Data
The data was obtained from the China Migrant Dynamic Survey (CMDS) in 2017 and was provided by the Migrant Population Service Center. CMDS is an annual national sample survey of the internal migrants organized by the NHC, with an annual sample size of approximately 200,000 households. The survey adopts the layered, multi-stage, and proportional to scale PPS (Probability proportional to size) sampling method. This study adopted the individual questionnaire A, which was uniformly printed and distributed by the NHC. The questionnaire includes basic information about the subject's demography, perception of the destination, the state of social interaction, and utilization status of NEPHS, etc. Full-time investigators collected the questionnaire data through household interviews, and each respondent gave informed consent before commencing the interview. Dates were entered through the migrant population health and family planning dynamic monitoring system and were checked by the investigators and the investigation instructors. The respondents consisted of internal migrants aged 15–59 living in the destination for more than one month. In this study, the inclusion conditions were set as "22–59 years of age, residence duration more than one year, and 1–16 years of education. Finally, 130642 people were included in the survey.
Measurement
Dependent variables
Health education and health records, the two primary services of NEPHS, were selected as outcome variables. The health education question was "have you received the following health education in your current community in the past year: occupational disease prevention and control, tuberculosis prevention and control, chronic disease prevention and control, STD and AIDS prevention and control, tobacco control, reproductive health and contraception, maternal and child health care, healthy birth and childbearing, self-help education in public emergencies, and mental health education". Individuals who had not received any of the above education categories were marked as "No", while those who had received one or more of the education categories were marked as "Yes". The health record question was "have you ever set up a health record at the destination?" and the answer was "yes or no."
Independent variables
Social Capital refers to the social network resources that can be utilized by individuals within the scope of their current residence. It can be distinguished into Cognitive Social Capital (CSC) and Structural Social Capital (SSC). CSC generally refers to individuals' perceptions, beliefs, and attitudes toward their social surroundings, with corresponding measures focused mainly on the concepts of generalized and particularized trust [31]. The latter was selected in this study, mainly referring to the overall perception of migrants to the destination. There were four questions in the survey: "I like the city/place I live now", "I am concerned about the changes in the city/place I live now", "I am very willing to blend with the local people and become a part of them", "I think the local people are willing to accept me as a part of them", each question was graded as "totally disagree", "disagree", "basically agree", or "totally agree", α = 0.844. According to the distribution of scores, CSC was divided into four levels: level 1 (4–11), level 2 (12), level 3 (13–15), and level 4 (16).
SSC refers to the presence of formal opportunity structures or activities in which individuals build or strengthen their social connections. These structures and activities are often operationalized through measures of an individual's civic or social participation [32]. The SSC of this survey included civic participation and social participation. The civic participation questions were: "since 2016, have you made suggestions to your unit/community/village or supervised the unit/community/village affairs management", "since 2016, have you participated in property donation, blood donation, volunteer activities, etc.", "since 2016, have you reported the situation/put forward policy suggestions to relevant government departments in various ways ", "since 2016, have you posted online comments on national affairs and social events or participated in related discussions", "since 2016, have you participated in party/youth league organization activities and party branch meetings". There were four-level answers for each question: no, occasionally, sometimes, and often. The social participation question was "have you participated in any of the following activities in the past year: trade unions, volunteer associations, homecoming associations, fellow-students association, others". According to the distribution characteristics of scores, civic participation was integrated into two categories: "none" or "at least one". Social participation was also treated according to this method. According to statistical evaluation, there was a significant correlation between civic participation and social participation (r = 0.304, p = 0.000). Therefore, the sum of the two was determined as the SSC level, and the three levels were evaluated as either 0, 1, or 2.
Moderating variables and controlling variables
In developing countries, gender and education are often indicators of socioeconomic status(SES), and SES can significantly influence social capital and health[29]. Gender and education were set as moderating variables, According to the compulsory education years in China, education were divided into two categories: ≤9 and > 9 years groups. Several factors, including age, residence duration, migratory range, and community type, have been confirmed to affect the NEPHS utilization of migrant populations in previous studies[3–7]. Thus, the above variables were set as the control variable. The age groups were divided into 22–27, 28–37, 38–47, and 48–59 years old, while the residence time groups were divided into 1–3, 4–6, 7–9, 10–12, and above 12 years. The community types were divided into urban and rural areas, while the migratory range was divided into across provinces, across cities within a province, and across counties within a city.
Statistical analysis
SPSS 22.0 was used for data analysis. First, the descriptive statistics of the included variables were calculated (Table 1). Then, we compared the differences in social capital, health education, and health records among the different gender and education groups of migrants by cross-table and chi-square tests (Table 2). Our data-set contained a sample of 130642 individuals nested within 31 provincial administrative units. We calculated the CSC and SSC average grades of the samples from 31 provincial administrative regions, respectively, as the regional cognitive social Capital (RCSC) and regional structural social capital (RSSC) of each region. Then, to distinguish the impact of social capital at different levels on NEPHS, we specified the following basic model:
Hij = β0 + β1(Sij - Sj) + β2Sj + β3Xij + µj + εij
where H is the relevant dependent variable for an individual I (level 1) in province j (level 2), S is the set of social capital variables measured at the individual and province levels, X is a vector of standard socioeconomic-demographic variables (log of gender, education, age, residence duration, community type, and migration range). The β’s are the fixed parameters to be estimated, µj is the province-specific random effect, whereas εij is the random component of the error term. Therefore, (Sij - Sj) refers to the pure personal social capital, which can be divided into individual cognitive social capital (ICSC) and individual structural social capital (ISSC). Thus, the social capital of the migrant population was disassembled into RCSC, RSSC, ICSC, and ISSC. Finally, we added the interaction terms of RCSC, RSSC, ICSC, and ISSC with gender and education into the model to analyze the moderating effect of gender and education on the correlation between social capital, health education, and health records (Table 3, 4, 5).