Recently emerged transition metal oxide (TMO) based 2D nanostructures are gaining a foothold in advanced applications. Unlike, 2D transition metal dichalchogenides, it is strenuous to obtain high quality thin TMOs due to exotic surface reconstruction during synthesis. Herein, we report the synthesis of bilayer thin 2D-V2O5 nanosheets using chemical exfoliation. Synchrotron X-ray diffraction, X-ray photoelectron spectroscopy and atomic force microscopy substantiate the successful formation of bilayer thin 2D-V2O5. Ultraviolet-visible absorption spectra exhibit a thickness dependent blue shift in the optical band gap, signifying the emergence of electronic decoupling. Raman spectroscopy fingerprinting shows a thickness dependent vibrational decoupling of phonon modes. Further, it has been verified by computing the lattice vibrational modes using density functional perturbation theory. In this study, the manifestation of the electronic and vibrational decoupling is used as a novel probe to confirm the successful exfoliation of bilayer 2D-V2O5 from its bulk counterpart.
Figure 1
Figure 2
Figure 3
Figure 4
There is NO Competing Interest.
This is a list of supplementary files associated with this preprint. Click to download.
Loading...
Posted 04 Mar, 2021
Posted 04 Mar, 2021
Recently emerged transition metal oxide (TMO) based 2D nanostructures are gaining a foothold in advanced applications. Unlike, 2D transition metal dichalchogenides, it is strenuous to obtain high quality thin TMOs due to exotic surface reconstruction during synthesis. Herein, we report the synthesis of bilayer thin 2D-V2O5 nanosheets using chemical exfoliation. Synchrotron X-ray diffraction, X-ray photoelectron spectroscopy and atomic force microscopy substantiate the successful formation of bilayer thin 2D-V2O5. Ultraviolet-visible absorption spectra exhibit a thickness dependent blue shift in the optical band gap, signifying the emergence of electronic decoupling. Raman spectroscopy fingerprinting shows a thickness dependent vibrational decoupling of phonon modes. Further, it has been verified by computing the lattice vibrational modes using density functional perturbation theory. In this study, the manifestation of the electronic and vibrational decoupling is used as a novel probe to confirm the successful exfoliation of bilayer 2D-V2O5 from its bulk counterpart.
Figure 1
Figure 2
Figure 3
Figure 4
Loading...