1. Canal M, Martín-Flores N, Pérez-Sisqués L, et al. Loss of NEDD4 contributes to RTP801 elevation and neuron toxicity: implications for Parkinson’s disease. Oncotarget. 2016;7(37):58813. doi:10.18632/ONCOTARGET.11020
2. Martín-Flores N, Romaní-Aumedes J, Rué L, et al. RTP801 Is Involved in Mutant Huntingtin-Induced Cell Death. Mol Neurobiol. 2016;53(5):2857-2868. doi:10.1007/S12035-015-9166-6
3. Malagelada C, Ryu EJ, Biswas SC, Jackson-Lewis V, Greene LA. RTP801 Is Elevated in Parkinson Brain Substantia Nigral Neurons and Mediates Death in Cellular Models of Parkinson’s Disease by a Mechanism Involving Mammalian Target of Rapamycin Inactivation. The Journal of Neuroscience. 2006;26(39):9996. doi:10.1523/JNEUROSCI.3292-06.2006
4. Romaní-Aumedes J, Canal M, Martín-Flores N, et al. Parkin loss of function contributes to RTP801 elevation and neurodegeneration in Parkinson’s disease. Cell Death & Disease 2014 5:8. 2014;5(8):e1364-e1364. doi:10.1038/cddis.2014.333
5. Danzer KM, Kranich LR, Ruf WP, et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener. 2012;7(1):1-18. doi:10.1186/1750-1326-7-42/FIGURES/7
6. Malagelada C, Ryu EJ, Biswas SC, Jackson-Lewis V, Greene LA. RTP801 is elevated in Parkinson brain substantia nigral neurons and mediates death in cellular models of Parkinson’s disease by a mechanism involving mammalian target of rapamycin inactivation. J Neurosci. 2006;26(39):9996-10005. doi:10.1523/JNEUROSCI.3292-06.2006
7. Martin-Flores N, Romani-Aumedes J, Rue L, et al. RTP801 Is Involved in Mutant Huntingtin-Induced Cell Death. Molecular Neurobiology. July 2015:2857-2868.
8. Carpenter AE, Jones TR, Lamprecht MR, et al. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7(10):1-11. doi:10.1186/GB-2006-7-10-R100/FIGURES/4
9. Stirling DR, Swain-Bowden MJ, Lucas AM, Carpenter AE, Cimini BA, Goodman A. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics. 2021;22(1):1-11. doi:10.1186/S12859-021-04344-9/FIGURES/6
10. Stirling DR, Carpenter AE, Cimini BA. CellProfiler Analyst 3.0: accessible data exploration and machine learning for image analysis. Bioinformatics. 2021;37(21):3992-3994. doi:10.1093/BIOINFORMATICS/BTAB634
11. Jones TR, Kang IH, Wheeler DB, et al. CellProfiler Analyst: Data exploration and analysis software for complex image-based screens. BMC Bioinformatics. 2008;9(1):1-16. doi:10.1186/1471-2105-9-482/FIGURES/8
12. Shevchenko A, Tomas H, Havliš J, Olsen J V., Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols 2007 1:6. 2007;1(6):2856-2860. doi:10.1038/NPROT.2006.468
13. Andrés-Benito P, Gelpi E, Povedano M, et al. Combined Transcriptomics and Proteomics in Frontal Cortex Area 8 in Frontotemporal Lobar Degeneration Linked to C9ORF72 Expansion. J Alzheimers Dis. 2019;68(3):1287-1307. doi:10.3233/JAD-181123
14. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology 2008 26:12. 2008;26(12):1367-1372. doi:10.1038/NBT.1511
15. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen J V., Mann M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10(4):1794-1805. doi:10.1021/PR101065J/SUPPL_FILE/PR101065J_SI_002.ZIP
16. Elias JE, Gygi SP. Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics. Methods Mol Biol. 2010;604:55. doi:10.1007/978-1-60761-444-9_5
17. Tyanova S, Temu T, Sinitcyn P, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods 2016 13:9. 2016;13(9):731-740. doi:10.1038/NMETH.3901
18. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847-2849. doi:10.1093/BIOINFORMATICS/BTW313
19. Rohart F, Gautier B, Singh A, Lê Cao KA. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13(11). doi:10.1371/JOURNAL.PCBI.1005752
20. Lee SJ, Desplats P, Sigurdson C, Tsigelny I, Masliah E. Cell-to-cell transmission of non-prion protein aggregates. Nature Reviews Neurology 2010 6:12. 2010;6(12):702-706. doi:10.1038/NRNEUROL.2010.145
21. Guo JL, Lee VMY. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med. 2014;20(2):130. doi:10.1038/NM.3457
22. Zhang Z, Nie S, Chen L. Targeting prion-like protein spreading in neurodegenerative diseases. Neural Regen Res. 2018;13(11):1875. doi:10.4103/1673-5374.239433
23. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 2004;318(1):121-134. doi:10.1007/s00441-004-0956-9
24. Quek C, Hill AF. The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun. 2017;483(4):1178-1186. doi:10.1016/J.BBRC.2016.09.090
25. Erdbr€ U, Lannigan J. Analytical Challenges of Extracellular Vesicle Detection: A Comparison of Different Techniques. doi:10.1002/cyto.a.22795
26. Chuo STY, Chien JCY, Lai CPK. Imaging extracellular vesicles: Current and emerging methods. J Biomed Sci. 2018;25(1):1-10. doi:10.1186/S12929-018-0494-5/FIGURES/3
27. Van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology 2018 19:4. 2018;19(4):213-228. doi:10.1038/NRM.2017.125
28. Frühbeis C, Fröhlich D, Kuo WP, Krämer-Albers EM. Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci. 2013;7(OCT). doi:10.3389/FNCEL.2013.00182
29. Budnik V, Ruiz-Cañada C, Wendler F. Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci. 2016;17(3):160. doi:10.1038/NRN.2015.29
30. Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756. doi:10.1182/BLOOD-2011-02-338004
31. Bellingham SA, Guo BB, Coleman BM, Hill AF. Exosomes: Vehicles for the Transfer of Toxic Proteins Associated with Neurodegenerative Diseases? Front Physiol. 2012;3. doi:10.3389/FPHYS.2012.00124
32. Chivet M, Javalet C, Laulagnier K, Blot B, Hemming FJ, Sadoul R. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J Extracell Vesicles. 2014;3(1). doi:10.3402/JEV.V3.24722
33. Sharma P, Mesci P, Carromeu C, et al. Exosomes regulate neurogenesis and circuit assembly. Proc Natl Acad Sci U S A. 2019;116(32):16086-16094. doi:10.1073/PNAS.1902513116/SUPPL_FILE/PNAS.1902513116.SD11.XLSX
34. Lachenal G, Pernet-Gallay K, Chivet M, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Molecular and Cellular Neuroscience. 2011;46(2):409-418. doi:10.1016/J.MCN.2010.11.004
35. Rajendran L, Honsho M, Zahn TR, et al. Alzheimer’s disease β-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A. 2006;103(30):11172. doi:10.1073/PNAS.0603838103
36. Emmanouilidou E, Melachroinou K, Roumeliotis T, et al. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci. 2010;30(20):6838-6851. doi:10.1523/JNEUROSCI.5699-09.2010
37. Shoshani T, Faerman A, Mett I, et al. Identification of a Novel Hypoxia-Inducible Factor 1-Responsive Gene, RTP801, Involved in Apoptosis. Mol Cell Biol. 2002;22(7):2283. doi:10.1128/MCB.22.7.2283-2293.2002
38. Sofer A, Lei K, Johannessen CM, Ellisen LW. Regulation of mTOR and Cell Growth in Response to Energy Stress by REDD1. Mol Cell Biol. 2005;25(14):5834. doi:10.1128/MCB.25.14.5834-5845.2005
39. Wang Z, Malone MH, Thomenius MJ, Zhong F, Xu F, Distelhorst CW. Dexamethasone-induced gene 2 (dig2) is a novel pro-survival stress gene induced rapidly by diverse apoptotic signals. J Biol Chem. 2003;278(29):27053-27058. doi:10.1074/JBC.M303723200
40. Yoshida T, Mett I, Bhunia AK, et al. Rtp801, a suppressor of mTOR signaling, is an essential mediator of cigarette smoke – induced pulmonary injury and emphysema. Nat Med. 2010;16(7):767. doi:10.1038/NM.2157
41. Morel M, Couturier J, Pontcharraud R, et al. Evidence of molecular links between PKR and mTOR signalling pathways in Aβ neurotoxicity: Role of p53, Redd1 and TSC2. Neurobiol Dis. 2009;36(1):151-161. doi:10.1016/J.NBD.2009.07.004
42. Kim JR, Lee SR, Chung HJ, et al. Identification of amyloid β-peptide responsive genes by cDNA microarray technology: Involvement of RTP801 in amyloid β-peptide toxicity. Experimental & Molecular Medicine 2003 35:5. 2003;35(5):403-411. doi:10.1038/emm.2003.53
43. Martín-Flores N, Pérez-Sisqués L, Creus-Muncunill J, et al. Synaptic RTP801 contributes to motor-learning dysfunction in Huntington’s disease. Cell Death & Disease 2020 11:7. 2020;11(7):1-15. doi:10.1038/s41419-020-02775-5
44. Damjanac M, Page G, Ragot S, et al. PKR, a cognitive decline biomarker, can regulate translation via two consecutive molecular targets p53 and Redd1 in lymphocytes of AD patients. J Cell Mol Med. 2009;13(8b):1823. doi:10.1111/J.1582-4934.2009.00688.X
45. Pérez-Sisqués L, Sancho-Balsells A, Solana-Balaguer J, et al. RTP801/REDD1 contributes to neuroinflammation severity and memory impairments in Alzheimer’s disease. Cell Death & Disease 2021 12:6. 2021;12(6):1-13. doi:10.1038/s41419-021-03899-y
46. Labadorf A, Choi SH, Myers RH. Evidence for a pan-neurodegenerative disease response in Huntington’s and Parkinson’s disease expression profiles. Front Mol Neurosci. 2018;10(11):430. doi:10.3389/FNMOL.2017.00430/FULL
47. Kim JR, Lee SR, Chung HJ, et al. Identification of amyloid β-peptide responsive genes by cDNA microarray technology: Involvement of RTP801 in amyloid β-peptide toxicity. Experimental & Molecular Medicine 2003 35:5. 2003;35(5):403-411. doi:10.1038/emm.2003.53
48. Morel M, Couturier J, Pontcharraud R, et al. Evidence of molecular links between PKR and mTOR signalling pathways in Aβ neurotoxicity: Role of p53, Redd1 and TSC2. Neurobiol Dis. 2009;36(1):151-161. doi:10.1016/J.NBD.2009.07.004
49. Malagelada C, Zong HJ, Greene LA. RTP801 Is Induced in Parkinson’s Disease and Mediates Neuron Death by Inhibiting Akt Phosphorylation/Activation. The Journal of Neuroscience. 2008;28(53):14363. doi:10.1523/JNEUROSCI.3928-08.2008
50. Pérez-Sisqués L, Solana-Balaguer J, Campoy-Campos G, et al. Rtp801/redd1 is involved in neuroinflammation and modulates cognitive dysfunction in huntington’s disease. Biomolecules. 2022;12(1). doi:10.3390/BIOM12010034/S1
51. Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177-189. doi:10.1016/S0092-8674(02)00833-4
52. Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163-175. doi:10.1016/S0092-8674(02)00808-5
53. Thedieck K, Polak P, Kim ML, et al. PRAS40 and PRR5-Like Protein Are New mTOR Interactors that Regulate Apoptosis. PLoS One. 2007;2(11). doi:10.1371/JOURNAL.PONE.0001217
54. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science (1979). 2005;307(5712):1098-1101. doi:10.1126/SCIENCE.1106148/SUPPL_FILE/SARBASSOV.SOM.PDF
55. Jacinto E, Facchinetti V, Liu D, et al. SIN1/MIP1 Maintains rictor-mTOR Complex Integrity and Regulates Akt Phosphorylation and Substrate Specificity. Cell. 2006;127(1):125-137. doi:10.1016/j.cell.2006.08.033
56. Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18(23):2893. doi:10.1101/GAD.1256804
57. Yoshioka Y, Konishi Y, Kosaka N, Katsuda T, Kato T, Ochiya T. Comparative marker analysis of extracellular vesicles in different human cancer types. J Extracell Vesicles. 2013;2(1). doi:10.3402/JEV.V2I0.20424
58. Canal M, Romaní-Aumedes J, Martín-Flores N, Pérez-Fernández V, Malagelada C. RTP801/REDD1: A stress coping regulator that turns into a troublemaker in neurodegenerative disorders. Front Cell Neurosci. 2014;8(OCT):313. doi:10.3389/FNCEL.2014.00313/BIBTEX
59. Park H, Kam TI, Kim Y, et al. Neuropathogenic role of adenylate kinase-1 in Aβ-mediated tau phosphorylation via AMPK and GSK3β. Hum Mol Genet. 2012;21(12):2725-2737. doi:10.1093/HMG/DDS100
60. Kędzierska H, Popławski P, Hoser G, et al. Decreased Expression of SRSF2 Splicing Factor Inhibits Apoptotic Pathways in Renal Cancer. International Journal of Molecular Sciences 2016, Vol 17, Page 1598. 2016;17(10):1598. doi:10.3390/IJMS17101598
61. Komeno Y, Huang YJ, Qiu J, et al. SRSF2 Is Essential for Hematopoiesis, and Its Myelodysplastic Syndrome-Related Mutations Dysregulate Alternative Pre-mRNA Splicing. Mol Cell Biol. 2015;35(17):3071-3082. doi:10.1128/MCB.00202-15/SUPPL_FILE/ZMB999100943SO1.XLSX
62. Li K, Wang Z. Splicing factor SRSF2-centric gene regulation. Int J Biol Sci. 2021;17(7):1708-1715. doi:10.7150/IJBS.58888
63. Hung YC, Huang KL, Chen PL, et al. UQCRC1 engages cytochrome c for neuronal apoptotic cell death. Cell Rep. 2021;36(12). doi:10.1016/J.CELREP.2021.109729
64. Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S. Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J. 1999;18(8):2040-2048. doi:10.1093/EMBOJ/18.8.2040
65. Lau S, Patnaik N, Richard Sayen M, Mestril R. Simultaneous Overexpression of Two Stress Proteins in Rat Cardiomyocytes and Myogenic Cells Confers Protection Against Ischemia-Induced Injury. Circulation. 1997;96(7):2287-2294. doi:10.1161/01.CIR.96.7.2287
66. Lin KM, Lin B, Lian IY, Mestril R, Scheffler IE, Dillmann WH. Combined and Individual Mitochondrial HSP60 and HSP10 Expression in Cardiac Myocytes Protects Mitochondrial Function and Prevents Apoptotic Cell Deaths Induced by Simulated Ischemia-Reoxygenation. Circulation. 2001;103(13):1787-1792. doi:10.1161/01.CIR.103.13.1787
67. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death & Differentiation 2006 13:9. 2006;13(9):1423-1433. doi:10.1038/sj.cdd.4401950
68. Neame SJ, Rubin LL, Philpott KL. Blocking Cytochrome c Activity within Intact Neurons Inhibits Apoptosis. Journal of Cell Biology. 1998;142(6):1583-1593. doi:10.1083/JCB.142.6.1583
69. Dudich E, Semenkova L, Dudich I, et al. α-Fetoprotein causes apoptosis in tumor cells via a pathway independent of CD95, TNFR1 and TNFR2 through activation of caspase-3-like proteases. Eur J Biochem. 1999;266(3):750-761. doi:10.1046/J.1432-1327.1999.00868.X
70. Chen T, Dai X, Dai J, et al. AFP promotes HCC progression by suppressing the HuR-mediated Fas/FADD apoptotic pathway. Cell Death & Disease 2020 11:10. 2020;11(10):1-15. doi:10.1038/s41419-020-03030-7
71. Yang Y, Wei Q, Tang Y, et al. Loss of hnRNPA2B1 inhibits malignant capability and promotes apoptosis via down-regulating Lin28B expression in ovarian cancer. Cancer Lett. 2020;475:43-52. doi:10.1016/J.CANLET.2020.01.029
72. Yin D, Kong C, Chen M. Effect of hnRNPA2/B1 on the proliferation and apoptosis of glioma U251 cells via the regulation of AKT and STAT3 pathways. Biosci Rep. 2020;40(7). doi:10.1042/BSR20190318
73. Chien CL, Liu TC, Ho CL, Lu KS. Overexpression of neuronal intermediate filament protein α-internexin in PC12 cells. J Neurosci Res. 2005;80(5):693-706. doi:10.1002/JNR.20506
74. Ching GY, Chien CL, Flores R, Liem RKH. Overexpression of α-Internexin Causes Abnormal Neurofilamentous Accumulations and Motor Coordination Deficits in Transgenic Mice. Journal of Neuroscience. 1999;19(8):2974-2986. doi:10.1523/JNEUROSCI.19-08-02974.1999
75. Wise JF, Berkova Z, Mathur R, et al. Nucleolin inhibits Fas ligand binding and suppresses Fas-mediated apoptosis in vivo via a surface nucleolin-Fas complex. Blood. 2013;121(23):4729-4739. doi:10.1182/BLOOD-2012-12-471094
76. Zhang B, Wang H, Jiang B, et al. Nucleolin/C23 is a negative regulator of hydrogen peroxide-induced apoptosis in HUVECs. Cell Stress Chaperones. 2010;15(3):249-257. doi:10.1007/S12192-009-0138-5/METRICS
77. Wu C Der, Chou HW, Kuo YS, et al. Nucleolin antisense oligodeoxynucleotides induce apoptosis and may be used as a potential drug for nasopharyngeal carcinoma therapy. Oncol Rep. 2012;27(1):94-100. doi:10.3892/OR.2011.1476/HTML
78. Bellone ML, Fiengo L, Cerchia C, et al. Impairment of Nucleolin Activity and Phosphorylation by a Trachylobane Diterpene from Psiadia punctulata in Cancer Cells. Int J Mol Sci. 2022;23(19):11390. doi:10.3390/IJMS231911390/S1
79. Xie Z, Cao BQ, Wang T, et al. LanCL1 attenuates ischemia-induced oxidative stress by Sirt3-mediated preservation of mitochondrial function. Brain Res Bull. 2018;142:216-223. doi:10.1016/J.BRAINRESBULL.2018.07.017
80. Tan H, Chen M, Pang D, et al. LanCL1 promotes motor neuron survival and extends the lifespan of amyotrophic lateral sclerosis mice. Cell Death & Differentiation 2019 27:4. 2019;27(4):1369-1382. doi:10.1038/s41418-019-0422-6
81. Lewis SM, Veyrier A, Ungureanu NH, Bonnal S, Vaguer S, Holcik M. Subcellular Relocalization of a Trans-acting Factor Regulates XIAP IRES-dependent Translation. Mol Biol Cell. 2007;18(4):1302. doi:10.1091/MBC.E06-06-0515
82. Jo OD, Martin J, Bernath A, Masri J, Lichtenstein A, Gera J. Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling. J Biol Chem. 2008;283(34):23274-23287. doi:10.1074/JBC.M801185200
83. Cammas A, Pileur F, Bonnal S, et al. Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation initiation of specific mRNAs. Mol Biol Cell. 2007;18(12):5048-5059. doi:10.1091/MBC.E07-06-0603/SUPPL_FILE/SUPPLEMENTALFIGSTABLLES.PDF
84. Bevilacqua E, Wang X, Majumder M, et al. eIF2alpha phosphorylation tips the balance to apoptosis during osmotic stress. J Biol Chem. 2010;285(22):17098-17111. doi:10.1074/JBC.M110.109439
85. Anees A, Salapa HE, Thibault PA, Hutchinson C, Hammond SA, Levin MC. Knock-Down of Heterogeneous Nuclear Ribonucleoprotein A1 Results in Neurite Damage, Altered Stress Granule Biology, and Cellular Toxicity in Differentiated Neuronal Cells. eNeuro. 2021;8(6). doi:10.1523/ENEURO.0350-21.2021
86. Wilkinson JC, Richter BWM, Wilkinson AS, et al. VIAF, a conserved inhibitor of apoptosis (IAP)-interacting factor that modulates caspase activation. Journal of Biological Chemistry. 2004;279(49):51091-51099. doi:10.1074/jbc.M409623200
87. Honda A, Abe R, Yoshihisa Y, et al. Deficient deletion of apoptotic cells by macrophage migration inhibitory factor (MIF) overexpression accelerates photocarcinogenesis. Carcinogenesis. 2009;30(9):1597-1605. doi:10.1093/CARCIN/BGP160
88. Zhang W, Zheng J, Meng J, Neng L, Chen X, Qin Z. Macrophage migration inhibitory factor knockdown inhibit viability and induce apoptosis of PVM/Ms. Mol Med Rep. 2017;16(6):8643-8648. doi:10.3892/MMR.2017.7684/HTML
89. Ruan Z, Lu Q, Wang JE, et al. MIF promotes neurodegeneration and cell death via its nuclease activity following traumatic brain injury. Cell Mol Life Sci. 2021;79(1):39. doi:10.1007/S00018-021-04037-9
90. Nasiri E, Sankowski R, Dietrich H, et al. Key role of MIF-related neuroinflammation in neurodegeneration and cognitive impairment in Alzheimer’s disease. Molecular Medicine. 2020;26(1):1-12. doi:10.1186/S10020-020-00163-5/FIGURES/5
91. Chen J, Shifman MI. Inhibition of neogenin promotes neuronal survival and improved behavior recovery after spinal cord injury. Neuroscience. 2019;408:430-447. doi:10.1016/J.NEUROSCIENCE.2019.03.055
92. Fujita Y, Taniguchi J, Uchikawa M, et al. Neogenin regulates neuronal survival through DAP kinase. Cell Death & Differentiation 2008 15:10. 2008;15(10):1593-1608. doi:10.1038/cdd.2008.92
93. Feng Y, Chen D, Wang T, et al. Sertoli cell survival and barrier function are regulated by miR-181c/d-Pafah1b1 axis during mammalian spermatogenesis. Cellular and Molecular Life Sciences. 2022;79(9):1-20. doi:10.1007/S00018-022-04521-W/FIGURES/6
94. Liu Y, Zhao Y, Li K, Miao S, Xu Y, Zhao J. WD-40 repeat protein 26 protects against oxidative stress-induced injury in astrocytes via Nrf2/HO-1 pathways. Mol Biol Rep. 2022;49(2):1045-1056. doi:10.1007/S11033-021-06925-6/METRICS
95. Feng Y, Zhang C, Luo Q, et al. A novel WD-repeat protein, WDR26, inhibits apoptosis of cardiomyocytes induced by oxidative stress. Free Radic Res. 2012;46(6):777-784. doi:10.3109/10715762.2012.678840/SUPPL_FILE/IFRA_A_678840_SM0001.PDF
96. Ge X, Jiang W, Jiang Y, Lv X, Liu X, Wang X. Expression and Importance of TMED2 in Multiple Myeloma Cells. Cancer Manag Res. 2020;12:12895-12903. doi:10.2147/CMAR.S278570
97. Li C, Chen J, Li Y, et al. 6-Phosphogluconolactonase Promotes Hepatocellular Carcinogenesis by Activating Pentose Phosphate Pathway. Front Cell Dev Biol. 2021;9:2826. doi:10.3389/FCELL.2021.753196/BIBTEX
98. Dhumale P, Menon S, Chiang J, Pü Schel AW. The loss of the kinases SadA and SadB results in early neuronal apoptosis and a reduced number of progenitors. Published online 2018. doi:10.1371/journal.pone.0196698
99. Arya P, Rainey MA, Bhattacharyya S, et al. The endocytic recycling regulatory protein EHD1 Is required for ocular lens development. Dev Biol. 2015;408(1):41-55. doi:10.1016/J.YDBIO.2015.10.005
100. Wei L, Yang C, Wang G, et al. Interleukin Enhancer Binding Factor 2 Regulates Cell Viability and Apoptosis of Human Brain Vascular Smooth Muscle Cells. Journal of Molecular Neuroscience. 2021;71(2):225-233. doi:10.1007/S12031-020-01638-0/METRICS
101. Cheng S, Jiang X, Ding C, et al. Expression and Critical Role of Interleukin Enhancer Binding Factor 2 in Hepatocellular Carcinoma. International Journal of Molecular Sciences 2016, Vol 17, Page 1373. 2016;17(8):1373. doi:10.3390/IJMS17081373
102. Liu Y, Gao M, Ma MM, et al. Endophilin A2 protects H2O2-induced apoptosis by blockade of Bax translocation in rat basilar artery smooth muscle cells. J Mol Cell Cardiol. 2016;92:122-133. doi:10.1016/J.YJMCC.2016.02.004
103. Lee DC, Sohn HA, Park ZY, et al. A lactate-induced response to hypoxia. Cell. 2015;161(3):595-609. doi:10.1016/j.cell.2015.03.011
104. Liu Y, Xia J, Zheng R, Shao S. High expression of NDRG3 suppresses cell apoptosis and promotes the cell proliferation and migration in gastric cancer. Asian J Surg. 2022;45(10):2019-2020. doi:10.1016/J.ASJSUR.2022.04.064
105. Huang Y, Huang S, Ma L, et al. Exploring the Prognostic Value, Immune Implication and Biological Function of H2AFY Gene in Hepatocellular Carcinoma. Front Immunol. 2021;12:723293. doi:10.3389/FIMMU.2021.723293/FULL
106. Wang Y, Fu L, Cui M, et al. Amino acid transporter SLC38A3 promotes metastasis of non-small cell lung cancer cells by activating PDK1. Cancer Lett. 2017;393:8-15. doi:10.1016/J.CANLET.2017.01.036
107. Krokowski D, Han J, Saikia M, et al. A self-defeating anabolic program leads to β-cell apoptosis in endoplasmic reticulum stress-induced diabetes via regulation of amino acid flux. Journal of Biological Chemistry. 2013;288(24):17202-17213. doi:10.1074/jbc.M113.466920
108. Chan K, Busque SM, Sailer M, et al. Loss of function mutation of the Slc38a3 glutamine transporter reveals its critical role for amino acid metabolism in the liver, brain, and kidney. Pflugers Arch. 2016;468(2):213-227. doi:10.1007/S00424-015-1742-0/METRICS
109. Seneviratne JA, Carter DR, Mittra R, et al. Inhibition of mitochondrial translocase SLC25A5 and histone deacetylation is an effective combination therapy in neuroblastoma. Int J Cancer. 2023;152(7):1399-1413. doi:10.1002/IJC.34349
110. Chevrollier A, Loiseau D, Reynier P, Stepien G. Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2011;1807(6):562-567. doi:10.1016/J.BBABIO.2010.10.008
111. Kleinridders A, Pogoda HM, Irlenbusch S, et al. PLRG1 Is an Essential Regulator of Cell Proliferation and Apoptosis during Vertebrate Development and Tissue Homeostasis. Mol Cell Biol. 2009;29(11):3173-3185. doi:10.1128/MCB.01807-08/SUPPL_FILE/MCBSUPPLEMENTAL_MATERIAL_1.DOC
112. Ding T, Hao J. Sirtuin 2 knockdown inhibits cell proliferation and RAS/ERK signaling, and promotes cell apoptosis and cell cycle arrest in multiple myeloma. Mol Med Rep. 2021;24(5):1-8. doi:10.3892/MMR.2021.12400/HTML
113. Hoffmann G, Breitenbücher F, Schuler M, Ehrenhofer-Murray AE. A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer. J Biol Chem. 2014;289(8):5208-5216. doi:10.1074/JBC.M113.487736
114. Liu L, Arun A, Ellis L, Peritore C, Donmez G. SIRT2 enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via apoptotic pathway. Front Aging Neurosci. 2014;6(JUL):184. doi:10.3389/FNAGI.2014.00184/ABSTRACT
115. Gao J, Dai C, Yu X, Yin XB, Zhou F. microRNA-485-5p inhibits the progression of hepatocellular carcinoma through blocking the WBP2/Wnt signaling pathway. Cell Signal. 2020;66:109466. doi:10.1016/J.CELLSIG.2019.109466
116. Chen S, Zhang Y, Wang H, et al. WW domain-binding protein 2 acts as an oncogene by modulating the activity of the glycolytic enzyme ENO1 in glioma. Cell Death & Disease 2018 9:3. 2018;9(3):1-13. doi:10.1038/s41419-018-0376-5
117. Britton M, Lucas MM, Downey SL, et al. Selective inhibitor of proteasome’s caspase-like sites sensitizes cells to specific inhibition of chymotrypsin-like sites. Chem Biol. 2009;16(12):1278-1289. doi:10.1016/J.CHEMBIOL.2009.11.015
118. Brahimi-Horn MC, Ben-Hail D, Ilie M, et al. Expression of a truncated active form of VDAC1 in lung cancer associates with hypoxic cell survival and correlates with progression to chemotherapy resistance. Cancer Res. 2012;72(8):2140-2150. doi:10.1158/0008-5472.CAN-11-3940/650241/AM/EXPRESSION-OF-A-TRUNCATED-ACTIVE-FORM-OF-VDAC1-IN
119. Weisthal S, Keinan N, Ben-Hail D, Arif T, Shoshan-Barmatz V. Ca(2+)-mediated regulation of VDAC1 expression levels is associated with cell death induction. Biochim Biophys Acta. 2014;1843(10):2270-2281. doi:10.1016/J.BBAMCR.2014.03.021
120. Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V. Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J Biol Chem. 2008;283(19):13482-13490. doi:10.1074/JBC.M708216200
121. Ghosh T, Pandey N, Maitra A, Brahmachari SK, Pillai B. A Role for Voltage-Dependent Anion Channel Vdac1 in Polyglutamine-Mediated Neuronal Cell Death. PLoS One. 2007;2(11):e1170. doi:10.1371/JOURNAL.PONE.0001170
122. Godbole A, Varghese J, Sarin A, Mathew MK. VDAC is a conserved element of death pathways in plant and animal systems. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2003;1642(1-2):87-96. doi:10.1016/S0167-4889(03)00102-2
123. Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V. The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ. 2005;12(7):751-760. doi:10.1038/SJ.CDD.4401599
124. Yang X, Lu B, Sun X, et al. ANP32A regulates histone H3 acetylation and promotes leukemogenesis. Leukemia 2018 32:7. 2018;32(7):1587-1597. doi:10.1038/s41375-018-0010-7
125. Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J. 2004;23(10):2134-2145. doi:10.1038/SJ.EMBOJ.7600210
126. Jiang X, Kim HE, Shu H, et al. Distinctive roles of PHAP proteins and prothymosin-α in a death regulatory pathway. Science (1979). 2003;299(5604):223-226. doi:10.1126/SCIENCE.1076807/SUPPL_FILE/JIANG.SOM.PDF
127. Wang B, Li D, Rodriguez-Juarez R, et al. A suppressive role of guanine nucleotide-binding protein subunit beta-4 inhibited by DNA methylation in the growth of anti-estrogen resistant breast cancer cells. BMC Cancer. 2018;18(1). doi:10.1186/S12885-018-4711-0
128. Ma YH, Su N, Chao XD, et al. Thioredoxin-1 attenuates post-ischemic neuronal apoptosis via reducing oxidative/nitrative stress. Neurochem Int. 2012;60(5):475-483. doi:10.1016/J.NEUINT.2012.01.029
129. Zhou F, Gomi M, Fujimoto M, et al. Attenuation of neuronal degeneration in thioredoxin-1 overexpressing mice after mild focal ischemia. Brain Res. 2009;1272:62-70. doi:10.1016/J.BRAINRES.2009.03.023
130. Yang L, Wu D, Wang X, Cederbaum AI. Depletion of cytosolic or mitochondrial thioredoxin increases CYP2E1 induced oxidative stress via an ASK-1-JNK1 pathway in HepG2 cells. Free Radic Biol Med. 2011;51(1):185. doi:10.1016/J.FREERADBIOMED.2011.04.030
131. Takemoto K, Nagai T, Miyawaki A, Miura M. Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. Journal of Cell Biology. 2003;160(2):235-243. doi:10.1083/JCB.200207111/VIDEO-2
132. Tawa P, Hell K, Giroux A, et al. Catalytic activity of caspase-3 is required for its degradation: stabilization of the active complex by synthetic inhibitors. Cell Death & Differentiation 2004 11:4. 2004;11(4):439-447. doi:10.1038/sj.cdd.4401360
133. Putz U, Howitt J, Lackovic J, et al. Nedd4 family-interacting protein 1 (Ndfip1) is required for the exosomal secretion of Nedd4 family proteins. J Biol Chem. 2008;283(47):32621-32627. doi:10.1074/JBC.M804120200
134. Holm MM, Kaiser J, Schwab ME. Extracellular Vesicles: Multimodal Envoys in Neural Maintenance and Repair. Trends Neurosci. 2018;41(6):360-372. doi:10.1016/j.tins.2018.03.006
135. Moreira R, Mendonça LS, Pereira De Almeida L. Polyglutamine Diseases. Int J Mol Sci. 2021;2021:12288. doi:10.3390/ijms222212288
136. Wang Y, Balaji V, Kaniyappan S, et al. The release and trans-synaptic transmission of Tau via exosomes. Mol Neurodegener. 2017;12(1):1-25. doi:10.1186/S13024-016-0143-Y/FIGURES/9
137. Basso M, Pozzi S, Tortarolo M, et al. Mutant Copper-Zinc Superoxide Dismutase (SOD1) Induces Protein Secretion Pathway Alterations and Exosome Release in Astrocytes: IMPLICATIONS FOR DISEASE SPREADING AND MOTOR NEURON PATHOLOGY IN AMYOTROPHIC LATERAL SCLEROSIS*. J Biol Chem. 2013;288(22):15699. doi:10.1074/JBC.M112.425066
138. Zhang Z, Chu SF, Wang SS, et al. RTP801 is a critical factor in the neurodegeneration process of A53T α‐synuclein in a mouse model of Parkinson’s disease under chronic restraint stress. Br J Pharmacol. 2018;175(4):590. doi:10.1111/BPH.14091
139. Baixauli F, López-Otín C, Mittelbrunn M. Exosomes and Autophagy: Coordinated Mechanisms for the Maintenance of Cellular Fitness. Front Immunol. 2014;5(AUG). doi:10.3389/FIMMU.2014.00403
140. Malenka RC, Bear MF. LTP and LTD: An Embarrassment of Riches. Neuron. 2004;44(1):5-21. doi:10.1016/J.NEURON.2004.09.012
141. Eldh M, Ekström K, Valadi H, et al. Exosomes Communicate Protective Messages during Oxidative Stress; Possible Role of Exosomal Shuttle RNA. PLoS One. 2010;5(12):1-8. doi:10.1371/JOURNAL.PONE.0015353
142. Frühbeis C, Fröhlich D, Kuo WP, et al. Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligodendrocyte–Neuron Communication. PLoS Biol. 2013;11(7):1001604. doi:10.1371/JOURNAL.PBIO.1001604
143. Hung YC, Huang KL, Chen PL, et al. UQCRC1 engages cytochrome c for neuronal apoptotic cell death. Cell Rep. 2021;36(12). doi:10.1016/j.celrep.2021.109729
144. Ge X, Jiang W, Jiang Y, Lv X, Liu X, Wang X. Expression and Importance of TMED2 in Multiple Myeloma Cells. Cancer Manag Res. 2020;12:12895. doi:10.2147/CMAR.S278570
145. Kweon JH, Kim S, Lee SB. The cellular basis of dendrite pathology in neurodegenerative diseases. BMB Rep. 2017;50(1):5-11. doi:10.5483/BMBRep.2017.50.1.131
146. Tan CY, Hagen T. mTORC1 Dependent Regulation of REDD1 Protein Stability. PLoS One. 2013;8(5):63970. doi:10.1371/JOURNAL.PONE.0063970
147. Nakai H, Tsumagari R, Maruo K, et al. mTORC1 is involved in DGKβ-induced neurite outgrowth and spinogenesis. Neurochem Int. 2020;134:104645. doi:10.1016/J.NEUINT.2019.104645
148. Ota KT, Liu RJ, Voleti B, et al. REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nature Medicine 2014 20:5. 2014;20(5):531-535. doi:10.1038/nm.3513
149. Harrison EB, Hochfelder CG, Lamberty BG, et al. Traumatic brain injury increases levels of miR‐21 in extracellular vesicles: implications for neuroinflammation. FEBS Open Bio. 2016;6(8):835. doi:10.1002/2211-5463.12092
150. Jarmalavičiute A, Tunaitis V, Pivoraite U, Venalis A, Pivoriunas A. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy. 2015;17(7):932-939. doi:10.1016/j.jcyt.2014.07.013
151. Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10(3):301-312. doi:10.1016/J.SCR.2013.01.002
152. Wang K, Jiang Z, Webster KA, et al. Enhanced Cardioprotection by Human Endometrium Mesenchymal Stem Cells Driven by Exosomal MicroRNA‐21. Stem Cells Transl Med. 2017;6(1):209. doi:10.5966/SCTM.2015-0386
153. Mutschelknaus L, Azimzadeh O, Heider T, et al. Radiation alters the cargo of exosomes released from squamous head and neck cancer cells to promote migration of recipient cells OPEN. doi:10.1038/s41598-017-12403-6
154. Fröhlich D, Kuo WP, Frühbeis C, et al. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philosophical Transactions of the Royal Society B: Biological Sciences. 2014;369(1652). doi:10.1098/RSTB.2013.0510
155. Tassew NG, Charish J, Shabanzadeh AP, et al. Exosomes Mediate Mobilization of Autocrine Wnt10b to Promote Axonal Regeneration in the Injured CNS. Cell Rep. 2017;20(1):99-111. doi:10.1016/j.celrep.2017.06.009