iso media session (compared with baseline; b=-0.04, t=-7.12, CI=-0.06, -0.03, P < 0.001) showed a
different pattern: there was a decrease in learning from social feedback following the iso media session
compared with baseline, and no effect on learning from non-social feedback.

Pairwise comparisons (Bonferroni corrected p < 0.0083 (0.05/6)) showed that learning_pos rates were
signi�cantly different for each feedback type in the iso total compared with baseline (social: t(39) = 56.72,
P < 0.001, d = 12.38; non-social: t(39) = 5.10, P < 0.001, d = 1.11) and compared with the iso media session
(social: t(39) = 77.42 P < 0.001, d = 17.28; non-social: t(39) = 8.22, P < 0.001, d = 1.83). Learning_pos rates
did not differ between the iso media and baseline session for non-social feedback (t(39)=-0.82, P = 0.415,
d = 0.18), while learning_pos rates decreased in the iso media session compared with baseline for social
feedback (t(39)=-10.72, P < 0.001, d = 2.36).

Learning from negative prediction errors (learning_neg) showed an effect of condition, in that participants
overall learned better from negative social feedback compared with non-social feedback (b = 0.06, t = 
2.25, CI = 0.01, 0.11, P = 0.025), but there was no effect of session.

Beta was overall higher (indicating less exploration) in the iso media compared to baseline session (b = 
0.26, t = 2.62, CI = 0.07,0.46, P = 0.009) but showed no other effects or interactions with session. However,
sensitivity analyses showed that, when controlling for session order and days between sessions, beta
was also signi�cantly lower in the iso total compared to baseline session (see supplementary materials
for details).

To interrogate what these changes in parameters mean for how well participants performed in the task,
we used simulations to assess the optimal learning rate and inverse temperature for our speci�c task
environment (see Methods for details). As expected37 for a short task (28 trials per block) with frequent
changes of reward contingencies (every 7 trials), a high learning rate (indicating stronger reliance on more
recent outcomes for value updating) was optimal. Beta (inverse temperature) did not strongly affect
performance at values above 2.5. Lower values (indicating high exploration; Fig. S2) were associated
with poor performance. Thus, for the current task, frequently updating reward contingencies was
associated with better performance.

We performed sensitivity analyses to assess whether order effects contributed to changes in parameters
over sessions (see supplementary materials Sensitivity Analyses Reward Learning) and did not �nd
evidence that order effects were driving the main result of higher learning_pos rates from social feedback
after total isolation.

Next, we explored whether self-reported loneliness after three hours of isolation interacted with effects of
session on learning_pos rates by adding it as a predictor in a model with session and condition. We
found an interaction between session, condition and loneliness for both isolation sessions (iso total: b = 
0.001, t = 7.53, CI = 0.0006, 0.0011, P < 0.001; iso media: b = 0.001, t = 7.73, CI = 0.0007, 0.0012, P < 0.001),
indicating that higher feelings of loneliness were associated with higher learning_pos rates in response to
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social cues in the RL task (Fig. 7). Again, we also tested whether self-reported boredom at baseline and
after three hours of isolation (in the iso total and iso media session) interacted with session effects to
assess whether effects of session might have been driven by unspeci�c effects of boredom during
isolation. Self-reported boredom did not show any main effects or interactions with effects of session on
learning_pos rates (see supplementary materials Exploratory analyses for results).

Exploratory analyses of gender differences showed an effect of gender on inverse temperature in the
reward learning task indicating higher exploration in males compared to females (b=-0.29, t=-3.21,
CI=-0.46, -0.11, P = 0.002) but no interactions between gender and isolation (see supplementary materials
for full results). We also explored whether pre-existing trait anxiety, depression scores, chronic loneliness,
as well as boredom during the sessions, interacted with the effects of isolation. We found that
participants who reported higher chronic loneliness showed stronger effects of social isolation on RTs in
the social context trials in the EBDM task (b=-0.07, t=-2.58, CI=-0.12, -0.02, P = 0.011; details in
supplementary materials).

Preliminary Evidence That Neural Reward Sensitivity At Baseline
Predicts Effect Of Isolation On Reward Seeking
Each participant underwent a functional magnetic resonance imaging (fMRI) scan at baseline, during
which they carried out four runs of a monetary incentive delay (MID) task. This task is commonly used to
study activity in the neural reward system38. Figure 8a shows the group level results from the task
(contrast high reward anticipation > no reward anticipation), which revealed activity in reward-related
regions, as expected38.

Our preregistered analyses comprised two measures of individual ‘neural reward sensitivity’: a univariate
measure for which we extracted the mean activity for the contrast high reward anticipation > no reward
anticipation for each participant; and a multivariate measure, which was the prediction accuracy of a
classi�er trained to classify neural patterns of high rewards from no rewards during the anticipation
phase (see Methods for details).

We assessed both the univariate and multivariate measures of neural reward sensitivity in a priori
selected regions of interest (ROIs), which have been consistently activated during anticipation of
rewards38. These regions included: the ventral striatum (VS), midbrain (MB), amygdala (AMY), anterior
insula (AI), occipital cortex (OC), thalamus (TH) and supplementary motor area (SMA). We then tested
whether neural reward sensitivity correlated with reward seeking (RTs from the high reward / high effort
conditions in the EBDM task; mean across social and non-social contexts) and reward learning
(learning_pos rates in the RL task; separate analyses for learning_pos rates from social and non-social
feedback) in the isolation session. We calculated separate correlations for each ROI for each measure of
neural reward sensitivity (univariate and multivariate; 14 tests in total) and report results as signi�cant at
p < 0.003 (0.05/14).
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Univariate neural reward sensitivity in the OC showed a signi�cant correlation with RTs in the EBDM task
in the iso total session (r(38) = 0.53, p < 0.001; Fig. 8b). This association was not present at baseline
(r(38)=-0.096, p = 0.57; correlations signi�cantly differed from each other: z = 2.16, p = 0.031), suggesting
that neural reward sensitivity speci�cally predicted reward seeking following isolation rather than general
reward seeking. Multivariate neural reward sensitivity did not predict reward seeking in the iso total
session for any of the ROIs (all p-values > 0.30).

Neural reward sensitivity (univariate or multivariate) did not predict reward learning in either the iso total
session or the iso media session for any of the ROIs for either social or non-social feedback (all p-values 
> 0.03).

Discussion
In adolescents aged 16–19 years, short-term social isolation was associated with an increase in reward
responsiveness measured in two different tasks. First, we found that, even after a relatively short period
of isolation (four hours or less), participants reported feeling lonelier at the end of the isolation period
than they did at the beginning; this was true for both total isolation and isolation in which participants
were able to communicate with others virtually. Second, the results from the effort-based decision making
(EBDM) task showed that total isolation (but not isolation with virtual social interactions) was associated
with faster response times when participants were deciding whether or not to undergo an effortful task
for high rewards, which is indicative of increased reward seeking39. Third, the results from the reward
learning (RL) task revealed that total isolation (but not isolation with virtual social interactions) was
associated with an increase in learning from rewards, particularly when learning from social feedback.
Our �ndings are partially consistent with results from animal models, which have shown that social
isolation in adolescence increases reward responsiveness17. In animals, social isolation increases
responsiveness to social rewards40 seeking of food or drug rewards and risk of developing addictions41.
Our �ndings suggest that there is a similar effect of increased responsiveness to rewards – both social
and non-social – immediately following total isolation in human adolescents. Furthermore, subjective
feelings of loneliness during each sessions predicted higher reward seeking overall (regardless of
session), and higher learning rates to social feedback. Self-reported boredom, on the other hand, did not
predict any effects of our tasks (see supplementary materials for results). Thus, these �ndings suggest
that isolation-induced changes in reward seeking and reward learning were driven by experienced
loneliness rather than unspeci�c effects of boredom during isolation.

The �nding that total isolation was associated with higher reward learning is contrary to results from
animal studies. Animal studies have found that isolation leads to perseveration to initially learned reward-
outcome associations following reversals42,43. In contrast, in our study, adolescents constantly updated
associations between cues and rewards throughout the task, particularly in response to social feedback.
Importantly, however, while a high learning rate was optimal in our task, high learning rates are not
always optimal and the interpretation of a learning rate depends on the speci�c task environment37. A
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high learning rate indicates that participants only use the most recent outcomes for value updating, while
a low learning rate indicates that both recent outcomes and previous outcomes contribute to the value
update37. Thus, a low learning rate can be optimal in task environments in which reward contingencies
are more stable. Considering this, our results suggest that, following total isolation, when feeling lonelier,
adolescents place more weight on each instance of social feedback they receive to guide their behaviour,
compared with at baseline, when they feel more socially connected. This could be bene�cial in cases
when social feedback is informative but could also lead to sub-optimal behaviour when social feedback
is less informative.

Participants reported feeling lonelier at the end of the total isolation period than they did at the beginning
and, interestingly, this was also true when adolescents had access to virtual social interactions during
isolation. However, the increase in self-reported loneliness was lower than following total isolation. In
contrast, positive mood decreased to a similar extent in both isolation sessions. Whether virtual social
interactions ful�l social needs is debated19 and some �ndings suggest the contrary, that is, that virtual
social interactions can increase loneliness19. The current study suggests that virtual social interactions
can partially – but not completely – remediate feelings of loneliness associated with isolation.

In line with this, in the iso media session, adolescents showed no signi�cant difference in reward seeking
(in the EBDM task) compared with baseline, nor did they show increased reward learning (in the RL task),
as was seen in the iso total session. These �ndings suggest that virtual social interactions mitigate the
effects of isolation on reward processing. However, contrary to our predictions, having access to virtual
social interactions during isolation led to decreased reward learning from social feedback in the RL task.
While access to virtual social interactions might have general effects on attention or motivation, the fact
that learning was only affected on trials when feedback was given via social cues suggests a possible
alternative explanation. A substantial number of participants (18 out of 40; 45%) reported spending more
than 50% of their isolation time participating in virtual social interactions. Recent research has shown
that human behaviour on social media platforms conforms to the principles of reward learning: users
spaced their posts to maximize the average rate of accrued social rewards, considering both the effort
cost of posting and the opportunity cost of inaction44. Thus, a period of intense engagement in virtual
social interactions might speci�cally decrease the reinforcing nature of other social cues, resulting in
lower learning from such cues. Therefore, the decreased social learning in the iso media session might
have been caused by intense engagement in virtual social interactions. However, these interpretations are
speculative, and the �ndings require replication and further speci�cation.

We found preliminary evidence that neural reward sensitivity in the occipital cortex measured at baseline
predicted individual differences in the effects of isolation on reward seeking: adolescents with lower
neural reward sensitivity in the occipital cortex at baseline showed increased reward seeking in the EBDM
task after total isolation compared to baseline. Conceptually, low responsiveness to rewards has been
linked to anhedonia and might represent a marker for stronger sensitivity to stressors45. Previous
research has shown that the magnitude of neural activation during anticipation of rewards can predict
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real-world responsivity to stressors46,47. For example, adolescents who showed lower neural reward
sensitivity in the MID task at age 10 reported higher stress levels in response to a laboratory stressor at
age 1346. Similar associations between neural reward sensitivity and stress reactivity have been shown in
adults47. Our �ndings suggest that lower neural responsivity to rewards might be indicative of higher
sensitivity to the stress of isolation. While the occipital cortex has been identi�ed in meta-analyses as one
of the core brain regions consistently activated during reward anticipation in the MID task38 and in other
monetary reward tasks48, it is unclear what exact neural mechanism underlies this fMRI signal. Given that
the high reward and no reward condition did not differ visually in the MID task, except for the number
presented inside the star (“0” in the no reward condition and “5” in the high reward condition), the
measured activity might represent a signal of visual attention49 towards cues predicting rewards. Thus,
individual differences in such attention signals to rewards might represent the neural mechanism
underlying the contribution of the occipital cortex to the behavioural change.

Our exploratory analyses showed gender differences in the reward learning task indicating higher
exploration in males compared to females but no interactions between gender and isolation. Previous
animal research has shown higher exploration during learning in males50 and our �ndings indicate a
similar effect in humans.

The present study raises key questions for future research. First, the neural processes underlying
isolation-induced changes during reward seeking and reward learning remain to be explored. Our study
suggests that, following isolation, adolescents show increased behavioural responsiveness to rewards,
driving them to seek out rewards more and learn reward contingencies better, particularly from positive
feedback, and particularly when that feedback is social. We do not know, however, whether these effects
are accompanied by increased responsiveness of the brain’s reward system during these tasks. While
increased activity in reward circuitry has been consistently shown in animal model studies of adolescent
isolation, direct experimental assessment in humans would provide further evidence of isolation-induced
increases in reward responsiveness.

Second, whether our experimental �ndings can be translated to the effects of real-life chronic loneliness
is unknown. Although the experimental isolation successfully induced feelings of loneliness, the
manipulation was short, and adolescents knew they could re-engage in social interactions afterwards.
Importantly, the relatively short duration of isolation employed in the current study would not be expected
to induce any longer-term effects on adolescent behaviour.

Chronic and acute loneliness can have opposite effects on social behaviour51. The social homeostasis
model suggests that prolonged engagement of mechanisms intended for short-term adaptation to acute
loneliness, such as hypervigilance and increased social motivation, can cause pathological states during
chronic loneliness52. According to this view, a prolongation of increased reward responsiveness following
acute loneliness during chronic loneliness might ultimately result in imbalances of the reward system,
increasing proneness to developing compulsive behaviours, or a blunting of reward system activity.
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Indeed, longitudinal studies in humans consistently link loneliness to depression and substance use6–15.
Here, there was an interaction between chronic and acute loneliness on reward seeking: participants who
reported higher pre-existing chronic loneliness showed stronger effects of isolation on reward seeking
when rewards were presented in social contexts. It should be noted that chronic loneliness was relatively
low amongst the participants in the current study as young people with high pre-existing loneliness were
not eligible to take part. Further assessment of the relationship between acute and chronic loneliness
should address fundamental questions concerning the nature, origins and interrelations between
loneliness and mental health problems in adolescence.

During adolescence, brain reward circuits undergo critical remodeling53. The domain of reward
processing is of particular importance due to its powerful effects on behaviour54 and mental health55.
The present study suggests that brief durations of social isolation in adolescence alter core
components54 of reward processing (i.e., reward seeking and reward learning) in human adolescents. Our
�ndings indicate that real-life isolation (such as during a pandemic or when used as punishment in
schools) might result in two key changes in adolescent behaviour. First, real-life isolation might result in
higher seeking of rewards, such as food or recreational drugs. Second, the stronger reliance on social
feedback during learning following isolation suggests that real-life isolation might lead to increased
social in�uence in adolescence.

Methods

Participants
We collected data from 42 participants; 2 participants were unable to complete all experimental sessions
and so were dropped from analysis, leaving 40 complete datasets (mean age = 17.1; std = 0.9; 22 female).
Participants were recruited through online advertisements and �yers. The study description indicated that
we were interested in studying how different forms of spending time alone (with or without access to
virtual interactions) affects adolescent cognition. Interested individuals completed a screening
questionnaire to assess eligibility for the study (questionnaire data was collected using Qualtrics and
REDCap56 Software). Participants were asked to indicate their gender (how they describe themselves)
and sex (assigned at birth). In our sample of participants, gender labels were not different from sex labels
and we use the term gender throughout the main text and supplement.

Participants were eligible to take part in the study if they were between 16–19 years of age, and reported
no permanently implanted metal in their body, no history of brain damage and no currently diagnosed
mental health disorder. Because data for this study was collected during a COVID-19 pandemic, we also
followed exclusion criteria based on a departmental COVID-19 risk assessment. These criteria excluded
participants with chronic underlying health conditions (such as asthma), participants who currently felt ill
(or had tested positive for COVID-19), and participants who smoked. As we aimed to study effects of
isolation in a sample of adolescents who have frequent and regular social interactions, we also excluded
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people who: (1) lived alone; (2) reported high feelings of chronic loneliness on the UCLA loneliness
scale26 (we excluded adolescents with scores > 50, which is 2 standard deviations above the mean for an
adolescent sample57); and/or (3) reported substantially smaller social network sizes than previously
reported for an adolescent sample58 measured via two measures: (a) Number of close friends (the
original questionnaire asks for number of people who give social support59, which we adapted to number
of close friends to simplify the question for our adolescent sample); and (b) Number of social
interactions in the past month: counting face-to-face and virtual social interactions that were primarily
social in nature (i.e., excluding professional interactions, like talking to a doctor, teacher, or hairdresser).
We excluded participants who reported fewer than two close friends and fewer than 10 social interactions
in one month (which is ~ 7 standard deviations below the previously reported means for adolescents for
both measures58). The exclusion thresholds for the social network size measures were lower than
previously reported24 because data for this study was collected during the COVID-19 pandemic, which
required social distancing and therefore lower levels of social connectedness were expected throughout
the population.

All experimental procedures were approved by the Psychology research ethics committee at University of
Cambridge, UK. Participants signed a consent form describing all experimental procedures before
participating in the study. Each participant was compensated with up to £127 (minimum payment for
each participant was £107) for participating in three sessions.

Experimental procedures
Each participant underwent three experimental sessions, separated by at least 24 hours. Figure 1 shows
an overview of the experimental procedures. Each participant �rst completed a baseline session which
included MRI scanning and the behavioural tasks (see Behavioural: Reward tasks for details). Following
the baseline session, participants were invited to two isolation sessions (order counterbalanced). One
session included up to 4 hours of total social isolation (iso total) during which participants had no access
to any social interactions (real-life or virtual); another session included up to 4 hours of social isolation
with access to virtual social interactions (iso media).

Following the methods of Tomova et al. 202024, we sought to experimentally induce the subjective
experience of loneliness in adolescent participants. Re-analysing loneliness ratings from a subset of 18–
24-year-old participants from Tomova et al. 2020 and pilot measures in two 16-year-olds (Ntotal = 21)
showed that two hours of isolation resulted in increased self-reported loneliness in this age group. We
therefore reduced the duration of isolation in this study compared with Tomova et al. 2020. The minimal
duration of each isolation session was set to 3h 30min and the maximal duration was 4 hours. We
randomly assigned an added duration of 0–30 mins of isolation time to each session (in steps of 5 mins,
separately for each session), so that participants were not able to predict the precise end of the isolation
period in either session. The average isolation duration was similar between sessions (iso total: m = 3h 46
mins, std = 11.2 mins; iso media: m = 3h 47 mins, std = 10.0; t(39)=-0.28, p = 0.79). All participants
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underwent all three experimental conditions (baseline, iso total and iso media). Each participant was
pseudo-randomly assigned to one order, with the restriction that baseline was always �rst and that each
order was approximately equally likely in the full sample. This design allowed us to compare effects of
both types of isolation to a baseline unaffected by experience of isolation, and to compare effects of
being totally isolated to being isolated with access to virtual interactions, while keeping other factors
(such as spending time physically alone in a room) constant.

Note that in this study power calculations were made for within-subject effects of isolation (see also
preregistration) and between-subject analyses (i.e., analyses on the predictors of individual differences in
sensitivity to isolation) should be taken as preliminary.

During the iso total session, participants had access to a variety of non-social activities (such as games,
puzzles, sudoku, books, drawing/writing supplies). We also encouraged participants to bring activities
that they would like to occupy themselves with during the isolation. Examples of what participants chose
to bring with them included school homework, a jewellery making kit, art materials and nail polish.

As we aimed to keep all social interactions during this session to a minimum, participants were given
extensive instructions about the isolation procedures and the subsequent behavioural paradigms before
starting social isolation. Participants gave their phones and laptops to the experimenter and were guided
to a room containing an armchair, a desk and an o�ce chair, and a fridge with a selection of food and
beverages. The room had a roof window, which allowed day light to enter the room but kept participants
from seeing other people outside the building. Participants remained in that room for the duration of the
isolation and the subsequent behavioural testing. Participants were told that they could spend the
isolation time however they wanted with the restriction that they should �ll out the questionnaire every
hour and should avoid sleeping during isolation. Participants were reminded to �ll out the questionnaires
via an alarm sound that went off every hour during isolation and at the end of isolation, indicating to
participants that they should start the behavioural tasks. Participants were provided with a desk
computer (with parental controls enabled), allowing them to visit only our Slack channel (an online
messenger software allowing communication between a group of people (www.slack.com)) and the
webpage containing our online questionnaires. Messaging in Slack was restricted to emergencies (that is,
in case participants ran into problems that required assistance from the research team during isolation).
During isolation and the subsequent behavioural testing, we monitored participants via a live camera,
which allowed a researcher to check in on the participant without interacting with them. The camera only
provided a live stream of the participant in the room to the experimenter and did not store any recordings
of participants. Participants were informed about the camera in an information sheet they received before
agreeing to participate in the experiment. Participants completed an online questionnaire (see
Questionnaires for details) every hour during the social isolation period. The behavioural testing was
started immediately after the social isolation. Participants �rst �lled out questionnaires and then started
the behavioural tasks, which they started themselves (i.e., there was no interaction with the experimenter
between the end of isolation and the beginning of the behavioural testing). After the session, a member

https://osf.io/kbgsv
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of the research team chatted with the participants about their experiences during isolation and made sure
participants were not feeling troubled.

Procedures during the iso media session were the same as in the iso total session, except that
participants could bring any electronic device with them into the room and were told they could use them
as much as they wanted. Most participants brought their tablet or laptop as well as their phones. See
section Questionnaires for descriptive data on how participants reported to have engaged with others
virtually during the iso media session.

MRI scanning
MRI data were collected on an ultra-high �eld 7 Tesla MRI (Siemens 7T Terra) located at the Wolfson
Brain Imaging Centre, University of Cambridge. For each participant, an MP2RAGE sequence was used to
collect T1-weighted structural images in 224 interleaved sagittal slices with 0.7-mm isotropic voxels
(FOV: 224 mm). We also collected a �eld map (phase-difference B0 estimation; echo time 1 (TE1) = 1.11
ms, echo time 2 (TE2) = 3.06 ms) to control for spatial distortions, which are particularly problematic with
ultra-high �eld scanning60. Furthermore, DTI images were acquired with a scanning protocol of 90 1.4
mm-thick contiguous axial slices with an in-plane resolution of 1.4 × 1.4 mm providing full brain
coverage. DTI data are outside the scope of this manuscript and will be described in a separate paper.

During acquisition of the anatomical images (~ 7 min in total), participants underwent a practice run of
the MID task (see “MID task” for details).

Subsequently, we collected functional data during four runs of the MID task. Each functional run
consisted of 250 volumes with 96 T2*- weighted echo planar slices (TR = 1500 ms, TE = 25 ms, FOV = 192
mm, 128 x 128 matrix, yielding a voxel size of 1.5 x 1.5 x 1.5 mm3) acquired as a partial-head volume in
an anteroposterior phase-encoding direction using interleaved slices. The MID task took approximately 25
mins in total.

Functional MRI: Neural Reward Sensitivity
Using functional magnetic resonance imaging (fMRI), we measured blood-oxygen-level-dependent
(BOLD) signal at a single voxel in successive scans (a voxel time-series) in response to anticipating
rewards of different magnitudes during a monetary incentive delay (MID61) task. The MID task is a well-
established task used to study neural correlates of reward anticipation (i.e., winning money) and was
used here as a marker of neural reward sensitivity. During the task, participants were able to win either
£0.2 (small win) or £5 (large win), or lose £–0.2 (small loss), or £–5 (large loss). On some trials,
participants did not win or lose any money, which served as control trials. On each trial, participants were
�rst presented with a cue indicating whether they could win or lose money on that trial. The cue was a
yellow star with the amount of the possible win (or loss) written inside (i.e., 0 (control trials), 0.2 (small
win trials), 5 (large win trials), − 0.2 (small loss trials), − 5 (large loss trials)). Following the cue,
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participants saw a white circle on the screen presented for a jittered time interval (range 1.5–4 s, mean
2.5 s) brie�y followed by a white square, which was presented for 100 ms and then the circle again.
Participants’ task was to press a button as fast as possible when they saw the square. Following their
response, participants were presented with feedback revealing whether they won (or avoided a loss) or
not on that trial (presented for 500 ms). At the end of each trial participants saw a �xation cross for a
jittered time interval (range 2–6 s, mean 3.5 s) before the next trial began. The task was adaptive and the
time window for how fast participants needed to respond narrowed or widened depending on their
response times during the task to ensure that participants won on most (~ 80%) of the trials (to keep the
task rewarding) but also that the task was not too easy (to keep participants engaged). Participants
underwent a practice run of the task during the anatomical MP2RAGE scan, and the data from this run
was used to calibrate the initial response window for the MID task.
Using functional magnetic resonance imaging (fMRI), we measured blood-oxygen-level-dependent
(BOLD) signal at a single voxel in successive scans (a voxel time-series) in response to anticipating
rewards of different magnitudes during a monetary incentive delay (MID61) task. The MID task is a well-
established task used to study neural correlates of reward anticipation (i.e., winning money) and was
used here as a marker of neural reward sensitivity. During the task, participants were able to win either
£0.2 (small win) or £5 (large win), or lose £–0.2 (small loss), or £–5 (large loss). On some trials,
participants did not win or lose any money, which served as control trials. On each trial, participants were
�rst presented with a cue indicating whether they could win or lose money on that trial. The cue was a
yellow star with the amount of the possible win (or loss) written inside (i.e., 0 (control trials), 0.2 (small
win trials), 5 (large win trials), − 0.2 (small loss trials), − 5 (large loss trials)). Following the cue,
participants saw a white circle on the screen presented for a jittered time interval (range 1.5–4 s, mean
2.5 s) brie�y followed by a white square, which was presented for 100 ms and then the circle again.
Participants’ task was to press a button as fast as possible when they saw the square. Following their
response, participants were presented with feedback revealing whether they won (or avoided a loss) or
not on that trial (presented for 500 ms). At the end of each trial participants saw a �xation cross for a
jittered time interval (range 2–6 s, mean 3.5 s) before the next trial began. The task was adaptive and the
time window for how fast participants needed to respond narrowed or widened depending on their
response times during the task to ensure that participants won on most (~ 80%) of the trials (to keep the
task rewarding) but also that the task was not too easy (to keep participants engaged). Participants
underwent a practice run of the task during the anatomical MP2RAGE scan, and the data from this run
was used to calibrate the initial response window for the MID task.

Questionnaires
Baseline. At the beginning of the behavioural testing in the baseline session, participants completed self-
report questionnaires assessing trait and state anxiety (the State Trait Anxiety Index (STAI62)) and
depression (the Center for Epidemiological Studies Depression (CES-D) scale)63. We report exploratory
analyses assessing interactions between individual differences in trait anxiety and depression, in addition
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to measures of chronic loneliness (UCLA loneliness scale26) collected during the online screening, and the
effects of our experimental manipulations in the supplementary text. Measures of self-reported loneliness
(0-100), social craving (0-100), boredom (0-100) and current affect (using the Positive and Negative
Affect Schedule (PANAS64) were also acquired at the beginning of the baseline session. In addition,
participants were asked whether they drink alcohol and whether they vape (at least once per month). If
yes, participants were asked to rate their current urge to drink alcohol and to vape on a scale from (0) not
at all to (100) extremely. In accordance with the University COVID-19 risk assessment, participants who
reported that they smoke were excluded from participation, and therefore we did not ask about craving in
the domain of smoking. Because only 55% of our participants (N = 22) reported that they drank alcohol at
all, and only two participants reported that they vaped, there was not su�cient power to assess effects of
isolation on alcohol or vape craving.

Isolation sessions. Following each isolation session (iso media and iso total), immediately before
participants started the behavioural tasks, we assessed state anxiety and craving for alcohol and vaping.
In addition, participants self-reported loneliness, social craving, boredom and current affect at the
beginning of each isolation session (T0) and then after every hour of isolation for 3 hours (T1, T2, T3),
followed by a �nal rating at the end of isolation (T4; 3 hours 30 min to 4 hours of isolation, varying
between participants). Effects of isolation on state anxiety are reported in the supplementary text.

All statistical analyses using self-report questionnaires were conducted on measures taken after 3 hours
(T3) of isolation. This allowed us to capture participants’ affective state after a substantial period of
isolation but before they knew it was over. Plots including loneliness and mood ratings at the �nal time
point (T4) are shown in Fig. S5, and statistics using these time points are included in the supplementary
text. Note that the general results remain the same regardless of whether T3 or T4 ratings were used.
Boredom measures were used in exploratory analyses to assess whether self-reported boredom
interacted with the effects of isolation (see supplementary text).

After the iso media session, participants completed a questionnaire which asked them to report how
much they engaged in virtual social interactions during the session (percentage of time spent engaging in
virtual social interactions during session (0-100%)). We also asked participants to indicate which
method(s) (texting/messaging, voice calls, video calls, commenting/posting, gaming, other) and
platform(s) (Instagram, Facebook, Facebook messenger, Snapchat, TikTok, Twitter, WhatsApp, other) they
mostly used for their virtual social interactions during the session. Participants were asked to list whom
they interacted with virtually (i.e., friends, family, acquaintances, romantic partner, other). Participants
could select multiple options and, if they selected “other”, they were asked to specify.

Participants self-reported that, on average, they spent 47% of their time engaging in virtual social
interactions during the iso media session (std = 28%; range = 5-100%). Most participants (35 out of 40)
engaged with virtual social interactions more than 20% of iso media session and 18 out of 40
participants (45%) spent more than 50% of the session engaging in virtual social interactions. We asked
participants what they used for connecting with others (multiple selections possible) and the majority of
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participants reported using instant messaging (37 out of 40). Some participants reported posting (9) and
a small number reported engaging in voice calls (3), video calls (2) or gaming (3). Participants mainly
used Snapchat (28), Instagram (27) and WhatsApp (23) to connect with others, followed by TikTok (10),
Twitter (3), Discord (3) and Facebook/Facebook Messenger (2). The majority of participants connected
virtually with friends (38), followed by family (19), romantic partners (13) and acquaintances (4).

Behavioural: Reward tasks
We used two computerized behavioural tasks to measure reward responsiveness in two domains (i.e.,
reward seeking and reward learning) at baseline and at the end of the two isolation sessions (iso total
and iso media).

Reward seeking. We used an effort-based decision making (EBDM) task, which was an adapted version
of the Effort Expenditure for Rewards Task (EEfRT65). In our adapted version, we manipulated and
orthogonalized reward and effort. Participants were presented with a series of trials with different
combinations of high rewards and low rewards for successfully completing “hard tasks” and “easy
tasks”. First, participants underwent two calibration trials in which the task measured their maximum
effort (the maximum number of button presses performed in 10 s using their index �nger). Based on this,
“hard task” trials required participants to make 80% of the maximal button presses they managed in 10 s
to succeed. “Easy task” trials required participants to make 40% of the maximal button presses they
managed in 10 s to succeed. Rewards earned could be either 1 point (low reward) or 4 points (high
reward) and participants were presented with combinations of required effort (hard/easy) and potential
rewards (high/low) on each trial before deciding whether they wanted to perform that trial’s task. Points
were converted into monetary value at the end of each session.

In addition, we added the element of context (nature vs social). After successfully performing a trial,
participants saw a message indicating how much they won (1 point or 4 points depending on the reward
value of that trial) and pictures of landscapes (nature context; e.g., pleasant pictures of mountains,
beaches, rivers, etc.) or social pictures (social context; e.g., pleasant pictures of people hugging, laughing
together, etc.). Participants either saw 1 picture or 4 pictures, corresponding to the number of points they
earned in that trial (i.e., 1 picture for 1 point and 4 pictures for 4 points). This allowed us to measure the
extent to which effort-based decision-making was modulated by reward and whether isolation selectively
enhanced reward seeking in social vs non-social contexts. In total, there were 8 conditions: high effort -
high reward; low effort – high reward; high effort – low reward; low effort - low reward, each in either a
nature or social context, with 6 trials per condition (48 trials in total), which were presented in random
order.

Participants had to indicate whether or not they wanted to play each trial. There was no time restriction
for participants’ decisions. If participants completed the trial successfully (i.e., pumped up the bar within
the time limit), they saw the social or nature pictures described above. Pictures were presented for 8 s
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together with the number of points participants won. After each trial, a �xation cross was presented for
0.5 s.

Reward Learning. The ability to learn stimulus–reinforcement associations and to reverse them based on
probabilistic feedback was measured using a probabilistic reinforcement and reversal learning task66,67.
In the present task, participants were shown two slot machines and asked to choose between them to
obtain a reward. One slot machine was rewarded 80% of the time; the other was rewarded 20% of the
time. Participants needed to learn from feedback through trial and error which slot machine was
rewarded more often. After 7 trials, the reward contingencies switched and participants needed to learn
the new reward contingencies. Feedback was given via symbols (non-social feedback) and facial
expressions (social feedback) in two counterbalanced blocks (28 trials per block, in total 56 trials).
Rewards (positive feedback) were represented by either a plus symbol (+; non-social) or a smiling face
(social), while the absence of a reward (negative feedback) was represented by a zero symbol (0; non-
social) or a neutral face (social).

The two facial pictures (smiling and neutral) were generated by averaging facial pictures of Caucasian
young adults. To do this, we used happy and neutral faces from the Averaged Karolinska Directed
Emotional Faces set68. We averaged the female and male faces for each emotion (happy and neutral)
rendering them ambiguous as to gender. Photoshop was used to create the averages. We cropped the
images to remove the background/hair and display just the face. Facial pictures were displayed in black
and white to match the non-social feedback. Participants were given 1 s to respond on each trial and then
received feedback for 0.5 s. A �xation cross was presented for 0.5 s between each trial.

Participants also underwent three other tasks during the experiment (a go-no go task, a peer in�uence
task and a threat learning task and (see full description of experimental procedures here:
https://osf.io/kbgsv). The order of the tasks was counterbalanced between participants with the
exception that the threat learning task was always presented after the reward tasks reported here, so that
there would be no effect of threat exposure on reward processing. Results from the other behavioural
tasks will be reported elsewhere.

Data analysis
Reward Seeking. We calculated the sum of number of played trials in the EBDM task and mean response
times across all trials for the following conditions (nature or social): high effort - high reward; low effort –
high reward; high effort – low reward; low effort - low reward (8 conditions in total). Response times (RTs)
to choose whether to undergo an effortful task have been shown to be indicative of strength of
preference27 and here were used as the main measure of reward seeking due to the low variance in
participants’ choice data (most participants chose to play every trial in the task). We assessed whether
the number of played trials and RTs when deciding to play differed between sessions (baseline, iso total,
and iso media). We used mixed effects models to investigate �xed effects of session, context, reward and
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effort on choices and RTs (for trials in which participants decided to do the effortful task) using separate
models for choices and RTs. Subject was included as a random effect (allowing intercepts and slopes to
vary between participants69). Calibration (i.e., the number of button presses participants managed at the
beginning of each session from which hard and easy tasks were calculated) was added as a control
variable in the model.

The command for both models (i.e., choice and RT data) was: �tlme(Data,'Response~
(session*effort*reward*context)+(Calibration)+(session*effort*reward*context|subjectID)').

Reward Learning. Participants’ choices from the RL task were analysed using a computational
reinforcement learning and decision-making model for probabilistic reversal learning tasks66.

To assess learning during the task, we �rst extracted the trial-by-trial responses for each participant, then
employed a computational reinforcement learning model for probabilistic reversal learning using a
hierarchical Bayesian modelling approach66 to estimate the learning rates for each participant.

Here, individual parameters are drawn from group-level normal distributions. We used standard normal
priors for the group-level meanse.g., 70–72. For the group-level standard deviations, we used half-Cauchy
prior distributions, which tend to give sharper and more reasonable estimates than uniform or inverse-
Gaussian prior distributions (see reference for details 73).

To select a model that best captured the behaviour of participants, we �rst compared model �ts between
three different reversal learning models on the data from each session. Each model employs the
Rescorla-Wagner value update rule30 but differs in terms of how information is integrated. The Rescorla-
Wagner update rule assumes that individuals assign and update internal stimulus value signals based on
the prediction error, i.e., the mismatch between outcome (received reward/punishment following choice of
this stimulus) and prediction (expected value of choosing this stimulus). The following models were
compared:

(i) A reward-punishment model29, which expands the classic Rescorla-Wagner model of conditioning30

with separate learning rates for reward and punishment trials, here treating non-wins as punishments:

1
Where, ηrew is the learning rate for rewards and ηnrew is the learning rate for non-rewards; O is the
outcome received. In this model, only the chosen stimulus value is updated. Vc,t is the value of choice c
on trial t. O > 0 indicates a win and O < 0 indicates no win.

(ii) An experience-weighted attraction model31, which includes an “experience” weight parameter that
decouples acquisition and reversal by allowing the balance between past experience and new

Vc,t = {
Vc,t−1 + ηrew(Ot−1 − Vc,t−1), ifOt−1 > 0

Vc,t−1 + ηnrew(Ot−1 − Vc,t−1), ifOt−1 < 0
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information to increasingly tip in favour of past experience:

2

3
Where, nc,t is the “experience weight” of the chosen stimulus on trial t, which is updated on every trial
using the experience decay factor ρ. Vc,t is the value of choice c on trial t for outcome O received in
response to that choice, and φ is the decay factor for the previous payoffs. In this model, φ is equivalent
to the inverse of the learning rate in Rescorla-Wagner models.

(iii) A �ctitious update model33, which includes an update rule for the unchosen option considering the
knowledge individuals gain about the unchosen option, here with separate learning rates for positive and
negative prediction errors.

4

5
Where the value V of both the chosen c and unchosen nc stimulus are updated with the actual prediction
error and the counterfactual prediction error per trial t, respectively. O is the outcome received. The
learning rate η, which is divided into ηrew (learning rate for rewards; learning_pos) and ηnrew (learning
rate for non-rewards; learning_neg) evidences the magnitude of the value update affected by both
positive and negative prediction errors.

Model �tting. For all models, a softmax choice function was used to compute the action probability given
the action values. On each trial t, the action probability of choosing option A (over B) was de�ned as
follows:

6
Where β is the inverse temperature parameter that governs the stochasticity of the choice, computed
using inverse logit transfer. Higher β values denote decisions driven by relative value whereas lower β
values denote more choice stochasticity.

nc,t = nc,t−1 × ρ + 1

Vc,t = (Vc,t−1 × ϕ × nc,t−1 + Ot−1)/nc,t

Vc,t = {
Vc,t−1 + ηrew (Ot−1 − Vc,t−1) , ifOt−1 > 0

Vc,t−1 + ηnrew (Ot−1 − Vc,t−1) , ifOt−1 < 0

Vnc,t = {
Vnc,t−1 + ηnrew (−Ot−1 − Vnc,t−1) , ifOt−1 > 0

Vnc,t−1 + ηrew (−Ot−1 − Vnc,t−1) , ifOt−1 < 0

p (A) =
1

1 + e−β(VA−VB)
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Parameter estimation was performed with hierarchical Bayesian analysis using Stan language in R via
the hBayesDM package66. Posterior inference was performed using Markov Chain Monte Carlo (MCMC)
sampling using the mode of the posterior distribution as the summary parameter for individual
participants. Four MCMC chains were used, with 1000 post-warmup iterations per chain, resulting in 4000
valid MCMC samples. Model convergence was assessed by examining R-hat values, an index of the
convergence of the chains74. R-hat values of all models were lower than 1.1 suggesting MCMC samples
were well mixed and converged to stationary distributions.

The models were �tted separately to the data from each session (baseline, iso total and iso media) and
condition (social, non-social) to assess whether model �t would be affected by session or condition.

Model comparison. Comparison of model �t was assessed using Bayesian bootstrap and model
averaging, whereby log-likelihoods for each model were evaluated at the posterior simulations and a
weight obtained for each model. We compared Bayesian model weights between models (higher weights
denoting better model �t). Model parameters were then extracted for each model that provided the best
estimate within a data set (here de�ned as > 0.50 model weight). We found that model �t was best for the
�ctitious update model for each data set (Table S5).

Following model selection, we extracted individual participants’ learning rates and inverse temperature
parameters from the best performing model (i.e., the �ctitious update model) for each session (baseline,
iso total and iso media) and condition (social, non-social).

To compare differences in model parameters, we used mixed effects models to test for differences
between sessions to estimate the �xed effects of feedback condition (social vs non-social) and session
(baseline, iso total, and iso media) on three parameters of interest: learning_pos (learning rate from
positive prediction errors (PEs), learning_neg (learning rate from negative PEs) and beta (inverse
temperature). Separate models were calculated for each parameter. Subject was included as a random
effect (allowing intercepts and slopes to vary between participants69).

The command for each model was:

�tlme(Data,'Parameter ~ (session * condition) + ( session * condition|subjectID)').

Simulations. Whether a certain difference in parameters indicates “better” or “worse” behaviour can be
heavily dependent on the task design and the values of the other relevant model parameters37. We
therefore used data simulations to identify the optimal learning parameters for the present task
environment to help with interpretation of the results. The parameter combinations were taken from a grid
spanned by the learning rate (η; minimum value/maximum value/steps = 0/1/60) and “inverse
temperature β” (0/20/60). Each of these virtual participants then completed 28 trials corresponding to the
actual number of trials in our task for each condition (social, non-social) in each session (baseline, iso
total, iso media) with a reward schedule of 80:20. For each virtual participant, we then calculated the
percentage of correct choices as the percentage of choices for the option that was associated with a
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higher probability for a reward. To reduce random noise due to the �nite number of samples, we
smoothed the resulting images with a gaussian �lter (std = 2). We identi�ed the optimal learning rate and
inverse temperature as the values that resulted in the highest choice accuracy (average of 10 highest
accuracy scores in the simulations; Fig. S2).

Data analysis and visualization for the reward tasks was implemented in Python (version: 3.7) using
Jupyter notebooks (using packages Pandas, NumPy and Seaborn), RStudio and Matlab2020a.

MRI Data Analysis
Preprocessing. We used open source preprocessing pipelines for fMRI data, developed through the nipy
and nipype initiatives75. We used the heudiconv python application which uses dcm2niix to convert raw
scanner data into the NIFTI image �le format, then organize that data into a BIDS-formatted directory
structure. The fMRIprep application76 was used to minimally preprocess the anatomical and functional
data (using default settings but including susceptibility distortion correction using �eldmaps (see below).

Because we collected fMRI data on 7T and used an MP2RAGE sequence, which is not a format that is
currently supported by fMRIprep, we �rst processed the MP2RAGE data so it could be used by fMRIprep.
To this end, we applied an o�ine reconstruction method using in-house code that reconstructs a phase-
sensitive inversion recovery (PSIR) image from MP2RAGE scans (nifti �les). The PSIR �le was then added
as a T1 �le into fMRIprep to be processed and was treated as a T1 anatomical scan in fMRIprep.

Using fMRIprep, we then skull-stripped anatomical images, �rst roughly using the atlas-based ANTS
program77, and re�ned this using information from FreeSurfer surfaces after reconstruction was
completed78. Brain tissue segmentation was performed with the FMRIB Software Library (FSL) FAST
program79. Images were spatially normalized to MNI-space using the multiscale, mutual-information
based, nonlinear registration scheme implemented in ANTS. We visually inspected brain masks, tissue
segmentation and FreeSurfer surfaces. Susceptibility distortion correction was performed using phase-
difference B0 estimation80.

A reference image for each run was generated from the input BOLD timeseries. A functional brain mask
was created using a combination of FSL, ANTS, AFNI and nilearn tools81. Using FSL’s MCFLIRT
program82 we estimated and corrected for head motion, resulting in a coregistered BOLD series as well as
motion-based confound regressors. Any run containing a framewise displacement greater than 0.4 mm
on more than 25% of the total frames was excluded from additional analyses. Additional confound
regressors were generated, including other measures of motion (framewise displacement and DVARS and
anatomical CompCor83 timeseries derived from cerebrospinal �uid (CSF) and white matter tissue
segments. The reference image of each run was aligned with the anatomical image using FreeSurfer’s
program “bbregister”84. The timepoint-to-functional reference transformation, the functional reference to
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anatomical transformation, and the anatomical-to-MNI transformation were concatenated into a single
transformation and used to transform each functional timeseries into MNI template space.

Spatial smoothing was performed on the fMRIprep outputs with a 6 mm smoothing kernel using FSL’s
SUSAN tool85, which uses segmentation boundaries to avoid smoothing across tissue types. MRIQC, an
open-source quality assurance software tool86, was used to generate additional reports which display
Image Quality Metrics (IQMs).

Functional MRI Data Modelling. Analyses were conducted using the nipype framework75. For run-level
analyses, the preprocessed timeseries were assessed with algorithms from the Artifact Removal Toolbox
(ART) to identify frames within the run that have an abnormal amount of motion (0.4 mm of total
displacement, or an intensity spike greater than 3 standard deviations from mean). The design matrix
included boxcars for the experimental conditions convolved with a double-gamma hemodynamic
response function (HRF), and nuisance regressors representing frame-wise motion, the anatomical
CompCor regressors derived from white matter and CSF, as well as impulse regressors for volumes
identi�ed by ART. A high-pass �lter was applied to the design matrix and the smoothed data. The model
was evaluated using FSL’s FILM87. Subject-level contrast maps were generated using FSL’s FLAME87 in
mixed-effects mode.

ROIs in MID task. To analyse the functional data from the MID task, we applied whole brain analyses and
region of interest (ROI) analyses. Whole brain data was used to generate group-level contrasts for the
high reward vs no reward conditions to assess whether the resulting group-level brain activation was in
line with expected activation for this contrast38. For the ROI analyses, we included regions that have been
consistently activated during reward anticipation in an Activation Likelihood Estimation meta-analysis of
50 fMRI studies using the MID task (Oldham 201838). These regions comprised: the ventral striatum (VS),
midbrain (MB), amygdala (AMY), anterior insula (AI), occipital cortex (OC), thalamus (TH) and
supplementary motor area (SMA). ROIs were created using the Harvard–Oxford cortical and subcortical
probabilistic anatomical atlases; included in FSL. We were not able to �nd an anatomical mask for the
anterior insula and therefore created ROIs based on peak activation locations reported in Oldham 2018
(left AI: -40 14 − 8; right AI: 34 24 − 2). We drew 5 mm spheres around these peak coordinates and created
a binary mask combining left and right AI.

Quantifying neural reward sensitivity.

Univariate. We extracted mean activation from the contrast high reward > no reward during the
anticipation phase of the MID task as a measure of univariate neural reward sensitivity from each ROI (7
ROIs in total).

Multivariate. Multivariate analyses can detect differences between conditions with higher sensitivity than
conventional univariate analyses88. We therefore also employed a multivariate measure of neural reward
sensitivity by quantifying the similarity of the multivariate spatial patterns of activity between high
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reward versus no reward during the anticipation phase of the MID task from each ROI. Multivariate
classi�cation accuracy here can be seen as an indication of the amount of information about a variable
of interest available in the BOLD signal89,90, such that individual differences in classi�cation accuracy
indicate neural reward sensitivity in the multivariate domain. However, differences between multivariate
and univariate tests do not afford conclusions about the nature or dimensionality of the neural signal (as
both can also stem from the same source88). Thus, here, these measures were used to assess the same
concept (i.e., neural reward sensitivity) and we corrected for multiple comparisons across the different
measures. For each ROI, we extracted the β values from the generalized linear model (that is, the
amplitude of the �t HRF) of the response to the two conditions of interest (high reward, no reward) for
each trial in each run (28 trials per condition per run × 4 runs) resulting in 112 β values for each voxel.
Responses were extracted from all voxels in the anatomically identi�ed ROIs in each participant (see ROIs
in MID task for ROI de�nition). No additional feature selection was applied. All multivariate analyses were
conducted with the PyMVPA91 toolbox in Python (http://www.pymvpa.org) and Matlab 2020a. We �rst
trained a machine learning algorithm to decode neural patterns of high reward vs no reward for each
subject within each ROI. We used a 4-fold linear support vector machine (SVM; using linear kernel)
classi�cation for which we trained the classi�er on 3 of the runs from the MID task while one run was left
out for testing. We did this 4 times (4-folds) so that each run was a testing data set on one of the folds.
We then averaged classi�cation accuracies from each fold to create a measure of classi�cation accuracy
for each ROI for each participant. To obtain con�dence intervals of the mean classi�cation accuracy for
each ROI, we used bootstrapping. We generated 1,000 datasets randomly by sampling with replacement
from the classi�cation accuracies for each ROI across participants using Matlab’s bootci function.

First, we tested whether these classi�cation accuracies for each ROI across participants were signi�cantly
above chance, indicating the ability to decode high reward vs no reward representations in that ROI. While
the selected ROIs were chosen based on highly consistent univariate responsiveness to the MID task
across different studies, they might not necessarily also represent reward anticipation in the multivariate
domain. For hypothesis testing at the group level, we used a permutation analysis following the methods
in Stelzer et al.92 (also described in Tomova et al.24). This nonparametric approach does not depend on
assumptions about the distribution of classi�cation accuracies92,93. To generate a null distribution from
the data, we followed the steps described in Stelzer et al., which we summarize below. We shu�ed the
condition labels randomly during training within each run, and then used the same 4-fold cross-validation
approach as in the original analysis to obtain prediction accuracies for each fold, which we then
averaged to create a measure of classi�cation accuracy for each ROI for each participant. We performed
this permutation analysis 100 times per participant (thus creating 100 random permutations), resulting in
100 accuracy values per participant. To create a null distribution at the group level, we then randomly
drew one of the 100 accuracy values for each participant and calculated a mean across participants.
This procedure was repeated 105 times for each ROI, creating the null distributions for each ROI. We
calculated the probability P of obtaining a mean accuracy value in the null distributions that is equal to or
higher than the true mean from the analyses. Following Stelzer et al., we rejected the null hypothesis of
no group-level decoding if P < 0.001.



Page 26/38

We were able to decode high reward vs no reward representations in all of our 7 selected ROIs: VS (mean
accuracy = 0.568, bootstrapped CI = 0.540,0.594, P < 0.001); MB (mean accuracy = 0.551, bootstrapped CI 
= 0.525,0.582, P < 0.001); OC (mean accuracy = 0.579, bootstrapped CI = 0.552,0.606, P < 0.001); AI (mean
accuracy = 0.545, bootstrapped CI = 0.521,0.573, P < 0.001); TH (mean accuracy = 0.560, bootstrapped CI 
= 0.534,0.592, P < 0.001); SMA (mean accuracy = 0.568, bootstrapped CI = 0.536,0.601, P < 0.001); AMY
(mean accuracy = 0.506, bootstrapped CI = 0.482, 0.534, P < 0.001).

We used the classi�cation accuracy obtained from each participant from the SVM classi�cation as a
measure of multivariate neural reward sensitivity for subsequent analyses.

For both measures of neural reward sensitivity (univariate and multivariate), we used Pearson
correlations to test for an association between neural reward sensitivity and measures of reward seeking
(RTs from the high reward / high effort conditions (mean across nature and social contexts) in the EBDM
task) and reward learning (learning_pos rates in the RL task) in the isolation session. We calculated
separate correlations for each ROI for each measure of neural reward sensitivity (univariate and
multivariate; 14 tests in total) and report results as signi�cant at p < 0.003 (0.05/14)). ROI data analysis
and visualization was implemented in Python (version: 3.7) using Jupyter notebooks (using packages
PyMVPA, SciPy, Pandas, NumPy and Seaborn) and Matlab2020a.
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Figure 1

Overview of the experimental procedure

Left panel: Order of sessions. Individuals �rst completed an online screening questionnaire to assess
eligibility and social connectedness. Eligible participants completed the baseline session, during which
they underwent an MRI scan (functional MRI with a monetary incentive delay (MID) task). MID task:
Participants were presented with a star indicating how much they could win on a given trial.
Subsequently, they were asked to press a button as fast as possible after seeing a white square appear.
Participants then saw a screen indicating how much (from 0 – £5) they had won on that trial. Following
the scan, participants carried out the reward tasks (right panel). Participants were then invited to two
isolation sessions (iso total, iso media; order counterbalanced). At the end of each of the three sessions,
participants carried out two reward tasks. Right panel: Timelines of example trials for each reward task.
Effort-based decision making (EBDM) task: On each trial, participants were �rst shown a screen that
listed details for the current trial (level of effort (hard, easy), reward (high (4 points), low (1 point)) and
context (social, nature)) and were asked whether they wanted to complete the trial. We measured the
response time (RT) while participants decided if they wanted to complete the trial. If they chose yes, they
saw a bar that they were required to pump up in 10 s (amount of effort required was calibrated to each
participant’s maximum effort levels assessed at the start of the task in each session) and, if they were
successful, they saw a screen indicating how much they had won (1 or 4 points) and depicting images of
social interactions or nature landscapes, depending on context (low reward = 1 image; high reward = 4
images). Reward Learning (RL) task: Participants were presented with two slot machines and asked to
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choose one. After they chose, they received feedback as to whether they had won (indicated by a smiling
face or a plus symbol) or did not win (indicated by a neutral face or a zero).

Figure 2

Effects of isolation on loneliness and mood.

Changes in self-reported loneliness (left) and positive mood (right) over time during isolation. Dark green
= iso total session; turquoise = iso media session. The boxplots indicate the median (black centre line),
mean (white circle), the interquartile range (IQR; box) and the 1.5 x IQR minima and maxima (whiskers).
The black rhombi indicate outliers (values outside of 1.5 x IQR). The dashed lines across the plots
indicate the mean (white) and median (grey) ratings during baseline and their 95% con�dence interval
(grey area). The asterisk indicates signi�cance at p < 0.001.

Figure 3
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Effects of isolation on reward seeking.

Violin plots depict response times (RTs) during the reward seeking (EBDM) task for high effort trials in
each session plotted separately for high rewards (green) and low rewards (grey) averaged across
contexts (social, non-social). The violin plots illustrate the distribution of the data, the long-dashed lines
indicate the median, the short-dashed lines the interquartile range with individual data points shown
overlayed. The asterisk indicates signi�cance at a Bonferroni-corrected p value < 0.0063.

Figure 4

Correlations between self-reported loneliness after isolation and RTs in the EBDM task.

Scatter plots depict self-reported loneliness levels in each session (at the onset of the baseline session
and after three hours of isolation in the two isolation sessions) and response times (RTs) during the
EBDM task for high reward, high effort trials for the social and non-social context in each session
(baseline, iso media, iso total). The scatter plots illustrate the main effect of loneliness on RTs in the
EBDM task and the interaction between context and loneliness on RTs in the iso media session and show
individual data points and regression lines indicating the linear �t for each context and the shaded areas
depicts the 95% con�dence interval. The plots show that, overall, higher loneliness in each session was
associated with faster RTs in the task. However, in the iso media session in the social context this
relationship was reversed and higher loneliness was associated with slower RTs in the task.
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Figure 5

Fig. 6 Effects of isolation on reward learning.

A. Population-level mean posterior distributions of learning rates from positive prediction errors
(learning_pos), learning rates from negative prediction errors (learning_neg) and inverse temperature
(beta) for each session for each feedback type. The violin plots illustrate the posterior distributions for the
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population-level mean effects of the different conditions. The posterior distributions consist of 12,000
samples combined from four Monte Carlo Markov chains. The boxplots illustrate the interquartile range
(IQR; box) and the centre lines signify medians. The whiskers extend from the hinge to at most 1.5 times
the interquartile range. B-D. Difference in population-level mean posterior distributions for each pair of
sessions (iso total – baseline, iso media – baseline and iso total – iso media) and feedback type (social,
non-social) for learning_pos rates (B), learning_neg rates (C) and beta (D). The histograms depict the
density of difference scores; the red dashed line indicates zero (no difference).

Figure 6

Fig. 7 Correlations between self-reported loneliness and learning_pos rates in the RL task.

Scatter plots depict self-reported loneliness levels in each session (at the onset of the baseline session
and after three hours of isolation in the two isolation sessions) and learning_pos rates during the RL task
for social (light green) and non-social (dark green) feedback for the baseline (left), iso media (middle) and
iso total session (right). The scatter plots illustrate the interaction between loneliness, session and
condition on learning_pos rates in the RL task. The scatter plots show the individual data points, the
regression lines indicate the linear �t for each feedback type and the shaded areas depicts the 95%
con�dence interval. The plots show that in both isolation sessions (iso media and iso total) higher
loneliness is associated with higher learning_pos rates from social feedback in the task but with lower
learning_pos rates from non-social feedback. This relationship is reversed at baseline.
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Figure 7

Fig. 8 Neural reward sensitivity predicts effects of isolation on reward seeking.

(a) Univariate group level activity family-wise error (FWE) corrected at the voxel level (p<0.05) for the
contrast High Reward > No Reward during the anticipation phase of the MID task. (b) Brain reward
signals predicting reward seeking in the EBDM after isolation (iso total) but not at baseline for univariate
neural reward signals in occipital cortex. Plots depict individual data points, regression lines and
con�dence intervals (standard errors of the estimate) between neural reward signals and response time in
the EBDM task in the baseline (blue) and iso total (pink) session.

Neural reward sensitivity (univariate or multivariate) did not predict reward learning in either the iso total
session or the iso media session for any of the ROIs for either social or non-social feedback (all p-values
> 0.03).
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