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Abstract
Background: Several scores predicting mortality at the emergency department have been developed.
However, all with shortcomings either simple and applicable in a clinical setting, with poor performance,
or advanced, with high performance, but clinically di�cult to implement. This study aimed to explore if
machine learning algorithms could predict all-cause short- and long-term mortality based on the routine
blood test collected at admission.

Methods: We analyzed data from a retrospective cohort study, including patients > 18 years admitted to
the Emergency Department (ED) of Copenhagen University Hospital Hvidovre, Denmark between
November 2013 and March 2017. The primary outcomes were 3-,10-,30-, and 365-day mortality after
admission. PyCaret, an automated machine learning library, was used to evaluate the predictive
performance of �fteen machine learning algorithms using the area under the receiver operating
characteristic curve (AUC).

Results: Data from 48841 admissions were analyzed, of these 34190 (70%) were randomly divided into
training data, and 14651 (30%) were in test data. Eight machine learning algorithms achieved very good
to excellent results of AUC on test data in a of range 0.85-0.90. In prediction of short-term mortality,
lactate dehydrogenase (LDH), leukocyte counts and differentials, Blood urea nitrogen (BUN) and mean
corpuscular hemoglobin concentration (MCHC) were the best predictors, whereas prediction of long-term
mortality was favored by age, LDH, soluble urokinase plasminogen activator receptor (suPAR), albumin,
and blood urea nitrogen (BUN).

Conclusion: The �ndings suggest that measures of biomarkers taken from one blood sample during
admission to the ED can identify patients at high risk of short-and long-term mortality following
emergency admissions.

Introduction
Prognostic tools predicting all-cause mortality are crucial for decision making in Emergency Departments
and Intensive Care Units (ICU). Tools predicting disease severity and mortality have been inquired for
effective patient management and resource allocation to ensure appropriate treatment and evaluate
medications, protocols, and interventions (1). Consequently, various scores and indices have been
proposed to predict mortality, such as Acute Physiologic Assessment and Chronic Health Evaluation
(APACHE) (2), National Early Warning Score (NEWS)(3, 4), Modi�ed Early Warning Score (MEWS) (5),
Mortality Probability Models (6), Sequential Organ Failure Assessment (SOFA) (7), Emergency Severity
Index (ESI) (8), and Cardiac Arrest Risk Triage score (CART) (9). Lately, Geriatric scores have also been
proposed, such as the Barthel Index (10, 11), the Clinical Frailty Score (12), and FI-OutRef, a frailty index,
calculated as the number of admission laboratory test results outside of the reference interval based
upon blood collected at the admission time in + 65 years old acutely admitted patients (13). The majority
of the existing score systems are based on a speci�cally de�ned patient cohort and target speci�c
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conditions. Furthermore, with an area under the curve (AUC) of 0.68-80 (14, 15), these scores have only
moderate accuracy in predicting short-term mortality. The existing scores are typically based on
physiological and laboratory parameters based on a simple linear relationship. However, considering the
global aging phenomenon and the increase in the prevalence of multimorbidity and polypharmacy, the
proportion of complex patients has increased. As a result, these scores are simple and cannot elucidate
the complexity, and the clinical requirements for use in daily clinical practice are not met (16–18). In
recent years, many studies have shown the signi�cant potential of applying advanced machine learning
(ML) algorithms in healthcare data (19–22). Several ML algorithms have been explored in healthcare to
assist with diagnosis and prognosis, including the prediction of short and long-time mortality (23–30).
For instance, 30-day and up to 4-year mortality risk models have been explored for medical and surgical
patients discharged from the hospital with ROC-AUC of 0.95–0.96 (31, 32), and with a balanced-accuracy
between 65–67% for 4 year-mortality (33). For in-hospital mortality prediction, Li et al. (2021) achieved an
excellent AUC of 0.97 using ML algorithms based on 76 combined invasive and non-invasive parameters
(34). For 30-day mortality risk after discharge, Blom et al. (31) achieved an excellent discrimination AUC
of 0.95, using data from electronic health records, morbidity scores, information about the referred doctor,
ambulance transport, previous emergency medical condition, information about radiological order,
discharge time and days in the hospital, and triage priority. However, to our knowledge, most existing
models use various parameters, such as demographics, patient history, morbidity, medication, and non-
invasive and invasive parameters, to predict mortality, which is di�cult for clinicians to interpret and
implement in a �ow culture setting such as the ED (35). Furthermore, very few studies have investigated
ML modeling for all-cause short- and long-term mortality risk in a general population cohort at the ED.
Hence, the aim of this study was to explore, develop and validate ML algorithms which can predict all-
cause short – and long-term mortality based on few or easily measured routine blood samples collected
at admittance at the emergency department.

Results
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Table 1
Baseline characteristics of patients’ blood test results. Strati�ed by time of death within, 3, 10, 30, and

365 days after admission at the emergency department.

  Total 3-day
mortality

10-day
mortality

30-day
mortality

365-day
mortality

Mortality rate (%) 5632
(19.6%)

355 (1.2%) 1252
(4.4%)

2338 (8%) 4677
(16.3%)

Readmission rate,
median (IQR)

0 (0:2) 0 (0:1) 1 (0:2) 1 (0:2) 1 (0:2)

Variables          

Age 65.6 (48.2:
78.5)

80.6 (71.5:
87)

80.8 (71.7:
88.2)

80.4 (71:
87.7)

79.1 (69.5:
86.5)

ALAT (U/L) 21 (15: 33) 31 (19: 82) 25 (16: 52) 22 (15: 41) 19 (13: 32)

Albumin (g/L) 34 (30: 37) 27 (22: 31) 27 (22: 31) 27 (22: 31) 29 (25: 33)

Basophils (x 10^9 /L) 0.03 (0.02:
0.05)

0.03 (0.02:
0.05)

0.03 (0.01:
0.05)

0.03 (0.01:
0.05)

0.03 (0.02:
0.05)

Alkaline

Phosphatase (U/L)

76 (63: 94) 123 (90:
176)

114 (83:
152)

114 (82:
149)

98 (75: 129)

Bilirubin (µmol/L) 7 (5: 10) 9 (6: 17) 10 (6: 16) 9 (6: 14) 8 (5: 13)

BUN (mmol/L) 5.1 (3.8:
7.2)

11.5 (7.1:
19.5)

10.8 (6.7:
17.4)

9.6 (6.1:
15.8)

7.6 (5.1:
12.3)

Creatinine (µmol/L) 77 (62: 97) 123 (82:
190)

107 (72:
171)

98 (67:
153)

90 (66: 132)

CRP (mg/L) 7 (2: 39) 76 (20.5:
180)

73 (27:
160)

67 (22:
148.5)

38 (9: 95)

HB (mmol/L) 8.1 (7.2:
8.9)

7.3 (6.3:
8.5)

7.2 (6.2:
8.3)

7.1 (6.2:
8.1)

7.2 (6.3: 8.1)

INR 1 (1: 1.1) 1.2 (1: 1.4) 1.1 (1: 1.3) 1.1 (1: 1.3) 1.1 (1: 1.2)

Potassium (mmol/L) 3.9 (3.6:
4.2)

4.3 (3.8:
5.1)

4.1 (3.6:
4.6)

4 (3.6: 4.5) 4 (3.6: 4.3)

KF2710 0.91 (0.77:
1.02)

0.74 (0.55:
0.89)

0.76 (0.56:
0.91)

0.77 (0.58:
0.91)

0.83 (0.66:
0.96)

LDH (U/L) 186 (169:
214)

334 (267:
410)

289 (229:
355)

268 (219:
328)

224(188:
274)

Leukocytes (x 10^9 /L) 8.7 (6.9:
11.3)

13.7 (9.6:
19.6)

12.7 (9.1:
17.0)

11.8 (8.6:
16.0)

10.1 (7.6:
13.8)
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  Total 3-day
mortality

10-day
mortality

30-day
mortality

365-day
mortality

Lymphocytes

(x 10^9 /L)

1.7 (1.1:
2.3)

1.2 (0.7:
1.9)

1 (0.6: 1.6) 1.1 (0.7:
1.6)

1.2 (0.8: 1.8)

MCHC (mmol/L) 20.7 (20.1:
21.2)

19.8 (19.1:
20.5)

20 (19.3:
20.6)

20 (19.4:
20.7)

20.2 (19.5:
20.8)

MCV (fL) 89 (86: 93) 93 (88: 98) 92 (87: 97) 91 (87: 96) 91 (87: 95)

Monocytes (x 10^9 /L) 0.7 (0.5:
0.9)

0.8 (0.5:
1.3)

0.8 (0.5:
1.16)

0.8 (0.51:
1.1)

0.8 (0.53:
1.02)

Neutrocytes (x 10^9 /L) 5.8 (4.1:
8.3)

10.9 (7.4:
15.4)

10.3 (6.9:
14.2)

9.5 (6.4:
13.4)

7.6 (5.3:
11.2)

Promm (x 10^9 /L) 0.03 (0.02:
0.06)

0.11 (0.05:
0.29)

0.09 (0.04:
0.19)

0.08 (0.04:
0.16)

0.05 (0.03:
0.11)

suPAR (ng/ml) 3.3 (2.3:
5.0)

7.3 (5.2:
10.8)

7.0 (4.9:
10.2)

6.7 (4.7:
9.7)

5.7 (4.0: 8.2)

Thrombocytes

(x 10^9 /L)

247 (201:
302)

266 (196:
350)

259 (193:
350)

266 (200:
354)

260 (199:
338)

Eosinophils (x 10^9 /L) 0.11 (0.04:
0.19)

0.01 (0:
0.05)

0.01 (0:
0.07)

0.028 (0:
0.10)

0.07 (0.01:
0.17)

eGFR (mL/min) 80 (60: 90) 42 (25: 69) 51 (29: 77) 56 (34: 83) 62 (40: 86)

Sodium (mmol/L) 139 (136:
141)

138 (134:
142)

138 (134:
142)

138 (134:
142)

138 (135:
141)

Sex (female) 25537
(52.3%)

184
(51.8%)

668 (52%) 1376
(51.5%)

4224 (49%)

Results are expressed as median (IQR interquartile range) for continuous variables. For categorical
variables, results are expressed

as number of participants (percentage). ALAT: Alanine-aminotrasferase; BUN: Blood urea nitrogen;
CRP: C-reactive protein; HB: Hemoglobin; INR: Prothrombin Time and International Normalized Ratio;
KF2710: coagulation factors 2,7,10; LDH: Lactate dehydrogenase; MCV: mean corpuscular volume;
MCHC: mean corpuscular hemoglobin concentration; Promm: Metamyelo-, Myelo. – Promyelocytes;
suPAR: soluble urokinase plasminogen activator receptor; eGFR: estimated glomerular �ltration rate.

Figure 1 shows the �ow of data. Between 18 November 2013 and 17 March 2017, a total of 51007 ED
admissions occurred during this period. Of these 2166 patient records were excluded due to missing data
on more than 50% of variables, resulting in a study cohort of 48841 admissions obtained from 28671
unique patients. Randomly, 34193 (70%) patient records were allocated to training data and 14651 (30%)
patient records were allocated to test data. Table 1 shows the baseline characteristics of patients, at
admission, median age was 65.6 (IQR: 48.2–78.5) years and 52.3% were female. The median
readmission rate was 1 (IQR:0–2) after 30-days and 365-days, and 0 (IQR: 0–2) during the entire follow-
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up. A total of 5632 (19.6%) patients did not survive during the follow-up (see Methods). The differences
between not-survived patient admissions at different times follow-up, are shown in Table 1. The mortality
rates were 1.2%, 4.4%, 8% and 16.3% at 3-day, 10-day, 30-day and 365-day follow-up, respectively.

Model performance
In Figs. 2a-d and 3a-d, the performance, as denoted by AUC and sensitivity of all �fteen ML models are
shown (models described in methods section), respectively. The datasets used in the models included all
26 biomarkers from the routine blood tests and sex as an additional variable. Feature selection (see
method section) ranked the most important biomarkers, removing seven to one variable in every iteration,
resulting in models ranging from 27 to 1 variable. Based on training data, the AUC of all models ranged
between 0.5–0.93 and the sensitivity ranged between 0.00-0.91 (Fig. 2). Eight of the �fteen models
achieved very good to excellent results on training data with an AUC of 0.85–0.93 with a sensitivity > 0.80
using more ten variables (Fig. 2, and supplementary Table 2). Six of the ML algorithms, the Gradient
Boosting Classi�er (GBC), Light Gradient Boosting Machine (LightGBM), Linear Discriminant Analysis
(LDA), Logistic regression (LR), Naïve Bayes (NB) and Quadratic Discriminant Analysis (QDA) had
particularly high AUCs > 0.85 and sensitivity > 0.80, even when using only ten variables (Fig. 2). After
reducing the number of variables to �ve, the performance in AUC showed very good performance and
high sensitivity > 0.80 in two speci�c ML models the Gradient Boosting Classi�er and the Quadratic
Discriminant Analysis (Fig. 2a-c). The ML algorithm Gradient Boosting Classi�er achieved an AUC of 0.89
for prediction of 3-day, 10-day, and 30-day mortality, with a sensitivity of 0.85, 0.83, and 0.83, respectively.
For prediction of 365-day mortality, the ML algorithm Quadratic Discriminant Analysis had the highest
AUC of 0.86, with a sensitivity of 0.80 (Fig. 2d). Using fewer than �ve variables resulted in a signi�cant
decrease in all models to below 0.85 in AUC and below 0,80 in sensitivity (Fig. 2a-d). Further performance
metrics for all models can be found in supplementary (Table 2).
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Table 2
Results from test data for top 3 models predicting short- and long- term mortality.

  AUC Sensitivity Speci�city PPV NPV Number of
variables

3-day Mortality            

Naive Bayes 0.91
[0.91–
0.91]

0.92
[0.91–
0.92]

0.78
[0.78–
0.79]

0.03
[0.3–0.3]

0.99
[0.99–
0.99]

15

Linear Discriminant
Analysis

0.93
[0.93–
0.93]

0.89
[0.86–
0.89]

0.83
[0.82–
0.83]

0.04
[0.4–0.5]

0.99
[0.99–
0.99]

15

Logistic Regression 0.93
[0.93–
0.93]

0.85
[0.83–
0.86]

0.85
[0.84–
0.89]

0.04
[0.4–0.4]

0.99
[0.99–
0.99]

15

10-day mortality            

Linear Discriminant
Analysis

0.91
[0.90–
0.91]

0.90
[0.87–
0.93]

0.78
[0.78–
0.79]

0.1
[0.09–
0.11]

0.99
[0.99–
0.99]

10

Logistic Regression 0.91
[0.89–
0.93]

0.90
[0.87–
0.93]

0.79
[0.79–
0.79]

0.1
[0.09–
0.11]

0.99
[0.99–
0.99]

10

Quadratic
Discriminant
Analysis

0.90 [0.90
− 0.90]

0.91
[0.87–
0.93]

0.77
[0.76–
0.77]

0.1
[0.08–
0.10]

0.99
[0.99–
0.99]

10

30-day Mortality            

Linear Discriminant
Analysis

0.90 [090 
− 0.90]

0.90
[0.87–
0.92]

0.78
[0.77–
0.79]

0.19
[0.18–
0.21]

0.99
[0.99–
0.99]

10

Quadratic
Discriminant
Analysis

0.91
[0.89–
0.91]

0.89
[0.86–
0.91]

0.76
[0.75–
077]

0.18
[0.17–
0.19]

0.99
[0.99–
0.99]

10

Gradient Boosting
Classi�er

0.92
[0.92–
0.92]

0.86
[0.84–
0.89]

0.82
[0.82–
0.83]

0.22
[0.21–
0.24]

0.99
[0.99–
0.99]

10

365-day mortality            

Gradient Boosting
Classi�er

0.88
[0.88–
0.89]

0.82
[0.81–
0.83]

0.77
[0.76–
0.77]

0.44
[0.43–
0.46]

0.96
[0.95–
0.99]

10

Light Gradient
Boosting Machine

0.89
[0.89–
0.89]

0.80
[0.80–
0.81]

0.81
[0.80–
0.82]

0.46
[0.44–
0.49]

0.95
[0.95–
0.98]

15
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  AUC Sensitivity Speci�city PPV NPV Number of
variables

3-day Mortality            

Quadratic
Discriminant
Analysis

0.87
[0.87–
0.89]

0.85
[0.84–
0.89]

0.74
[0.73–
0.75]

0.40
[0.40–
0.41]

0.96
[0.95–
0.99]

15

AUC: mean area under receiver operating curve based on 10-fold cross-validation. The numbers are
presented as mean with 95%-con�dence. PPV: Positive predictive value, NPV: Negative predictive
value.

Table 2 shows the performance metrics for the top three ML models for prediction of 3-, 10-, 30- and 365-
day mortality on test data based on the highest AUC and sensitivity performance. The best models were
models with ten to �fteen variables. Performance metrics between training and test data were similar.
The ML algorithms Naive Bayes, Linear Discriminant Analysis, and Logistic Regression had the highest
mean AUC of 0.91–0.93 and sensitivity of 0.85–0.92, for 3-day mortality using 15 variables in the models
(Table 2). For 10-day mortality, the ML algorithms Linear Discriminant Analysis and Quadratic
Discriminant Analysis had the highest mean AUC of 0.90–0.91 and sensitivity of 0.90–91 using 10
variables. For 30-day mortality, the Linear Discriminant Analysis, Quadratic Discriminant Analysis, and
Gradient Boosting Classi�er had the highest mean AUC of 0.90–0.92 and sensitivity of 0.86–0.90 using
10 variables. Lastly, for 365-day mortality, the ML algorithms Gradient Boosting Classi�er, the Light
Gradient Boosting Machine, and Quadratic Discriminant Analysis had the highest mean AUC of 0.87–
0.89 and a sensitivity of 0.80–0.85 using 10 to 15 variables (Table 2).

Biomarker importance

Based on feature selection technique used on the IDA, LR, GBC, ADA and LightGBM models (ML
algorithms in Methods), the biomarkers with the most importance for prediction of mortality were
identi�ed. Figure 4. shows the top-ranked biomarkers for 3-,10-,30-, and 365-day mortality. Biomarkers like
age, LDH, albumin, BUN, MCHC, are repeatedly ranked among the top variables in all models. Even when
excluding age as a biomarker, the remaining variables where still top predictors and the predicted
mortality for 3-,10-,30-, and 365-day remained showing very good performance AUC of > 0.80. Biomarkers
like basophiles, INR, bilirubin, and monocytes are ranked in repeatedly among the lowest �ve in all
models. Eosinophils, leukocytes, and neutrophils are among the biomarkers that move from top to
bottom of the rank as follow-up time increases. In contrast, suPAR initially was ranked low at 3-day
mortality outcome but rises to the top, at 365-day mortality, with an increase in follow-up time (Fig. 4).

Discussion
The aim of this study was to develop and validate machine learning algorithms for �nding high-mortality
patients admitted to Emergency Departments using the results from routine blood testing and age. With
as few as �ve biomarkers, machine learning-based algorithms provided very good performance predicting
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mortality in acutely admitted patients with AUC of 0.89 and 0.86, sensitivity of 0.83 and 0.80 for short
and long-term mortality, respectively. Top three models, used between ten and �fteen biomarkers
achieved an AUC of 90–93 and 87–89, sensitivity of 0.86-92 and 0.80–85 for short and long-term
mortality, respectively. However, most models did not see an improvement from adding additional
biomarkers. The models in this study were trained on original data that required minimal modi�cation. In
this regard, data for these algorithms are easy to obtain in clinical practice as only a blood sample and
age is needed, with no need for multiple measurements of vital signs, medication and disease history. A
similar study by Xie et al. (14) developed and validated scores to predict the risk of death for ED patients
using �ve to six biomarkers. These biomarkers included age, heart rate, respiration rate, diastolic blood
pressure, systolic blood pressure, and cancer history. The 30-day score by Xie et al. achieved the best
performance for mortality prediction, with an AUC of 0.82 (95%CI, 0.81–0.83). However, similar to the very
good discriminative performance of the scores, we further have demonstrated an excellent performance
of > 0.90 by only using one routine blood sample. In this study, we argue that clinically, it is easy to
interpret and understand algorithms that can predict mortality based on the use of biomarkers, such as
LDH, albumin, BUN, leukocyte and differential counts, and suPAR. An increase or decrease indicates
underlying clinically pathological conditions which clinicians can comprehend, such as sever tissue
damage, kidney disease and infection, and the levels of such biomarkers are stable overtime with only
minor �uctuations. In contrast, abnormal values of vital signs as heart rate, respiration rate and blood
pressure are either indicators of acute failure of the body’s most essential physiological functions, or an
indication of compensatory physiological mechanisms in the heart or lungs and can �uctuate suddenly
and signi�cantly over minutes. Furthermore, clinically abnormal vital sign values need multiple recordings
and re-evaluations ranging from four times per hour to two times per day to determine patients at risk of
any deterioration.

Biomarkers
Biomarker selection was essential since the practical use of algorithms with many clinical biomarkers are
not feasible. All models ranked age, albumin, LDH, and BUN as key predictive factors. However, the ranks
were different for short- and long-term mortality. In our study, the best predictors of short-term mortality
are LDH, leukocyte counts and differential, BUN and MCHC while the best predictors of long-term
mortality are age, LDH, suPAR, albumin and BUN. The biomarkers identi�ed have previously been shown
and used as prognostic and monitoring tools for diseases such as anemia, heart attack, bone fractures,
muscle trauma, cancers, infections, in�ammatory disorders, and hepatic-, renal-, and congestive heart
failure (36–42). These diseases are often found among frailty patients admitted to ED. Our results show
that combining these biomarkers in one algorithm makes them valuable predictors for mortality.

ML algorithms: new resources to �nd high-risk patients.

The �ndings of this study have provided a basis for developing ML models based on a few biomarkers.
These models can be used in the future to identify patients at risk following emergency admissions.
Considering an aging population and crowded emergency departments worldwide, we see a broad
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opportunity to use such tools to determine patients' health status more accurately and allocate
appropriate resources to high-risk patients. In several clinical settings, such mortality algorithms can be
used to increase patient safety and reduce preventable mistakes and hospital mortality, for instance,
when triaging patients. Similarly, we suggest that these algorithms may also be helpful as a decision-
making tool in challenging decisions in order to prevent overtreatment, and provision of care that does
not correspond to the patient's wishes and recovery capacity.

Limitations and future research
To our knowledge, this is the �rst published study that has applied machine learning methods to predict
acutely admitted emergency patients based on a few routine blood samples with excellent performance.
There are, however, some limitations to this study. First, this was a retrospective study conducted at a
single clinical center, introducing issues of generalizability. Second, 4.3% of the total amount of patients
with more than 50% missing data were excluded from the study, which could result in selection bias for
the performance estimates. thirdly, in this study we have used a probability threshold of 0.5, a more
comprehensive analysis of the consequences of different thresholds is required to determine the right
threshold. Last, but not least, machine learning techniques have also been criticized as black boxes by
critics, so clinicians are skeptical of their use. This issue may be reduced by using interpretable
biomarkers and using explaining ML tools or educating clinicians in ML concepts. Future work would
need to focus on determining which algorithm should in the end be used, additional external validation
would be needed to verify the robustness of this algorithm. Implementation and prospective randomized
trials would also be necessary to ensure the use and effectiveness of the algorithm.

Conclusion
This study has demonstrated that high-risk of death in patients following admission can be identi�ed by
a routine blood sample, using a combination of �ve to �fteen biomarker measures. Eight of the �fteen
evaluated ML algorithms achieved very good to excellent results of AUC (0.85–0.93). The ML algorithms
Gradient Boosting Classi�er, Light Gradient Boosting Machine, Linear Discriminant Analysis, Logistic
regression, Naïve Bayes and Quadratic Discriminant Analysis showed the best performance on AUCs and
sensitivity, even using only �ve biomarkers.

Methods

Study Design and Settings
In this study, we analyzed data from a retrospective cohort study from the Emergency Department at the
Copenhagen University Hospital, Amager and Hvidovre. The cohort included all patients admitted to the
Acute Medical Unit of the Emergency Department with at least one available blood sample and suPAR
measurement during the follow-up between 18 November 2013 and 17 March 2017, whose follow-up
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data are available in the Danish National Patient Registry (DNPR). The Acute Medical Unit receives
patients within all specialties, except children, gastroenterological patients, and obstetric patients. The
follow-up period began from admission and extending to 90 days after discharge for the last patient was
included, corresponding to a median follow-up time of 2 years: a range of 90-1.301 days. During the
study period, patients who left the country for an extended length of time were censored at the time they
were last admitted.

This study was reported in accordance with the Transparent reporting of a multivariable prediction model
for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement(43).

Biomarkers
On admission, blood samples were taken, and a standard panel of markers was measured at the
Department of Clinical Biochemistry, including C-reactive protein (CRP), Soluble urokinase plasminogen
activator receptor (suPAR), Alanine Aminotransferase (ALAT), Albumin (ALB), International Normalized
Ratio (INR), coagulation factors 2,7,10 (KF2710), total Bilirubin (BILI), Alkaline Phosphatase, Creatinine,
Lactate dehydrogenase (LDH), Blood urea nitrogen (BUN), Potassium (K), Sodium (NA), Estimated
Glomerular Filtration Rate (eGFR), Hemoglobin (HB), mean corpuscular volume (MCV) and mean
corpuscular hemoglobin concentration (MCHC), number of leukocytes, lymphocytes, neutrocytes,
monocytes, thrombocytes, eosinophils, basophils, and Metamyelo-, Myelo. - Promyelocytes (PROMM)
(44). Age and sex were also included as variables in the algorithms (Table 1).

From The Danish Civil Registration System demographic information, including age, sex readmissions,
and death time was collected. All methods were carried out in accordance with relevant guidelines and
regulations. The study was approved by the Danish Data Protection Agency (ref. HVH-2014-018, 02767),
the Danish Health and Medicines Authority (ref. 3-3013-1061/1) and The Capital Region of Denmark,
Team for Journaldata (ref. R-22041261).

Outcomes
In this study, the primary outcomes were 3-,10-,30-, and 365-day mortality, de�ned as deaths within 3, 10,
30, and 365 days after admission at the emergency department, resulting in binary outcomes (0 = survive,
1 = dead).

Statistical analysis:
R version (4.1.0) and Python (version 3.8.0) was used for statistical analysis in the demographic
statistics part of this study. Categorical variables were described as numbers and percentages (%) and
continuous variables were described as medians with interquartile range (IQR) for the groups.

Data preparation:
First the data format was uni�ed. Secondly, admissions with more than 50% missing data were dropped.
For missing values, iterative imputations were used from scikit-learn package (45). For the unequal
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distribution of our target outcome (imbalance data), several resampling methods were explored, including
the random undersampling, the random oversampling, and SMOTE (46, 47).

In this study, we used the random oversampling from imbalanced-learn package (48) to handle the
imbalanced classi�cation distribution best. Outliers were identi�ed and removed through principal
component analysis linear dimensionality reduction using the Singular Value Decomposition technique.
The default setting is 0.05, resulting as 0.025 of the values on each side of the distribution's tail were
dropped from the training set. To reduce the impact of magnitude in the variance, we normalized the
values of all variables in the data by z-score. To make all variables more normal-distributed like, we power
transformed the data by the Yeo-Johnson method (49).

Model Construction.

In this study we used the PyCaret's classi�cation module to train �fteen different algorithms, resulting in
a total of 480 models for the four outcomes with a set of 27, 20, 15, 10, 5, 3, 2, 1 biomarker(s). PyCaret
(version 2.2.6) (50), is an automated machine learning low-code library in Python that automates the ML
work�ow. For all models Python (version 3.8.0) were used. By default, the random selection method was
used to split the data into training and test sets of 70% and 30%, respectively. For hyperparameter tuning,
a random grid search was used in PyCaret. There was no signi�cant difference between training and test
sets after split considering variable values.

Algorithm selection and performance measures
The �fteen machine learning algorithms (Random Forest (RF), SVM-Radial Kernel (RBFSVM), Extra Trees
Classi�er (ET), Extreme Gradient Boosting (XGBOOST), Decision Tree Classi�er (DT), neural network
(MLP), Light Gradient Boosting Machine(LIGHTBM), K Neighbors Classi�er (KNN), Gradient Boosting
Classi�er (GBC), CatBoost Classi�er (CATBOOST), Ada Boost Classi�er (ADA), Logistic Regression (LR),
Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Naive Bayes(NB)), were
trained and evaluated �rst on 10-fold cross-validation, then on test data. Model selection was based on
the Area under the receiver operating characteristic curve (AUC) measure. Additionally, sensitivity,
speci�city, positive predictive value, and negative predictive value for the complete data, based on
probability threshold of 0.5, were estimated for the training and test data and evaluated between them.

Biomarker selection
In this study we aimed to use few biomarkers for predicting mortality. This can reduce the risk of over-
�tting, improve accuracy, and reduce the training time (51). Biomarker selection (Feature Selection) was
achieved in PyCaret using various permutation importance techniques depending on the type of model
being evaluated. These included Random Forest, Adaboost, and linear correlation with the mortality
outcome to select the subset of the most relevant biomarkers for modeling. By default, the threshold used
for feature selection was 0.8 (52). During iteration, all biomarkers were fed into each of the models, the
best biomarkers were kept, and seven to one biomarker were removed, resulting in models starting with
27 variables and decreasing to 1.
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Figures

Figure 1
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Flowchart of data. We used a cohort study of 51007 acute patient admissions at the emergency
department with laboratory and demographical data. At data pre-processing we excluded 2166 records
with more the 50% missing in data (4.3% of the total), removed outliers, imputed and scaled the data. In
total 48841 records were structured data, where 34190 (70%) patient records were allocated to training
data and 14651 (30%) patient records were allocated to validation and test data.

Figure 2

Predictive performance of �fteen ML algorithms on training data, as measured by the Area Under the
Receiver Operating Characteristic Curve (AUC) when using 1 to 27 variables as predictors in the machine
learning algorithms. Figures 2a-2d demonstrate the predictive performance for 3-day, 10-day, 30-day and
365-days mortality, respectively. Among all models, the highest predictive performances in AUC are
shown between 0.90-0.93 in �gures 2a-2d. When using �ve variables, the top 3 models achieved an AUC
of 0.89 in �gures 2a-2c, and an AUC of 0.86 or above when using �ve variables in �gure 2d. The AUC falls
below 0.85 when using fewer than three variables for all models in �gures 2a-2d.
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Figure 3

Sensitivity of �fteen ML algorithms on training data, as measured by the Area Under the Receiver
Operating Characteristic Curve (AUC) when using 1 to 27 variables as predictors in the machine learning
algorithms. Figures 3a-3d demonstrate the sensitivity for 3-day, 10-day,30-day and 365-day mortality on
training data, respectively. Among all models, the highest sensitivity is shown between 0.88-0.91 in
�gures 3a-3c. In Figure 3d, the highest sensitivity reached is 0.85. When using ten variables, the top 3
models achieved a sensitivity above 0.85-91 in �gures 3a-3d, The Sensitivity falls below 0.8 when using
fewer than three variables for all models in �gures 3a-3d.
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Figure 4

Ranking of importance of biomarkers in the IDA, LR, GBC, ADA and LightGBM models for prediction of
3-,10, 30, and 365-day mortality.
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