1.Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 131(6):803-820. https://doi.org/10.1007/s00401-016-1545-1
2.Morgan LL. The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol. 2015; 17(4):623-624. https://doi.org/10.1093/neuonc/nou358
3.Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C and Barnholtz-Sloan JS. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol. 2013; 15 Suppl 2:ii1-56. https://doi.org/10.1093/neuonc/not151
4.Ryken TC, Kalkanis SN, Buatti JM, Olson JJ and Committee ACJG. The role of cytoreductive surgery in the management of progressive glioblastoma : a systematic review and evidence-based clinical practice guideline. J Neurooncol. 2014; 118(3):479-488. https://doi.org/10.1007/s11060-013-1336-7
5.Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009; 10(5):459-466. https://doi.org/10.1016/S1470-2045(09)70025-7
6.Weller M, van den Bent M, Hopkins K, Tonn JC, Stupp R, Falini A, Cohen-Jonathan-Moyal E, Frappaz D, Henriksson R, Balana C, Chinot O, Ram Z, Reifenberger G, et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014; 15(9):e395-403.
https://doi.org/10.1016/S1470-2045(14)70011-7
7.Dong P, Yu B, Pan L, Tian X and Liu F. Identification of Key Genes and Pathways in Triple-Negative Breast Cancer by Integrated Bioinformatics Analysis. Biomed Res Int. 2018; 2018:2760918. https://doi.org/10.1155/2018/2760918
8.Zhou Y, Yang L, Zhang X, Chen R, Chen X, Tang W and Zhang M. Identification of Potential Biomarkers in Glioblastoma through Bioinformatic Analysis and Evaluating Their Prognostic Value. Biomed Res Int. 2019; 2019:6581576. https://doi.org/10.1155/2019/6581576
9.Zhuang L, Yang Z and Meng Z. Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in Tumor Tissues Predicted Worse Overall Survival and Disease-Free Survival in Hepatocellular Carcinoma Patients. Biomed Res Int. 2018; 2018:7897346. https://doi.org/10.1155/2018/7897346
10.Langfelder P and Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008; 9:559. https://doi.org/10.1186/1471-2105-9-559
11.Zhang B and Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005; 4:Article17. https://doi.org/10.2202/1544-6115.1128
12.Wan Q, Tang J, Han Y and Wang D. Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma. Exp Eye Res. 2018; 166:13-20. https://doi.org/10.1016/j.exer.2017.10.007
13.Org E, Blum Y, Kasela S, Mehrabian M, Kuusisto J, Kangas AJ, Soininen P, Wang Z, Ala-Korpela M, Hazen SL, Laakso M and Lusis AJ. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 2017; 18(1):70. https://doi.org/ 10.1186/s13059-017-1194-2
14.Shi K, Bing ZT, Cao GQ, Guo L, Cao YN, Jiang HO and Zhang MX. Identify the signature genes for diagnose of uveal melanoma by weight gene co-expression network analysis. Int J Ophthalmol. 2015; 8(2):269-274. https://doi.org/10.3980/j.issn.2222-3959.2015.02.10
15.van Dam S, Vosa U, van der Graaf A, Franke L and de Magalhaes JP. Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform. 2018; 19(4):575-592. https://doi.org/10.1093/bib/bbw139
16.Yu G, Wang LG, Han Y and He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012; 16(5):284-287. https://doi.org/10.1089/omi.2011.0118
17.Mizuno H, Kitada K, Nakai K and Sarai A. PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genomics. 2009; 2:18. https://doi.org/10.1186/1755-8794-2-18
18.Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B and Liu XS. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res. 2017; 77(21):e108-e110. https://doi.org/10.1158/0008-5472.CAN-17-0307
19.Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA and Cavenee WK. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007; 21(21):2683-2710. https://doi.org/10.1101/gad.1596707
20.Sette P, Amankulor N, Li A, Marzulli M, Leronni D, Zhang M, Goins WF, Kaur B, Bolyard C, Cripe TP, Yu J, Chiocca EA, Glorioso JC, et al. GBM-Targeted oHSV Armed with Matrix Metalloproteinase 9 Enhances Anti-tumor Activity and Animal Survival. Mol Ther Oncolytics. 2019; 15:214-222. https://doi.org/10.1016/j.omto.2019.10.005
21.Grossman SA, Ye X, Piantadosi S, Desideri S, Nabors LB, Rosenfeld M, Fisher J and Consortium NC. Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res. 2010; 16(8):2443-2449. https://doi.org/10.1158/1078-0432.CCR-09-3106
22.Network TC. Corrigendum: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2013; 494(7438):506. https://doi.org/10.1038/nature11903
23.Montemurro N. Glioblastoma Multiforme and Genetic Mutations: The Issue Is Not Over Yet. An Overview of the Current Literature. J Neurol Surg A Cent Eur Neurosurg. 2020; 81(1):64-70. https://doi.org/ 10.1055/s-0039-1688911
24.Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008; 455(7216):1061-1068. https://doi.org/ 10.1038/nature07385
25.Chou WC, Cheng AL, Brotto M and Chuang CY. Visual gene-network analysis reveals the cancer gene co-expression in human endometrial cancer. BMC Genomics. 2014; 15:300. https://doi.org/ 10.1186/1471-2164-15-300
26.Xu J, Zhu C, Yu Y, Wu W, Cao J, Li Z, Dai J, Wang C, Tang Y, Zhu Q, Wang J, Wen W, Xue L, et al. Systematic cancer-testis gene expression analysis identified CDCA5 as a potential therapeutic target in esophageal squamous cell carcinoma. EBioMedicine. 2019; 46:54-65. https://doi.org/10.1016/j.ebiom.2019.07.030
27.Ci C, Tang B, Lyu D, Liu W, Qiang D, Ji X, Qiu X, Chen L and Ding W. Overexpression of CDCA8 promotes the malignant progression of cutaneous melanoma and leads to poor prognosis. Int J Mol Med. 2019; 43(1):404-412. https://doi.org/ 10.3892/ijmm.2018.3985
28.Tian Y, Wu J, Chagas C, Du Y, Lyu H, He Y, Qi S, Peng Y and Hu J. CDCA5 overexpression is an Indicator of poor prognosis in patients with hepatocellular carcinoma (HCC). BMC Cancer. 2018; 18(1):1187. https://doi.org/ 10.1186/s12885-018-5072-4
29.Bi Y, Chen S, Jiang J, Yao J, Wang G, Zhou Q and Li S. CDCA8 expression and its clinical relevance in patients with bladder cancer. Medicine (Baltimore). 2018; 97(34):e11899. https://doi.org/ 10.1097/MD.0000000000011899
30.Bu Y, Shi L, Yu D, Liang Z and Li W. CDCA8 is a key mediator of estrogen-stimulated cell proliferation in breast cancer cells. Gene. 2019; 703:1-6. https://doi.org/10.1016/j.gene.2019.04.006
31.Shen Z, Yu X, Zheng Y, Lai X, Li J, Hong Y, Zhang H, Chen C, Su Z and Guo R. CDCA5 regulates proliferation in hepatocellular carcinoma and has potential as a negative prognostic marker. Onco Targets Ther. 2018; 11:891-901. https://doi.org/10.2147/OTT.S154754
32.Phan NN, Wang CY, Li KL, Chen CF, Chiao CC, Yu HG, Huang PL and Lin YC. Distinct expression of CDCA3, CDCA5, and CDCA8 leads to shorter relapse free survival in breast cancer patient. Oncotarget. 2018; 9(6):6977-6992. https://doi.org/10.18632/oncotarget.24059
33.Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, Leiserson MDM, Miller CA, Welch JS, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013; 502(7471):333-339. https://doi.org/10.1038/nature12634
34.Soussi T, Ishioka C, Claustres M and Beroud C. Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nat Rev Cancer. 2006; 6(1):83-90. https://doi.org/10.1038/nrc1783
35.Stracquadanio G, Wang X, Wallace MD, Grawenda AM, Zhang P, Hewitt J, Zeron-Medina J, Castro-Giner F, Tomlinson IP, Goding CR, Cygan KJ, Fairbrother WG, Thomas LF, et al. The importance of p53 pathway genetics in inherited and somatic cancer genomes. Nat Rev Cancer. 2016; 16(4):251-265. https://doi.org/10.1038/nrc.2016.15
36.Buschges R, Weber RG, Actor B, Lichter P, Collins VP and Reifenberger G. Amplification and expression of cyclin D genes (CCND1, CCND2 and CCND3) in human malignant gliomas. Brain Pathol. 1999; 9(3):435-442; discussion 432-433. https://doi.org/10.1111/j.1750-3639.1999.tb00532.x
37.Betticher DC, Heighway J, Hasleton PS, Altermatt HJ, Ryder WD, Cerny T and Thatcher N. Prognostic significance of CCND1 (cyclin D1) overexpression in primary resected non-small-cell lung cancer. Br J Cancer. 1996; 73(3):294-300. https://doi.org/10.1038/bjc.1996.52
38.Mao P, Bao G, Wang YC, Du CW, Yu X, Guo XY, Li RC and Wang MD. PDZ-Binding Kinase-Dependent Transcriptional Regulation of CCNB2 Promotes Tumorigenesis and Radio-Resistance in Glioblastoma. Transl Oncol. 2019; 13(2):287-294. https://doi.org/10.1016/j.tranon.2019.09.011
39.Qian X, Song X, He Y, Yang Z, Sun T, Wang J, Zhu G, Xing W and You C. CCNB2 overexpression is a poor prognostic biomarker in Chinese NSCLC patients. Biomed Pharmacother. 2015; 74:222-227. https://doi.org/10.1016/j.biopha.2015.08.004
40.Raab M, Kobayashi NF, Becker S, Kurunci-Csacsko E, Kramer A, Strebhardt K and Sanhaji M. Boosting the apoptotic response of high-grade serous ovarian cancers with CCNE1 amplification to paclitaxel in vitro by targeting APC/C and the pro-survival protein MCL-1. Int J Cancer. 2020; 146(4):1086-1098. https://doi.org/10.1002/ijc.32559
41.Jiang B, Wu D, Huang L and Fang H. miR-424-5p inhibited malignant behavior of colorectal cancer cells by targeting CCNE1. Panminerva Med. 2019. https://doi.org/ 10.23736/S0031-0808.19.03708-X
42.Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018; 24(5):541-550. https://doi.org/ 10.1038/s41591-018-0014-x
43.Senbabaoglu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco G, Miao D, Ostrovnaya I, Drill E, Luna A, Weinhold N, Lee W, Manley BJ, et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016; 17(1):231. https://doi.org/10.1186/s13059-016-1092-z