Percentage of targeted species
After eliminating duplicate strains on the principle of retaining the first strain of the same bacteria from the same patient, 20,262,294 bacterial strains were included for analysis from 2014 to 2020. There were 5,917,700 gram-positive strains (29.2%) and 14,344,594 gram-negative strains (70.8%). The total number of bacterial isolates was between 2,227,420 and 3,528,471 annually. There were no changes in the ratio between specimen types during the study period (gram-positive bacteria accounted for about 30%, and gram-negative bacteria accounted for about 70%). The eight selected MDROs accounted for 68.9% of the total bacteria. Among the eight main MDROs, the isolation rate of E. coli was the highest (4,202,679 strains, 20.7% of the total), followed by K. pneumoniae (2,889,256 strains, 14.3% of the total), S. aureus (1,901,629 strains, 9.4% of the total), P. aeruginosa (1,785,500 strains, 8.8% of the total), and A. baumannii (1,457,423 strains, 7.2% of the total). Regarding the three MDROs with the lowest abundances, each accounted for 2.8%: E. faecium (569,071 strains), E. faecalis (575,526 strains), and S. pneumoniae (574,317 strains) (Table 1).
Table 1
Constituent of targeted species, CARSS, 2014–2020
Species | Total | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
(n = 20 262 294) | (n = 2 227 420) | (n = 2 400 786) | (n = 2 727 605) | (n = 2 894 517) | (n = 3 234 372) | (n = 3 528 471) | (n = 3 249 123) |
n | % | n | % | n | % | n | % | n | % | n | % | n | % | n | % |
Gram-positive bacteria | 5 917 700 | 29.2 | 634 414 | 28.5 | 695 066 | 28.9 | 794 073 | 29.1 | 859 388 | 29.7 | 952 023 | 29.4 | 1 043 535 | 29.6 | 939 201 | 28.9 |
Staphylococcus aureus | 1 901 629 | 9.4 | 194 749 | 8.7 | 223 674 | 9.3 | 256 716 | 9.4 | 273 872 | 9.5 | 309 801 | 9.6 | 337 039 | 9.6 | 305 778 | 9.4 |
Enterococcus faecium | 569 071 | 2.8 | 55 769 | 2.5 | 61 920 | 2.6 | 73 469 | 2.7 | 78 444 | 2.7 | 91 788 | 2.8 | 105 437 | 3 | 102 244 | 3.1 |
Enterococcus faecalis | 575 526 | 2.8 | 63 566 | 2.9 | 67 398 | 2.8 | 76 664 | 2.8 | 81 403 | 2.8 | 90 196 | 2.8 | 98 418 | 2.8 | 97 881 | 3 |
Streptococcus pneumoniae | 574 317 | 2.8 | 61 770 | 2.8 | 64 798 | 2.7 | 72 293 | 2.7 | 84 374 | 2.9 | 101 534 | 3.1 | 113 136 | 3.2 | 76 412 | 2.4 |
Gram-negative bacteria | 14 344 594 | 70.8 | 1 593 006 | 71.5 | 1 705 720 | 71.1 | 1 933 532 | 70.9 | 2 035 129 | 70.3 | 2 282 349 | 70.6 | 2 484 936 | 70.4 | 2 309 922 | 71.1 |
Acinetobacter baumannii | 1 457 423 | 7.2 | 171 662 | 3.2 | 183 124 | 7.6 | 208 689 | 7.7 | 207 046 | 7.2 | 227 091 | 7.1 | 239 890 | 6.8 | 219 921 | 6.8 |
Escherichia coli | 4 202 679 | 20.7 | 465 136 | 20.9 | 509 862 | 21.2 | 575 494 | 21.1 | 597 909 | 20.7 | 660 261 | 20.4 | 707 968 | 20.1 | 686 049 | 21.1 |
Klebsiella pneumoniae | 2 889 256 | 14.3 | 308 951 | 13.9 | 336 738 | 14 | 381 198 | 14 | 411 487 | 14.2 | 465 322 | 14.4 | 503 230 | 14.3 | 482 330 | 14.8 |
Pseudomonas aeruginosa | 1 785 500 | 8.8 | 202 817 | 9.1 | 219 558 | 9.1 | 246 242 | 9 | 253 083 | 8.7 | 283 222 | 8.8 | 299 318 | 8.5 | 281260 | 8.7 |
Distribution Of Mdros In Different Years And Provinces
As shown in Table 2, among gram-positive bacteria, the isolation rate of MRSA had a slow downward trend, from 36% in 2014 to 29.4% in 2020. The isolation rate of MRCNS also gradually decreased, from 79.8% in 2014 to 74.7% in 2020. The isolation rate of VREA decreased from 0.8% in 2014 to 0.2% in 2020. Similarly, the detection rate of VREM decreased from 2.9% in 2014 to 1% in 2020. The detection rate of PRSP decreased from 4.3% in 2014 to 0.9% in 2020. In contrast, the detection rate of ERSP had an increasing trend, from 94% in 2014 to 96% in 2020.
Table 2
Isolation rate of multidrug-resistant bacteria in China, 2014–2020 (%)
| 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Mann-Kendall test |
Trend | Z value | P value |
MRSA | 36 | 35.8 | 34.4 | 32.2 | 30.9 | 30.2 | 29.4 | Down | -3.0038 | 0.002667* |
MRCNS | 79.8 | 79.4 | 77.5 | 76 | 75.7 | 75.4 | 74.7 | Down | -3.0038 | 0.002667* |
VREA | 0.8 | 0.8 | 0.6 | 0.4 | 0.3 | 0.2 | 0.2 | Down | -2.7665 | 0.005666* |
VREM | 2.9 | 2.9 | 2 | 1.4 | 1.4 | 1.1 | 1 | Down | -2.7665 | 0.005666* |
PRSP | 4.3 | 4.2 | 3.9 | 2.7 | 1.8 | 1.6 | 0.9 | Down | -3.0038 | 0.002667* |
ERSP | 94 | 91.5 | 94.4 | 95 | 95.4 | 95.6 | 96 | Up | 2.7034 | 0.006864* |
CTX/CRO-R ECO | 59.7 | 59 | 56.6 | 54.2 | 53 | 51.9 | 51.6 | Down | -3.0038 | 0.002667* |
CR-ECO | 1.9 | 1.9 | 1.5 | 1.5 | 1.5 | 1.7 | 1.6 | Down | -0.63511 | 0.5254 |
QNR-ECO | 54.3 | 53.5 | 52.9 | 51 | 50.8 | 50.6 | 50.7 | Down | -2.7034 | 0.006864* |
CTX/CRO-R KPN | 36.9 | 36.5 | 34.5 | 33 | 32.4 | 31.9 | 31.1 | Down | -3.0038 | 0.002667* |
CR-KPN | 6.4 | 7.6 | 8.7 | 9 | 10.1 | 10.9 | 10.9 | Up | 2.8863 | 0.003898* |
CR-PAE | 25.6 | 22.4 | 22.3 | 20.7 | 19.3 | 19.1 | 18.3 | Down | -3.0038 | 0.002667* |
CR-ABA | 57 | 59 | 60 | 56.1 | 56.1 | 56 | 53.7 | Down | -1.9748 | 0.04829* |
*: P < 0.05 |
Among the gram-negative bacteria, the isolation rate of CTX/ CR-R ECO had a gradual downward trend, from 59.7% in 2014 to 51.6% in 2020. CR-ECO maintained a low level (isolation rate of 1.9–1.6%), and the isolation rate of QNR-ECO had a slow downward trend, from 54.3% in 2014 to 50.7% in 2020. CTX/ CR-R KPN decreased gradually from 36.9% in 2014 to 31.1% in 2020. Still, the detection rate of CR-KPN continued to increase from 6.4% in 2014 to 10.9% in 2020. The detection rate of CR-PAE continued to decrease from 25.6% in 2014 to 18.3% in 2020. The detection rate of CR-ABA fluctuated between 53.7% and 60% and maintained a high level. A statistical description of the detection rates of different MDROs is shown in Appendix 1. It was revealed that the detection rate of some strains deviated in different years. The influence of extreme values was effectively overcome by quantile regression, and further evidence for using quantile regression was provided by the substantial deviation in the detection rate.
The different provinces had different bacterial resistance rates. For example, the detection rate of MRSA in Shanghai, Shaanxi, Jiangsu, Beijing, and Anhui from 2014 to 2020, which are all above the national average values (32.35%), and Yunnan, Xinjiang, Tianjin, Sichuan, and Shandong are all below the national average values. Meanwhile, the detection rate of MRSA in Heilongjiang and Liaoning had a relatively large variation. The distribution of other specific MDROs detected in different regions is shown in Fig. 1.
Allocation And Utilization Efficiency Of Medical Beds In Healthcare Institutions In Various Provinces
As shown in Fig. 2, the number of beds in health institutions per 1,000 people increased annually in the provinces. The hospital bed utilization rate declined relatively more in 2020 and remained the same in other years. The average hospital stay fluctuated differently in the different provinces, and the antibiotic use rate had a slow downward trend. Additionally, we tested the applicability of the Quantile regression. The difference between the minimum and the maximum value and the standard deviation of different MDROs detection rates were considerable, indicating that the MDROs detection rate deviated from the mean in a few provinces. Meanwhile, there were also some differences in the minimum and maximum values of the other variables. The quantile regression model effectively measures the impact of extreme values, which provides further evidence for using quantile regression. The statistical description of the MDROs detection rate and other variables is shown in Appendixes 1 and 2.
Panel Quantile Regression Of Mdros Detection Rates And Medical Resource Allocation
From the number of beds per 1,000 people on five quantile points shown in Table 3, significance at the 0.05 level was shown for MRSA (τ = 0.1, 0.3, 0.5, 0.7, and 0.9), VREA (τ = 0.1, 0.3, 0.5, 0.7, and 0.9), VREM (τ = 0.1, 0.3, 0.5, and 0.7), PRSP (τ = 0.1, 0.3, 0.5, 0.7, and 0.9), MRCNS (τ = 0.7 and 0.9), CTX/CRO-R ECO (τ = 0.5 and 0.9), CTX/CRO-R KPN (τ = 0.3, 0.5, and 0.9), and CR-PAE (τ = 0.1, 0.3, and 0.9). The regression coefficients were all lower than 0, indicating that the detection rates of the eight MDROs mentioned above were negatively affected by the number of beds available per 1,000 people.
Table 3
Association between the detection rate of multi-drug resistant bacteria and the bed allocation and utilization efficiency in healthcare institutions with the panel quantile regression model
MRSA | | | | | |
variable | 0.1RQ | 0.3RQ | 0.5RQ | 0.7RQ | 0.9RQ |
Constant | -0.820(-0.06) | 13.070(1.02) | 11.370(0.72) | -3.957(-0.23) | -7.910(-0.55) |
Number of beds per 1,000 population | -1.519**(-1.98) | -1.405**(-1.98) | -2.328***(-2.66) | -2.619***(-2.75) | -1.521*(-1.90) |
Hospital bed utilization rate | 0.187**(2.02) | 0.358***(4.18) | 0.311***(2.95) | 0.356***(3.11) | 0.397***(4.11) |
Average hospital stay | -0.983(-1.02) | -2.142**(-2.40) | -0.366(-0.33) | 2.059*(1.72) | 2.799***(2.79) |
Utilization rate of antibiotics | 0.612***(6.07) | 0.267***(2.86) | 0.232**(2.02) | 0.099(0.79) | -0.053(-0.50) |
Pseudo R2 | 0.1673 | 0.1576 | 0.1245 | 0.107 | 0.1737 |
MRCNS | | | | | |
variable | 0.1RQ | 0.3RQ | 0.5RQ | 0.7RQ | 0.9RQ |
Constant | 33.410*(1.65) | 31.230***(3.43) | 51.440***(6.84) | 62.600***(9.65) | 64.990***(8.86) |
Number of beds per 1,000 population | -0.096(-0.09) | -0.289(-0.57) | -0.683(-1.64) | -0.945***(-2.63) | -0.888**(-2.18) |
Hospital bed utilization rate | 0.449***(3.33) | 0.419***(6.89) | 0.234***(4.66) | 0.147***(3.40) | 0.180***(3.68) |
Average hospital stay | 0.260(0.19) | 1.041(1.64) | 0.933*(1.78) | 0.566(1.26) | 0.470(0.92) |
Utilization rate of antibiotics | -0.115(-0.78) | -0.055(-0.83) | -0.009(-0.16) | 0.076(1.62) | 0.008(0.16) |
Pseudo R2 | 0.1412 | 0.1497 | 0.1279 | 0.1299 | 0.1292 |
VREA | | | | | |
variable | 0.1RQ | 0.3RQ | 0.5RQ | 0.7RQ | 0.9RQ |
Constant | -0.661**(-2.13) | -1.138***(-2.62) | -1.413**(-2.16) | -1.031(-1.22) | 1.454(0.84) |
Number of beds per 1,000 population | -0.089***(-5.18) | -0.069***(-2.85) | -0.085**(-2.34) | -0.147***(-3.15) | -0.333***(-3.47) |
Hospital bed utilization rate | 0.000(0.21) | 0.003(1.21) | 0.001(0.34) | 0.001(0.26) | 0.000(0.00) |
Average hospital stay | 0.083***(3.84) | 0.112***(3.72) | 0.184***(4.06) | 0.254***(4.34) | 0.212*(1.76) |
Utilization rate of antibiotics | 0.012***(5.21) | 0.010***(3.13) | 0.011**(2.21) | -0.001(-0.10) | -0.011(-0.87) |
Pseudo R2 | 0.0935 | 0.1056 | 0.0974 | 0.1146 | 0.1453 |
VREM | | | | | |
variable | 0.1RQ | 0.3RQ | 0.5RQ | 0.7RQ | 0.9RQ |
Constant | -1.921*(-1.74) | -2.749**(-2.24) | -3.627**(-2.47) | -5.736**(-2.13) | -16.650*(-1.74) |
Number of beds per 1,000 population | -0.173***(-2.82) | -0.288***(-4.23) | -0.312***(-3.83) | -0.299**(-2.00) | -0.119(-0.22) |
Hospital bed utilization rate | 0.014*(1.95) | 0.025***(3.07) | 0.030***(3.00) | 0.035*(1.93) | 0.066(1.03) |
Average hospital stay | 0.222***(2.88) | 0.325***(3.80) | 0.388***(3.80) | 0.646***(3.45) | 1.656**(2.49) |
Utilization rate of antibiotics | -0.003(-0.38) | -0.005(-0.52) | 0.005(0.47) | -0.004(-0.18) | -0.032(-0.46) |
Pseudo R2 | 0.0622 | 0.1254 | 0.1287 | 0.1180 | 0.2037 |
PRSP | | | | | |
variable | 0.1RQ | 0.3RQ | 0.5RQ | 0.7RQ | 0.9RQ |
Constant | -0.349(-0.21) | -0.066(-0.03) | -3.603(-0.95) | -5.988(-0.92) | -13.220*(-1.66) |
Number of beds per 1,000 population | -0.201**(-2.20) | -0.311**(-2.40) | -0.514**(-2.45) | -1.063***(-2.94) | -1.503***(-3.41) |
Hospital bed utilization rate | 0.029***(2.63) | 0.030*(1.92) | 0.032(1.27) | 0.054(1.23) | 0.070(1.32) |
Average hospital stay | -0.093(-0.81) | -0.033(-0.20) | 0.593**(2.25) | 1.118**(2.46) | 2.250***(4.07) |
Utilization rate of antibiotics | 0.012(0.98) | 0.020(1.15) | 0.010(0.35) | 0.015(0.32) | 0.016(0.28) |
Pseudo R2 | 0.0514 | 0.0568 | 0.0592 | 0.1177 | 0.2083 |
ERSP | | | | | |
variable | 0.1RQ | 0.3RQ | 0.5RQ | 0.7RQ | 0.9RQ |
Constant | 91.980***(4.70) | 79.260***(7.59) | 85.120***(15.18) | 94.010***(26.87) | 91.340***(26.03) |
Number of beds per 1,000 population | 0.553(0.51) | 0.789(1.36) | 0.543*(1.75) | 0.213(1.10) | 0.349*(1.79) |
Hospital bed utilization rate | -0.105(-0.81) | 0.024(0.34) | 0.038(1.02) | -0.006(-0.26) | 0.029(1.24) |
Average hospital stay | -0.121(-0.09) | 0.530(0.73) | 0.031(0.08) | 0.149(0.61) | 0.083(0.34) |
Utilization rate of antibiotics | 0.089(0.63) | 0.053(0.70) | 0.074*(1.82) | 0.005(0.21) | 0.013(0.50) |
Pseudo R2 | 0.0256 | 0.0293 | 0.0240 | 0.0076 | 0.0076 |
CTX/CRO-R ECO | | | | | |
variable | 0.1RQ | 0.3RQ | 0.5RQ | 0.7RQ | 0.9RQ |
Constant | 22.600**(2.22) | 17.340**(2.04) | 12.900(1.59) | 7.972(0.71) | 43.780***(3.73) |
Number of beds per 1,000 population | -0.444(-0.79) | -0.755(-1.60) | -1.154**(-2.57) | -0.754(-1.22) | -2.526***(-3.88) |
Hospital bed utilization rate | 0.087(1.28) | 0.149***(2.62) | 0.234***(4.31) | 0.264***(3.53) | 0.073(0.93) |
Average hospital stay | 1.350*(1.91) | 1.958***(3.31) | 1.909***(3.38) | 2.127***(2.74) | 2.125***(2.60) |
Utilization rate of antibiotics | 0.213***(2.88) | 0.191***(3.09) | 0.242***(4.09) | 0.250***(3.07) | 0.138(1.61) |
Pseudo R2 | 0.1212 | 0.1273 | 0.1509 | 0.1456 | 0.1804 |
CR-ECO | | | | | |
variable | 0.1RQ | 0.3RQ | 0.5RQ | 0.7RQ | 0.9RQ |
Constant | -2.096***(-3.49) | -1.476*(-1.70) | -1.342(-0.83) | -3.092(-1.62) | -5.655***(-2.99) |
Number of beds per 1,000 population | 0.054(1.61) | 0.003(0.06) | -0.065(-0.72) | -0.105(-0.99) | -0.040(-0.38) |
Hospital bed utilization rate | 0.021***(5.22) | 0.017***(2.97) | 0.026**(2.40) | 0.033**(2.55) | 0.023*(1.80) |
Average hospital stay | 0.088**(2.11) | 0.107*(1.76) | 0.089(0.79) | 0.262*(1.97) | 0.560***(4.26) |
Utilization rate of antibiotics | -0.003(-0.65) | -0.001(-0.08) | -0.002(-0.15) | 0.007(0.53) | 0.031**(2.21) |
Pseudo R2 | 0.0568 | 0.0382 | 0.0456 | 0.0675 | 0.1077 |
QNR-ECO | | | | | |
variable | 0.1RQ | 0.3RQ | 0.5RQ | 0.7RQ | 0.9RQ |
Constant | 48.300***(6.74) | 41.140***(3.88) | 29.480**(2.43) | 25.080**(2.07) | 9.130(0.86) |
Number of beds per 1,000 population | -1.601***(-4.03) | -0.749(-1.27) | -0.476(-0.71) | -0.083(-0.12) | 0.391(0.66) |
Hospital bed utilization rate | 0.016(0.33) | -0.109(-1.54) | -0.149*(-1.85) | -0.081(-1.00) | -0.170**(-2.39) |
Average hospital stay | 0.993**(1.99) | 2.710***(3.67) | 4.486***(5.32) | 4.892***(5.79) | 6.672***(9.02) |
Utilization rate of antibiotics | -0.100*(-1.91) | -0.090(-1.16) | -0.077(-0.88) | -0.190**(-2.15) | 0.010(0.13) |
Pseudo R2 | 0.0937 | 0.0984 | 0.1445 | 0.1881 | 0.2418 |
CTX/CRO-R KPN | | | | | |
variable | 0.1RQ | 0.3RQ | 0.5RQ | 0.7RQ | 0.9RQ |
Constant | -18.550(-0.92) | 16.310(1.44) | -0.964(-0.06) | -24.350*(-1.88) | -45.930(-1.41) |
Number of beds per 1,000 population | -1.187(-1.06) | -2.181***(-3.47) | -2.288***(-2.65) | -2.120***(-2.95) | -1.232(-0.68) |
Hospital bed utilization rate | 0.623***(4.61) | 0.312***(4.11) | 0.345***(3.31) | 0.412***(4.76) | 0.476**(2.19) |
Average hospital stay | -1.838(-1.31) | -1.364*(-1.73) | 0.369(0.34) | 3.157***(3.50) | 5.589**(2.47) |
Utilization rate of antibiotics | 0.273*(1.85) | 0.254***(3.07) | 0.314***(2.77) | 0.170*(1.80) | 0.025(0.11) |
Pseudo R2 | 0.1607 | 0.1614 | 0.1366 | 0.1431 | 0.1398 |
CR-KPN | | | | | |
variable | 0.1RQ | 0.3RQ | 0.5RQ | 0.7RQ | 0.9RQ |
Constant | -9.053**(-2.21) | -13.410**(-2.13) | -19.310*(-1.86) | -12.540(-0.77) | -23.490(-0.73) |
Number of beds per 1,000 population | 0.391*(1.72) | 0.580*(1.66) | 1.099*(1.91) | 0.661(0.73) | 1.677(0.94) |
Hospital bed utilization rate | 0.133***(4.86) | 0.163***(3.88) | 0.273***(3.95) | 0.331***(3.05) | 0.501**(2.34) |
Average hospital stay | -0.285(-1.00) | -0.244(-0.56) | -0.810(-1.12) | -1.057(-0.93) | 0.789(0.35) |
Utilization rate of antibiotics | 0.003(0.09) | 0.048(1.05) | 0.079(1.05) | 0.000(0.00) | -0.508**(-2.17) |
Pseudo R2 | 0.0606 | 0.0741 | 0.0798 | 0.0502 | 0.1109 |
CR-PAE | | | | | |
variable | 0.1RQ | 0.3RQ | 0.5RQ | 0.7RQ | 0.9RQ |
Constant | -0.489(-0.07) | 2.804(0.35) | -13.890(-1.05) | -30.660**(-2.12) | -20.760**(-2.29) |
Number of beds per 1,000 population | -1.426***(-3.42) | -2.222***(-5.04) | -0.967(-1.32) | -0.768(-0.96) | -1.205**(-2.40) |
Hospital bed utilization rate | 0.165***(3.29) | 0.234***(4.40) | 0.334***(3.78) | 0.357***(3.69) | 0.224***(3.70) |
Average hospital stay | 0.966*(1.85) | 0.473(0.86) | 0.948(1.03) | 2.595**(2.58) | 3.050***(4.83) |
Utilization rate of antibiotics | -0.054(-0.99) | 0.023(0.40) | 0.012(0.13) | 0.0612(0.58) | 0.171**(2.59) |
Pseudo R2 | 0.0862 | 0.1080 | 0.1148 | 0.1449 | 0.2006 |
CR-ABA | | | | | |
variable | 0.1RQ | 0.3RQ | 0.5RQ | 0.7RQ | 0.9RQ |
Constant | -79.000*(-1.96) | -35.910*(-1.91) | -22.860(-1.52) | -16.570(-1.12) | -33.460(-1.08) |
Number of beds per 1,000 population | 2.703(1.21) | 1.536(1.47) | 0.581(0.70) | -0.292(-0.36) | -0.098(-0.06) |
Hospital bed utilization rate | 1.048***(3.90) | 0.602***(4.79) | 0.534***(5.32) | 0.302***(3.05) | 0.252(1.22) |
Average hospital stay | -0.076(-0.03) | 2.409*(1.84) | 2.498**(2.39) | 4.818***(4.68) | 7.174***(3.34) |
Utilization rate of antibiotics | 0.298(1.02) | 0.053(0.38) | 0.100(0.92) | 0.143(1.33) | 0.241(1.07) |
Pseudo R2 | 0.1849 | 0.118 | 0.112 | 0.106 | 0.146 |
* p < 0.05 ** p < 0.01, The value is “Regression coefficients” in table and “t” in brackets. |
Regarding the hospital bed utilization rate, significance at the 0.05 level was observed for MRSA (τ = 0.1, 0.3, 0.5, 0.7, and 0.9), MRCNS (τ = 0.1, 0.3, 0.5, 0.7, and 0.9), VREM (τ = 0.1, 0.3, 0.5, and 0.7), PRSP (τ = 0.1 and 0.3), CTX/CRO-R ECO (τ = 0.3, 0.5, and 0.7), CR-ECO (τ = 0.1, 0.3, 0.5, 0.7, and 0.9), CTX/CRO-R KPN (τ = 0.1, 0.3, 0.5, 0.7, and 0.9), CR-KPN (τ = 0.1, 0.3, and 0.5), CR-PAE (τ = 0.1, 0.3, 0.5, 0.7, and 0.9), and CR-ABA (τ = 0.1, 0.3, 0.5, 0.7, and 0.9). The regression coefficients were all higher than 0, indicating that the detection rates of the 10 MDROs mentioned above were positively affected by the hospital bed utilization rate.
Regarding the average hospital stay, the significance at the 0.05 level is shown for MRSA (τ = 0.7 and 0.9), MRCNS (τ = 0.5), VREA (τ = 0.1, 0.3, 0.5, 0.7, and 0.9), VREM (τ = 0.1, 0.3, 0.5, 0.7, and 0.9), PRSP (τ = 0.1 and 0.3), CTX/CRO-R ECO (τ = 0.1, 0.3, 0.5, 0.7, and 0.9), CR-ECO (τ = 0.1, 0.3, 0.7, and 0.9), QNR-ECO (τ = 0.1, 0.3, 0.5, 0.7, and 0.9), CTX/CRO-R KPN (τ = 0.7 and 0.9), CR-PAE (τ = 0.1, 0.7, and 0.9), and CR-ABA (τ = 0.3, 0.5, 0.7, and 0.9). All the regression coefficients were higher than 0, indicating that the average hospital stay had a positive effect on the detection rates of the 11 MDROs mentioned above. In the sensitivity analysis (Appendixes 3), we obtained the same findings, indicating that the study results are stable.