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Understanding the genetic basis of neuro-related proteinsis essential for dissecting the molec-
ular basis of human behavioral traits and the disease etiology of neuropsychiatric disorders.
Here, the SCALLOP Consortium conducted a genome-wide association meta-analysis of over
12,500 individuals for 184 neuro-related proteins in human plasma. The analysis identified
117 cis-regulatory protein quantitative trait loci (cis-pQTL) and 166 trans-pQTL. The mapped
pQTL capture on average 50% of each protein’s heritability. Mendelian randomization anal-
yses revealed multiple proteins showing potential causal effects on neuro-related traits such
as sleeping, smoking, feelings, alcohol intake, mental health, and psychiatric disorders. Inte-
grating with established druginformation, we validated 13 out of 13 matched combinations of
protein targets and diseases or side effects with available drugs, while suggesting hundreds of
re-purposing and new therapeutic targets. This consortium effort provides alarge-scale pro-
teogenomic resource for biomedical research on human behaviors and other neuro-related

phenotypes.

Certain patterns of human behaviors such as cigarette-smoking, alcohol consumption, and high
fat may elevate the risk of developing a range of complex diseases'2. While neuropsychiatric dis-
orders are among the leading causes of life-long disability globally, affecting around 800 million
people>*. As of 2023, mental health remains a global crisis and priority brought to the forefront
of public health discussions anew, after the impact of COVID-19 on people’s lives, where stressors
suchasisolation, significant changes in habits, and global enhanced mortality and fear of contract-
ing the disease have had severe consequences on mental well-being®>”. These conditions represent
a significant challenge for medical research due to the high complexity of their neurobiological
mechanisms and heterogeneity of symptoms which often overlap with other neurological, psychi-
atric, and non-psychiatric disorders31°.

In the past decade, genome-wide association studies (GWAS) have been successful in identify-
ing numerous genetic variants that can partially account for variation in complex traits and dis-
eases 12, However, the effect of a genetic variant such as a single nucleotide polymorphism (SNP)
on a complex disease is usually very small and often does not provide information on the pheno-
type’s molecular architecture. Measuring proteins may overcome this obstacle as proteins are the
product of translated DNA and functional elements that bridge the genetic codes and disease out-
comes. Circulating proteins in blood plasma originate from various organ tissues and cell types
in the human body and have fundamental roles in different biological processes!>>. Thus, such

proteins are often used in clinical practice as disease biomarkers. Circulating neurology-related
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proteins have the potential to provide insight into the pathophysiology of neurological and men-
tal disorders and the genetic architecture of their molecular pathways, setting the basis for the im-
provement of diagnostic instruments and targeted therapy'®.

Protein levels are more linked to variation in cognitive function than genetic variants alone.
Current studies on neurology-related proteins either focussed on neurodegenerative disorders or
cognitive function specifically orhad alimited samplesize 722, Inarecent study, neurology-related
proteins were associated with general fluid cognitive abilities in late life, and a portion of these was
observed to be mediated by brain volume, measured as a structural brain variable 2°.

The field of proteomics has been rapidly expanding in recent years and produced results that
have played a fundamental role in the decoding process of molecular mechanisms involved in sev-
eral traits and diseases, from cardiovascular disease to general health 123726, The genomic studies
of the human proteome have benefited from various high-throughput measurement techniques,
such as mass spectrometry' 27, aptamer-based assays?®, and antibody-based assays!>. Amongthese,
the antibody-based Proximity Extension Assay 2° has high measurement precision, especially for
many functional but low-abundant proteins.

This study aims to identify genetic variants associated with 184 neurology-related blood circu-
lating proteins via a large-scale genome-wide association meta-analysis (GWAMA) and investigate
the proteins’ genetic and potential causal relationships with potential disease-causing behaviors,
common psychiatric disorders, as well as related comorbidities. We systematically investigate the
proteins’ therapeutic implications based on established drug information. We provide an atlas for
the genetic architecture of these proteins as a resource for biomedical research on human behav-

iors and psychiatric disorders.

Results

GWAMA identified 283 loci associated with 184 neuro-related proteins

In the discovery phase, we conducted a GWAMA using data from up to 12,176 individuals (mean
age = 61.9, percentage females = 44.6%) for 92 proteins in the Olink©Neurology panel, and up to
5013 individuals (mean age = 49.6, percentage females = 56.1%, see Supplementary Tables 11-23 for
details) for 92 proteins in the Olink©Neuro-Exploratory panel, from a total of twelve participating
cohorts (Supplementary Tables 12-23). Overall, we identified 266 top variants distributed across
a total of 117 cis-pQTL and 166 trans-pQTL with the significance threshold of P < 5 x 10~8 for the
cis-lociand P < 1.76 x 10~1° for the trans-loci (Supplementary Table 1, Supplementary Fig. 7-8).
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Out of the 137 proteins with detected pQTL, 68 proteins had significantly associated variants both
in cis- and trans-regulatory loci.

As expected, the identified trans-pQTL, in general, were more weakly associated than the cis-
pQTL, nevertheless, we found that 24 proteins shared a total of 14 trans-pQTL. For example, well-
known pleiotropic loci such as the HLA region and the ABO locus showed trans-regulatory effects
across a number of plasma proteins (Fig. 1a). For instance, 19 proteins showed significant trans-
pQTL at the ABO locus, nevertheless, the associations were not completely due to the same causal
variants (Supplementary Fig. 3). Most of the mapped pQTL were also found to be expression QTL
(eQTL)significantly associated with the expressions of the corresponding/nearest genes, however,
compared to trans-pQTL, cis-pQTL were much more likely to colocalize with eQTL, in terms of the
underlying genetic regulation (Supplementary Fig. 1-2). The lead variants of the cis-pQTL were
also more centered around the transcription start sites (TSS) of the corresponding coding genes,
compared to those of the trans-pQTL around the TSS of the nearest coding genes (Fig. 1b). The cis-
pQTL also had stronger effects, less correlated with the minor allele frequencies (MAFs), compared
to the trans-pQTL (Fig. 1c-d).

The fact that the trans-pQTL were not colocalized with eQTL could be partly due to the weaker
signals of the trans-pQTL than those of the cis-pQTL. However, we hypothesized that the trans-
pQTL may not necessarily reflect the biological regulatory mechanisms of the corresponding pro-
teins, but rather driven by underlying features of the blood samples, due to their influence on the
immuno-reaction of the Olink assay. For example, the pleiotropic trans-pQTL across the proteins
highlight major blood coagulation and clotting factors such as KLKB1 (Plasma kallikrein), KNG1
(Kininogen-1), and F12 (Coagulation factor XII), as well as glycosylation locus ST3GAL4. We thus
also looked into the functional pathways and gene sets that involve the closest genes to our trans-
pQTL, using the gene set enrichment analyses (Supplementary Fig. 6). With a false discovery rate
< 5%, 997 significant pathways were found to be enriched for the genes of our trans loci, of which
443 (44.4%) were driven or partly driven by the HLA genes. Most top enriched pathways were clus-
tered into inflammatory and immune responses, coagulation processes, cell-to-cell signaling and
adhesion, and protein glycosylation (Supplementary Table 8). Particularly, the trans-pQTL were
found tobe enriched in1) established GWAS traits such as blood protein levels, platelet count, and
platelet crit; 2) GO pathways such as biological adhesion, wound healing, coagulation, and glyco-
sylation; 3) Hallmark gene sets including coagulation; 4) Reactome pathways including hemostasis
and clotting formation; 5) microRNA targets and Wiki pathways for blood clotting cascade.

We assessed the overall heritabilities across the 184 analyzed plasma proteins. Methods based

on summary association statistics have been developed to infer heritability and genetic correla-
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tion parameters for complex traits with GWAS results; however, consistent estimates can only be
obtained for genetic correlations 3°-32, Thus, we used a standard polygenic mixed model on the
individual-level data collected in the ORCADES cohort to assess the narrow-sense heritability for
each protein 33. Across the analyzed proteins, we found that the higher the protein’s heritability,
the more pQTL detected for the protein (Fig. 1e), the stronger the cis-pQTL effects are (Fig. 1g),
and the higher amount of phenotypic variance captured by the detected pQTL (Fig. 1f). On aver-
age, the mapped pQTL together explain 49% of the proteins’ heritability. This indicates that pro-
teins as molecular phenotypes have strong major regulatory loci. Nevertheless, their genetic ef-
fects can still be widespread across the genome, having a polygenic genetic architecture.

Using data from the ORCADES cohort, we found TDGF1 (Teratocarcinoma-Derived Growth Fac-
tor1) to have the highest heritability (h? = 0.85), followed by MDGA1 (MAM Domain-Containing Gly-
cosylphosphatidylinositol Anchor Protein 1, 2 = 0.75), CLM1 (CD300 Molecule Like Family Mem-
ber F, h2 = 0.72), and LAIR2 (Leukocyte Associated Immunoglobulin Like Receptor 2, h? = 0.70).
In contrast, CTF1 (Cardiotrophin 1), EPHA10 (Ephrin Type-A Receptor 10), GSTP1 (Glutathione S-
Transferase Pil), HSP90BI1 (Heat Shock Protein 90 Beta Family Member 1), IFI30 (Gamma-Interferon-
Inducible Lysosomal Thiol Reductase), NDRG1 (N-Myc Downstream Regulated 1) and SFRP1 (Se-
creted Frizzled Related Protein 1) all had an estimated h? value close to 0, while having at least one
pQTL.

We used the PhenoScanner pQTL database 3*3° to determine whether the pQTL sentinel vari-
ants or variants in linkage disequilibrium (LD) with them (r*> > 0.8) that we identified had been
previously found to be significantly associated with the corresponding proteins (Supplementary
Table 2). 113 of our discovered loci were already discovered in previous studies. We also checked
whether the hits from the meta-analysis were significant in the individual cohorts and observed
that 73 of the sentinel variants were found to be statistically significant only in the meta-analysis.
We also extracted the established associations between our mapped cis-pQTL and complex traits
from the PhenoScanner database (Supplementary Table 3). At a 5% false discovery rate, 39 cis-
pQTL showed significant association with both complex traits and other proteins (mostly based
on an aptamer-based assay). We found that the level of pleiotropy at the protein level, i.e., being
trans-pQTL for other proteins, is associated with the level of pleiotropy on the complex traits (Sup-
plementary Fig. 4).

We performed linkage disequilibrium (LD) pruning (r? < 0.001) to identify secondary indepen-
dent associations at the cis-pQTL. We identified a total of 769 additional variants across all the 117
proteins with cis-pQTL mapped (Supplementary Table 4).

This meta-analysis within our SCALLOP collaborative framework is a follow-up of a previous



191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

study on the proteins from the Olink Neurology and Neuro-exploratory panels, where data were
collected from the two Greek cohorts that we included in this study3®. Our results replicated over
90% of the established loci, including the previous main discoveries of the cis-pQTL for CD33, GP-
NMB, and MSR1. Furthermore, we cross-referenced the significant loci discovered in the meta-
analysis with the currently available pQTL data from the UK Biobank Pharma Proteomics Project
(UKB-PPP)¥. 114 proteins in our meta-analysis were also included in the UKB-PPP analysis. For
these proteins, 91 out of the 102 cis-pQTL and 89 out of the 125 trans-pQTL were also reported in
the UKB-PPP results (Supplementary Table 1).

Mendelian randomization analysis identifies plausible causal protein mark-

ers for neuro-related phenotypes

In order to make statements on potential causality from the proteins to complex traits and dis-
eases, we focused on the genetic associations at the cis-pQTL, which provide strong and most likely
valid genetic instruments in Mendelian randomization (MR) analysis. We first considered the 152
neuro-related traits whose GWAS summary statistics are available through LD-Hub3® as the out-
come data. We performed an inverse-variance weighted (IVW) two-sample MR analysis using the
886 LD-pruned geneticinstrumentsacross the 117 cis-pQTL on the 152 phenotypes. With afalse dis-
covery rate 5% threshold, we obtained 24 significant potential causal associations for 13 proteins
on 22 traits, where three proteins are currently druggable targets (Fig. 2, Supplementary Table 5).

In order to control for false positive inference due to LD, we adopted the HEIDI (heterogeneity
in dependent instruments)3’ test statistic to examine the colocalization between each pQTL and
its association with the corresponding downstream outcome phenotypes. Nine out of the 24 plau-
sible causal associations had colocalization support by HEIDI (p > 0.05) (Fig. 2-3, Supplemen-
tary Table 5). Among these, the single protein CDH6 showed a potential causal effect on neurolog-
ical and behavioral traits including mood swings, miserableness, leg pain, smoking, and neuroti-
cism, where the effect on smoking had a different direction compared to on the others. CTSC and
LGALS8 were both plausible causal markers for alcohol intake but with opposite effects directions.
CDH17 showed an positive effect onintelligence. DPEP1showed a negative effect on napping, while

as adruggable target it also showed a potential risk-increasing effect on schizophrenia.
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Mendelian randomization analysis provides evidence for the proteins’ causal

effects on other complex diseases

Expanding our cis-pQTL-based MR analysis to a broader range of complex traits, we used the UK
Biobank GWAS summary-level data for 4,085 phenotypes by the Neale’s lab (see Data Availability)
as the outcome data. We performed the same analysis procedure as above, and with a false dis-
covery rate 5% threshold, the analysis yielded in 472 significant potential causal associations for
82 proteins on 221 traits. Among these discoveries, 59 were for 47 diseases with 33 plausible causal
protein markers.

Again, we utilized the HEIDI test statistic to examine the colocalization between each pQTL and
the disease genetic associations. 29 out of the 59 plausible causal associations with disease out-
comes showed colocalization supported by HEIDI (p > 0.05) (Fig. 4, Supplementary Table 6), in-
cluding 8 druggable protein targets and 14 new targets.

Except for the effect of TPPP3 (tubulin polymerization—promoting protein family member 3)
on hypothyroidism/myxoedema, reverse generalized summary-statistics-based MR (GSMR)*° did
not show evidence for reverse causality of the other significant MR discoveries on the complex dis-
eases. In general, the MR estimated odds ratios (FDR < 0.05) were found to be ranging from 0.49
t02.48, consistent with previous studies evaluating the causal effects of blood circulating proteins

on other complex traits 141,

Systematic analysis of established, re-purposing, and new drug targets

Based on the MR causal inference, we systematically investigated the protein markers in the Drug-
Bank database (see Data Availability). There were 13 protein-trait combinations from the signifi-
cant MR discoveries that matched established drugs. We found that for all the 13 established drug
targets (Fig. 5a-b), the MR-inferred causal effects directions matched the corresponding target-
ing drugs’ pharmacological effects (including side effects) (Fig. 5¢). For instance, hyaluronic acid
is a liver disease biomarker, the protein NCAN binds with hyaluronic acid thus reduces liver cir-
rhosis. Gemtuzumab ozogamicin is a monoclonal anti—-CD33 antibody, reducing white blood cell
count. Benralizumab is an antibody for IL5RA, treating eosinophilic asthma by affecting its causal

effect on eosinophil counts. Overdosed acetaminophen increases the mean corpuscular volume

and mean corpuscular haemoglobin, duetotheinsufficient enzyme activity of Glutathione S-transferase

P (GSTPY).
Clenbuterol was used as a bronchodilator in the treatment of asthma patients. But it can cause

longandshort-termside effects, including hypertension. Our MR analysis showed that theincreased
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level of beta-nerve growth factor (beta-NGF), which could be caused by Clenbuterol, could lead to
a higher risk of hypertension (Fig. 5d).

The MR analysis reveals that protein CTSS (cathepsin S) can increase platelets in the blood and
reduce mean platelet volume. Fostamatinib can inhibit the protein CTSS, known as an approved
medication for chronic immune thrombocytopenia (ITP) by inhibiting the spleen tyrosine kinase
(SYK). It indicates that fostamatinib treats ITP via both protein SYK and CTSS (Fig. 5e).

Cilastatin is a dehydropeptidase 1 (DPEP1) inhibitor used to prevent degradation of imipenem,
both were used together to treat infections. We found that inhibiting DPEP1 can increase the risk
of high blood pressure, while decrease the risk of schizophrenia (Fig. 5f). This indicates clinical
re-purposing potential of Cilastatin, and other DPEP1 inhibitors, as treatments for schizophrenia,
though further investigations are needed.

Overall, besides the validated targets, we alsoidentified 273 suggestive drug re-purposing target-
disease pairs for 18 proteins (Fig. 5a-b, Supplementary Table 9). There already exist established
drugs for these protein targets, making these drugs potentially useful upon further clinical trials.
At last, 144 new target-disease combinations were suggested, based on our causal inference (Sup-

plementary Table 10).

Discussion

We identified novel pQTL for 137 of 184 neuro-related proteins, provided insights into their molec-
ular mechanisms and effects on complex diseases and traits, and highlighted useful therapeutic
targets with established drugs. On average, we identified half of the genetic architecture under-
lying the concentration of these proteins. We provide a well powered genetic landscape for these
proteins with large-scale summary-level data for future research.

Although the proteins were found to have small effects individually in the MR analysis, our re-
sults indicated that for most of the identified proteins, having low levels in plasma leads to a higher
chance of having poorer health conditions (Supplementary Fig. 5). These conditions include both
deterioration of mental health and related non-neurological comorbidities. Such results on the
neuro-related proteins are consistent with the notion that psychiatric and neurological disorders
are multi-factorial and not limited to the central nervous system, but rather are products of inter-
actions among multiple systems within the organism*>*>. The intertwining of neuropsychiatric,
inflammatory, and cardiovascular disorders has long presented a challenge in clinical research due
to the difficulties in discerning the relationships among them*®47, Our results suggest that these

disorders may share molecular mechanisms and pathways and provide the basis for developing
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new diagnostic toolsand treatmentstrategies. Wealsoreported alarge number of drug re-purposing
targets, suggesting the potential use of established drugs in new clinical trials for treatment of dif-
ferent symptoms and disorders.

Regarding the MR methodology, we found that the MR analysis with a single geneticinstrument
at the cis-pQTL tended to generate a stronger estimated causal effect (Fig. 4). This is partly due to
power, ascompared to multi-instrument MR, single-instrument MR tends to produce causal effects
estimates with larger standard errors, so that only the results with large causal effects estimates
could reach statistical significance. Thus it indicates: 1) Single genetic instrument analysis may be
more prone to winner’s curse, i.e., more likely to detect an overestimated effect on the outcome
trait; 2) using multiple independent instruments within a locus may not only improve power but
also control false discoveries due to overestimated effects in the outcome GWAS.

As expected, the mapped trans-pQTL did not show good colocalization with nearby genes, and
they were enriched in blood clotting and coagulation pathways. For instance, a blood clotting fac-
tor KLKBI appeared to be a trans-regulatory hub for multiple proteins. We thus infer that some of

the trans-pQTL discovered are not directly involved in the genetic mechanisms of the correspond-

ing proteins, butrather they regulateblood characteristics that affect the performance of the antibody-

based assays. Thisisanimportant discovery for biotechnological developmentin proteomics, sug-
gesting that the features of the plasma samples could be non-negligible factors in circulating pro-
tein quantification.

This study significantly advances our understanding of the genetics of neuro-related proteins
and provides new targets for drug discovery. The pQTL discovery and causal inference with disease
outcomes can inform clinical studies to identify actionable drug targets and enable integration
into multi-omics analyses. The UK Biobank Pharma Proteomics Project and more cohorts could
provide additional insights through larger meta-analyses and replication analyses, potentially re-
vealing secondary signals in the pQTL. The inclusion of cohorts with diverse ancestries could fur-
ther elucidate pQTL alleles that are not sufficiently polymorphic in European populations, identi-

fying distinct molecular mechanisms underlying complex diseases.

Methods

Proteins Thisstudyfocussed onproteinsfromthe Olink Neurology and Olink Neuro-exploratory
panels. Circulating protein levels were quantified using Proximity Extension Assay technology,
consisting of pairs of oligonucleotides-labelled antibodies to bind target proteins and hybridize to

have their sequence extended and amplified through polymerase chainreaction (PCR). The level of
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amplified DNA is then quantified by microfluidic qPCR?.

Proteins were selected by a panel of experts to include protein biomarkers that are known to be
associated with neurological disorders and conditions through existing literature. The functions
of these proteins comprise axonal development, metabolism, immune response, and cell-to-cell
communication. The proteins have beenincluded in their respective panel on the basis of their ob-
served involvement in neurological conditions and disorders, as well as the general performance

of the assay.

Cohortsanddatacollection Weobtained summary statistics fromthe GWAS analyses performed
on the Olink Neurology proteins from 10 cohorts and the Olink Neuro-exploratory proteins from 6
cohorts. Cohorts comprised population-based and case-control studies. The summary statistics
information for each cohort can be found in Supplementary Tables 11-25. The total sample size for
the Neurology panel meta-analysis was 12,176, whereas the Neuro-exploratory panel meta-analysis
included up to 5,013 individuals. The participating cohorts used whole-genome sequencing data
or imputed data using the 1000 Genomes Project (Phasel and Phase3) or the Haplotype Reference
Consortium (HRC) asreference panels. An average of 14.5 million SNPs were tested per protein, and
the lowest per-SNP filter imputation quality ranged from 0.4 to 0.3 depending on the cohort. Each
cohort carried out quality control according to their study design, as reported in Supplementary
Table11.

Data below the Olink limit of detection (LOD) is calculated based on the negative controls in-
cluded in each PCR run. Data below the LOD was available only for some cohorts participating in
the meta-analysis. As the proteins were quantified at different times across cohorts, not all studies

have data on all proteins in the two Olink panels.

Genome-wide association analysis of the proteins The Normalized Protein expression values
(NPX), Olink’s unit of protein abundance level on a log2 scale 2°, were rank-based inverse normal
transformed before runningthe per-protein GWAS analyses. Genotypic datawere the allelic dosages
resulting from imputation using the Haplotype reference consortium (HRC) or the 1000 genomes
dataas reference panel. Monomorphic SNPs were excluded. The genotype-phenotype association
analysis was performed using regression models adjusting for sex, age, plate number, plate col-
umn, plate row, sample time in storage, season of sample collection, population structure (when

appropriate), and other study-specific covariates.

Meta-analysis Thesummary associationstatisticsfromeach participating cohortwereuploaded
through a secured FTP channel to the University of Edinburgh’s ECDF Eddie Mark 3 cluster. The
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meta-analysis was run per proteinin METAL (version 2018-08-28)*8 using the inverse variance weighted
method. We defined cis-pQTL to be 500kb upstream or downstream of the gene coding for the re-
spective protein and set the trans-pQTL window to be IMb around the top variants that were found
outside the defined cis- window. A 1% MAF filter was applied to the meta-analysis summary statis-
tics for subsequent analyses. The variants that existed in only one participating cohort were also
removed before subsequent analyses. The significance threshold was set to be 5 x 10~8 for the top

variants of cis-regulatory variantsand 5 x 10~8 /184 = 2.73 x10~'° for the variantsin trans-regions.

Heritability analysis We used a standard polygenic mixed model implemented in GenABEL33 on
the individual-level data collected in the ORCADES cohort to assess the narrow-sense heritability
for each protein. The heritability captured by each pQTL is calculated as 2f(1 —f)Bz, where fand B
arethecodingallele frequency and estimated genetic effect, respectively, assuming Hardy-Weinberg

equilibrium.

Established geneticassociations Weused PhenoScannerv23* 3> to cross-reference thelead (most

significant) genetic variantsinthe cis-pQTL from our meta-analysis withother phenotypes. PhenoScan-

ner is an extensive database of over 65 billion associations from publicly available GWAS studies.
We used the lead variants of our cis-loci as input without the additional option of using proxy mark-
ers. When checking the novelty of our mapped cis-pQTL, we consider established pQTL associa-
tions with P < 5 x 10~ as known. When extracting the established complex traits associations,
we set the p-value threshold to 1to include all possible associations. Thereafter, results with false

discovery rateless than 0.05 are considered. We excluded the studies with non-European ancestry.

Cross-referencing with other Olink-based pQTL studies We cross-referenced the discovered
pQTL with results from the two Greek cohorts that we included in this study3¢ and those reported
by the UK Biobank Pharma Proteomics Project (UKB-PPP)¥ . For eachcis-pQTL, we checked whether
a cis-pQTL was also reported for the same protein in either one of the two pQTL studies. For each
trans-pQTL, we checked whether a trans-pQTL was reported within a =500Kb window of the lead

variant of our discovered trans-pQTL.

Gene set enrichment and functional annotation of GWAS trans loci We performed our gene
set enrichment analyses using the GENE2FUNC in FUMA v1.3.7 4%:39, which returns functional anno-
tation to ENSEMBL v92 gene models for the submitted list in a biological context. We identified the
genes closest to the top SNPsin our trans loci using the locuszoom v0.12%"52 database and then sub-

mitted thelistof genestothe FUMA website. We selected all types of genes to use asbackground for
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this analysis, including over 57,000 genetic elements. We set the maximum FDR adjusted p-value

for gene set association to 1.

Mendelianrandomizationanalysis We performedatwo-sample Mendelianrandomization (MR)
analysis using the inverse-variance weighted (IVW) method to evaluate causal effects between the
proteins with genome-wide significant cis-pQTL and the traits from the UK Biobank GWAS results
by the Neale’s lab. Multiple sentinel variants of our cis-pQTL after LD pruning (r> < 0.001) were
used jointly as instrumental variables. We report the significant discoveries at a level of 5% false
discovery rate, for which we also performed a reverse generalized summary-statistics-based MR

(GSMR) from the complex trait exposures to protein outcomes.

Colocalization analysis For the MR-positive discoveries, the pQTL-complex-trait colocalization
analysis was performed using the SMR/HEIDI tool in the GCTA software3®. We considered a pair of
QTL associations to be colocalized if the HEIDI test p-value was greater than 0.05.

For eQTL-pQTL colocalization analysis, we adopted the v7 release of both the GTEx eQTL and
eQTLGen summary-level data. We used the Bayesian colocalization analysis tool coloc, with the
posterior probabilities testing the H4 colocalization hypothesis, which tests for one shared variant
between the pair of corresponding eQTL and pQTL>3. For each cis-pQTL, we tested colocalization
with the cis-eQTL of the corresponding coding gene in each tissue. For each trans-pQTL, we tested

colocalization with the cis-eQTL of the nearest coding gene.

Drugtargetinvestigation Forthe protein markersfromIVW MR results with false discovery rate
lessthan 5%, we systematically investigated available drugs targetting these markers using the Drug-
Bank database. We considered adrugtarget validatedifan MR discovery between the protein marker
and the trait/disease suggested the same effect direction as the drug’s effect on the protein tar-
get. The protein targets that have available drugs but not directly related to the MR discovered
outcomes were regarded as re-purposing targets. The remaining MR discoveries were reported as

new targets.

Code availability

METAL:https://genome.sph.umich.edu/wiki/METAL_Documentation; PLINK:https://www.cog-genomics.
org/plink/; GCTA-GSMR:https://yanglab.westlake.edu.cn/software/gcta/#GSMR; PhenoScan-

ner: http://www.phenoscanner .medschl.cam.ac.uk; SMR & HEIDI: https://yanglab.westlake.
edu.cn/software/smr/#SMR&HEIDIanalysis; FUMA: https://fuma.ctglab.nl.
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Data availability

The full genome-wide summary association statistics for the 184 proteins will be made publicly
available upon publication of the paper; GTEx data: https://gtexportal.org/home/datasets;
1000 Genomes phase 3 genotype data: https://wuw.cog-genomics.org/plink/2.0/resources#
phase3_lkg; Neale’s lab UK Biobank round2 GWAS summary-level data: http://wuw.nealelab.is/
uk-biobank; DrugBank: https://www.drugbank. com.
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Figure 1: Overview of the mapped protein quantitative trait loci (pQTL). a. Pleiotropic trans-
pQTL counts and overlap of the mapped pQTL with existing eQTL. The upper barplot shows the
number of proteins share trans-pQTL (gene annotations based on gene closest to the trans-pQTL).
The scatterplot shows the genomic location of significant cis-pQTLinred (P < 5x10-8), significant
trans-pQTLinblue (P < 5 x10~8/184), and the shading within the dots indicates significance of the
corresponding/nearest cis-eQTL for the respective protein. b. Scatterplot of the pQTL lead vari-
ants association signals v.s. their distance to the transcription start site (TSS) of the correspond-
ing/nearest coding genes. c. Scatterplot of the absolute estimated genetic effects of the pQTL lead
variantsv.s. their minor allele frequencies (MAFs). d. The scatterplotin cshowninlogarithmscale.
e. Number of mapped pQTL per protein v.s. the linear mixed model estimated heritability in the
ORCADES cohort. f. The variance explained by the mapped pQTL summed up for each proteinv.s.
the estimated heritability. g. For the proteins with significant cis-pQTL mapped, the lead variant

signal strength v.s. the estimated heritability of each protein.

Figure 2: Causality between the proteins and neuro-related phenotypesinferred by Mendelian
randomization (MR) analyses. The forest plot shows the significant MR results (false discovery
rate < 0.05) based on LD-pruned (r* < 0.001) instrumental variants within each cis-pQTL. Inverse-
variance weighted (IVW) estimates are provided as the solid round dots, and the whiskers indicate
95% confidence intervals. The numbers of instrumental variants in the cis-pQTL are given to the
right of the whiskers. As a colocalization measure, the HEIDI (heterogeneity in dependent instru-
ments) test evidence (p > 0.05) are given as the diamonds, where the largest diamonds corre-
spond to a p-value of 1. The upper part of the plot shows the results where the proteins are known

druggable targets, while the lower part shows the results for new protein targets.

Figure 3: Regional association patterns of the pQTL and the colocalized neuro-related com-
plex traits. The displayed protein-trait pairs correspond to the Mendelian randomization dis-
coveries in Figure 2 with the HEIDI p-value > 0.05. Each subfigure shows the pQTL region of IMb
centered at thelead variant. The vertical dashed line in each subfigure marks the transcriptionstart

site of the corresponding protein’s coding gene.
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Figure 4: Causality between the proteins and UK Biobank disease phenotypes inferred by Mendelian

randomization (MR) analyses. The forest plot shows the significant MR results (false discovery
rate < 0.05) based on LD-pruned (r> < 0.001) instrumental variants within each cis-pQTL. Inverse-
variance weighted (IVW) estimates are provided as the solid round dots, and the whiskers indicate
95% confidence intervals. The numbers of instrumental variants in the cis-pQTL are given to the
right of the whiskers. As a colocalization measure, the HEIDI (heterogeneity in dependent instru-
ments) test evidence (p > 0.05) are given as the diamonds, where the largest diamonds corre-
spond to a p-value of 1. The upper part of the plot shows the results where the proteins are known

druggable targets, while the lower part shows the results for new protein targets.

Figure 5: Drug targets revealed by Mendelian randomization (MR) analyses. The MR results
with 5% false discovery rate are considered. a. The number of MR inferred pairs of proteins and
traits split into four categories: new (drug) targets, druggable targets that have drugs with unclear
clinical function, re-purposing targets that have established drugs but for different diseases, and
validated known targets where the established drugs have pharmacological effects that match the
MR results. b. Numbers of re-purposing and validated drug targets per protein analysed. c¢. The
validated known drug targets, the description of the drugs, and the corresponding consistent MR
estimated effects. d. Potential mechanism of the adverse effect of Clenbuterol that targets NGF. e.
Potential mechanism of Fostamatinib treating Chronicimmune thrombocytopenia through CTSS.

f. Potential pharmacology of DPEP1’s re-purposing drug on schizophrenia.
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Overview of the mapped protein quantitative trait loci (pQTL). a. Pleiotropic trans pQTL counts and
overlap of the mapped pQTL with existing eQTL. The upper barplot shows the number of proteins share
trans-pQTL (gene annotations based on gene closest to the trans-pQTL). The scatterplot shows the
genomiclocation of significant cis-pQTLin red (P < 5x10-8), significant trans-pQTLin blue (P< 5x10-8
/184), and the shading within the dots indicates significance of the corresponding/nearest cis-eQTL for
the respective protein. b. Scatterplot of the pQTL lead vari ants association signals v.s. their distance to
the transcription start site (TSS) of the corresponding/nearest coding genes. c. Scatterplot of the
absolute estimated genetic effects of the pQTL lead variants v.s. theirminor allele frequencies (MAFs). d.
The scatterplotinc showninlogarithm scale. e. Number of mapped pQTL per protein v.s. the linear mixed
model estimated heritability in the ORCADES cohort. f. The variance explained by the mapped pQTL
summed up for each protein v.s. the estimated heritability. g. For the proteins with significant cis-pQTL

mapped, the lead variant signal strength v.s. the estimated heritability of each protein.
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Figure 2

Causalitybetween theproteinsandneuro-relatedphenotypes inferredbyMendelian randomization (MR)
analyses. The forest plot shows the significant MR results (false discovery rate< 0.05) based on LD-
pruned (r 2 < 0.001) instrumental variants within each cis-pQTL. Inverse variance weighted (IVW)
estimates are provided as the solid round dots, and the whiskers indicate 95% confidence intervals. The
numbers of instrumental variants in the cis-pQTL are given to the right of the whiskers. As a
colocalization measure, the HEIDI (heterogeneity in dependent instruments) test evidence (p > 0.05) are
given as the diamonds, where the largest diamonds correspond to a p-value of 1. The upper part of the
plot shows the results where the proteins are known druggable targets, while the lower part shows the
results for new protein targets.
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NCAN, Neurocan core protein :

ICD10: K74 Fibrosis and cirrhosis of liver —=———t—— 1 ¢ :

Chirrosis of liver, NAS =~ =t | ¢

NGF, Beta-nerve growth factor :
Self-reported hypertension 3 —_—— 2 e

PAEP, Glycodelin :

ICD10: RO9 Other symptoms involving the circulatory and respiratory systems e

SCGB1A1, Uteroglobin :
Self-reported fracture fibula

el
ABHD14B, Putative protein—lysine deacylase ABHD14B
Stenosis and insufficiency of lacrimal passages —— 7
ICD10: H04 Disorders of lachrymal system e I
Schizophrenia ever diagnosed by a professional =2
ACVRLA1, Serine/threonine—protein kinase receptor R3
ICD10: H72 Perforation of tympanic membrane
ADAM15, Disintegrin and metalloproteinase domain—containing protein 15
ICD10: 183 Varicose veins of lower extremities
ADAM22, Disintegrin and metalloproteinase domain-containing protein 22
Thrombocytopenia, unspecified -
Purpura and other haemorrhagic conditions -
BCAN, Brevican core protein :
ICD10: M71 Other bursopathies S—— 7| '$
CD300LF, CMRF35-like molecule 1
ICD10: S82 Fracture of lower leg, including ankle
Diagnosed hayfever, allergic rhinitis or eczema
None of blood clot, DVT, bronchitis, emphysema,
asthma, rhinitis, eczema, allergy diagnosed by docior
CD302, CD302 antigen :
Self-reported hypothyroidism/myxoedema —_— 2 e
CLEC10A, C-type lectin domain family 10 member A :
Self-reported crohns disease -2 ¢
CRIP2, Cysteine-rich protein 2 :
ICD10: C73 Malignant neoplasm of thyroid gland —— ]
CSF3, Granulocyte colony—stimulating factor :
Diagnosed hayfever, allergic rhinitis or eczema : —— ]
FUTS8, Alpha—-(1,6)-fucosyltransferase :
Chrondropathies i 2 e
GDNF, Glial cell line-derived neurotrophic factor :
Radiculopathy AR O
PRTFDC1, Phosphoribosyltransferase domain—-containing protein 1 :
ICD10: H92 Otalgia and effusion of ear —— ] $
TPPP3, Tubulin polymerization—promoting protein family member 3 :
Self-reported hypothyroidism/myxoedema —_—— e

L
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-0.1 0.0 0.1 0.2
log(OR) (95% Cl)

Figure 4

Causalitybetween theproteinsandUKBiobankdiseasephenotypes inferredbyMendelian randomization
(MR) analyses. The forest plot shows the significant MR results (false discovery rate< 0.05) based on LD-
pruned (r 2 < 0.001) instrumental variants within each cis-pQTL. Inverse variance weighted (IVW)
estimates are provided as the solid round dots, and the whiskers indicate 95% confidence intervals. The
numbers of instrumental variants in the cis-pQTL are given to the right of the whiskers. As a



colocalization measure, the HEIDI (heterogeneity in dependent instruments) test evidence (p > 0.05) are
given as the diamonds, where the largest diamonds correspond to a p-value of 1. The upper part of the
plot shows the results where the proteins are known druggable targets, while the lower part shows the

results for new protein targets.
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Protein Trait L 1 1 ] Drug Role Indication
CD33 White blood cell (leukocyte) count 4 Gemtuzumab ozogamicin  Antibody CD33-positive acute myeloid leukemia
CTSS Platelet count " Fostamatinib Inhibitor Chronic immune thrombocytopenia
CTSS Mean platelet (thrombocyte) volume o1 Fostamatinib Inhibitor Chronic immune thrombocytopenia
GSTP1 Mean corpuscular volume i Acetaminophen Substrate Increase mean corpuscular volume
GSTP1 Mean corpuscular haemoglobin e Acetaminophen Substrate Increase mean corpuscular haemoglobin
ILERA Eosinophil percentage 1o Benralizumab Antibody Eosinophilic asthma
ILSRA Eosinophil count Ed Ben Antibody Eosinophilic asthma
NCAN Chirrosis of liver, NAS —— HVE“UFO“'C acid Binder Biomarker of liver disease
NCAN ICD10: K74 Fibrosis and cirrhosis of liver  +—e+— Hyaluronic acid Binder Biomarker of liver disease
NGF Self-reported hypertension —— Clenbuterol Stimulator Hypertension
NGF Dactor diagnosed high blood pressure —— Clenbuterol Stimulator Hypertension
NGF Diastolic blood pressure, automated reading —— Clenbuterol Stimulator Hypertension
NGF Systolic blood pressure, automated reading ——t Clenbuterol Stimulator Hypertension
Clenbuterol » High blood pressure € Fostamatinib & Chronic |mmunf:
thrombocytopenia
e /
Stimulator Al SxpenveI o — Spleen Tyrosine Kinase
MR + Bl — Platelet count
+ Mean platelet volume
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Figure 5

Drug targets revealed by Mendelian randomization (MR) analyses. The MR results with 5% false
discovery rate are considered. a. The number of MR inferred pairs of proteins and traits split into four



categories: new (drug) targets, druggable targets that have drugs with unclear clinical function, re-
purposing targets that have established drugs but for different diseases, and validated known targets
where the established drugs have pharmacological effects that match the MR results. b. Numbers of re-
purposing and validated drug targets per protein analysed. c. The validated known drug targets, the
description of the drugs, and the corresponding consistent MR estimated effects. d. Potential
mechanism of the adverse effect of Clenbuterol that targets NGF. e. Potentialmechanism of
Fostamatinib treating Chronic immune thrombocytopenia through CTSS. f. Potential pharmacology of
DPEP1’s re-purposing drug on schizophrenia.
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