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Abstract 32 
 33 

The blood proteome reflects homeostatic and dynamic cellular processes across human organs. 34 

However, few blood proteomics studies of sufficient depth and size have been reported in breast 35 

cancer. To comprehensively identify circulating proteins with a causal role in breast cancer we 36 

measured 2,929 unique proteins in plasma from 598 women selected from the Karolinska 37 

Mammography Project and explored associations between proteins levels, clinical characteristics, 38 

and gene variants. The analysis revealed 812 cis-acting protein quantitative trait loci (pQTL), which 39 

were used as instruments in Mendelian randomisation (MR) analysis of breast cancer. Five proteins 40 

(P < 1.7x10-5, Bonferroni-corrected) with a potential causal role in breast cancer risk were revealed 41 

(CD160, DNPH1, LAYN, LRRC37A2 and TLR1). Confirming the MR findings in independent cohorts 42 

(FinnGen R9 and the UK Biobank), our study suggests that these proteins should be further explored 43 

as potential drug targets in breast cancer. 44 



Introduction 45 

 46 

Breast cancer is globally the most common cancer in women and is associated with significant 47 

morbidity and mortality 1. Genome-wide and exome-wide genetic association studies have 48 

successfully identified over 300 breast cancer susceptibility loci 2-4 but the mechanisms underpinning 49 

most loci and specific gene variants remain uncharacterized, which limits translation of genetic 50 

susceptibility loci to new therapies and precision medicine tools 4. 51 

 52 
Mendelian randomisation (MR) offers an alternative approach to the mapping and understanding of 53 

etiologically important pathways in cancer risk and development. MR aims to elucidate causal 54 

relationships between modifiable risk factors and disease based on the analysis of genetic variants in 55 

observational data 5. In comparison to genome-wide association studies (GWAS), MR exploits a more 56 

confined test space, which increases statistical power, and inherently supports causal gene 57 

identification. MR can be further supported by genetic colocalization analysis of exposure and 58 

outcome 6. The relevance of MR has been evaluated and supported by retrospective analyses of drug 59 

targets with a proven aetiological or causal role in disease from randomised controlled trials (RCT) 7,8. 60 

 61 
Circulating proteins possess many of the characteristics suitable for discovery of breast cancer 62 

biology using MR. Firstly, the plasma proteome has been shown to reflect both normal physiology 63 

and pathogenic biological processes in cancer 9. Secondly, circulating proteins can be measured with 64 

high throughput and precision a variety of advanced methods 10 11. Thirdly, recent studies have 65 

shown that a majority of circulating proteins are associated with cis-acting protein quantitative trait 66 

loci (pQTL) i.e. located within 1 Mbp from the protein-encoding gene 12,13. Fourthly, individual cis- 67 

pQTL explain relatively large proportions of variance in the protein, making them statistically 68 

powerful instrumental variables for causal inference using MR 12 14. Hundreds of pQTL for plasma 69 

proteins have been identified, but so far no studies have reported pQTL in an entirely female 70 

population 7,12,13,15-19. 71 

 72 
Here, we measured a total of 2,929 unique proteins using the Olink PEA Explore assay in plasma 73 

samples taken from 598 women who were free of a breast cancer diagnosis at the time of sampling. 74 

We i) performed genetic association analysis of protein levels to identify cis-pQTL and ii) used the cis- 75 

pQTL as instrumental variables in MR analysis of breast cancer in the BCAC case-control meta- analysis 76 

of breast cancer risk, and iii), replicated MR findings in a second breast cancer case-control meta-77 

analysis of FinnGen 20 and the UK Biobank 21. Lastly, we followed up on significant proteins identified 78 

in the MR analysis by visualising and evaluating colocalization of the protein and breast 79 



cancer genetic associations and evaluated potential causal relationships with established and 80 

emerging breast cancer risk factors, also using MR (figure 1). 81 

 82 
Out of 737 plasma proteins evaluated using MR, genetically elevated levels of five proteins were 83 

associated with breast cancer risk, namely CD160, 2'-deoxynucleoside 5'-phosphate N-hydrolase 1 84 

(DNPH1), layilin (LAYN), Leucine rich repeat containing 37 member A2 (LRRC37A2) and toll-like 85 

receptor 1 (TLR1), which were confirmed in an independent set of data. Our results suggest that 86 

these five proteins are aetiologically relevant for breast cancer development. Pending further 87 

validation, these findings may point to novel drug target opportunities or stratification biomarkers in 88 

breast cancer. 89 

 90 

Results 91 

 92 

Sample characteristics 93 

 94 

The KARMA study consented and recruited a total of 70,877 women during mammography screening 95 

from two Swedish regions (Stockholm and Skåne). The aim of the project is identification of risk 96 

factors for breast cancer 22. The sample for the present substudy was selected for the purpose of 97 

evaluating plasma protein biomarkers in relation to incident breast cancer within 2 years from blood 98 

sampling, which is described in our companion paper by Grassmann et al. The selection included 99 

samples from 299 women in the Southern Sweden (Skåne) region who received a breast cancer 100 

diagnosis within 2 years after blood draw and 299 random controls from the same region, who, as of 101 

2021, had remained breast cancer free. No difference between cases and controls was seen for 102 

median age, body mass index or percent women receiving hormone replacement therapy at time of 103 

blood draw. The proportion of smokers and women with a family history of breast cancer were more 104 

common among cases (Table 1). 105 

 106 

Protein analysis, detectability, and quality control 107 

 108 

We chose to analyse the plasma samples using an affinity proteomics approach. While targeted 109 

methods, such as the Olink PEA approach, are inherently biased towards the subset of proteins that 110 

are measured, we attempted to maximise the possibility for discovery by measuring as many 111 

proteins as possible. Hence, we used the recently launched version of Olink’s Explore I and II panels, 112 

which includes 2,949 proteins (Supplementary table 5). Out of this set, 2,213 (75%) could be 113 

detected in > 50% of the samples when judging their normalized protein expression levels (NPX) 114 

above limit of detection (LOD) (Supplementary figure 1, Supplementary table 5). The ranges per 115 



protein varied between 0.17 NPX and 9.27 NPX (Supplementary figure 2). The proportion of proteins 116 

above LOD were lower for the most recent addition to the panels (Explore II). However, it is worth 117 

noting that the set of proteins in Explore II are, on average, less abundant than those of the Explore I 118 

panel, as shown in a comparison of average levels across proteins overlapping with a mass 119 

spectrometry peptide-based analysis generated by the Human Protein Atlas effort (Supplementary 120 

table 3, Supplementary figure 3) 23. 121 

 122 

Association between plasma protein levels and clinical characteristics 123 

 124 

To examine observational relationships between protein levels and clinical characteristics of the 125 

KARMA women, we regressed each measured protein against seven factors (age, alcohol 126 

consumption, number of births, body mass index (BMI), hormone replacement therapy (HRT), peri- 127 

and post-menopause and current smoking. In these analyses we included both women who 128 

developed breast cancer and those who did not as there were no significant differences between 129 

both groups in our companion paper, indicating that the protein levels are similar between both 130 

groups at blood draw. All associations are shown in Supplementary table 6. A total of 684 proteins 131 

were associated with BMI and 459 proteins were associated with age (Figure 2). Several of the 132 

observed associations have previously been described such as higher plasma levels of leptin and 133 

fatty-acid binding protein 4 (FABP4) with increasing BMI 24, higher FSHB in post-menopausal women 134 

and higher PLAP levels in smokers 25. Some less described correlations included lower plasma levels  135 

of glycodelin (PAEP) and chordin like 2 (CHRDL2) and higher levels of glycoprotein hormone alpha 136 

polypeptide (CGA) in post- and peri-menopausal women, and lower levels of osteomodulin (OMD) in 137 

women using hormone replacement therapy (HRT). 138 

 139 
The replication of known trait-to-protein associations suggest that the data quality was satisfactory, 140 

and that additional trait-to-protein associations are enabled by expansion of the number of 141 

detectable proteins. 142 

 143 

Identification of cis-pQTL 144 

 145 

To identify genetic instruments for the downstream causality testing using MR, gene variants within a 146 

range of 1Mbp up and downstream of genes encoding each of the 2,929 unique proteins were tested 147 

for association with levels of the corresponding protein. Significant associations (p<2.2x10-4) were 148 

observed for a total of 812 independent variants (R2>0.1) and 737 proteins, henceforth referred to as 149 

cis-pQTL (supplementary table 1). Most of the pQTL were observed for proteins on Olink Explore I 150 

panel (n=523) but several pQTL were also observed for Explore II proteins (n=289). Some of the cis- 151 



pQTL showed effect sizes well above 1 standard deviation, including the nucleotidase NT5C 152 

(missense, Pro68Leu, MAF 3 %), acylphosphatase (ACYP1) (~7 kbp upstream of gene, MAF 1.5 %) and 153 

carboxypeptidase Q (CPQ) (intron, MAF 1.7 %). 154 

We conclude that pQTL are readily detected for proteins on both Explore I and II panels, providing 155 

potential MR instruments for 737 proteins. 156 

 157 

Replication analysis 158 

 159 

To investigate the validity of the cis-pQTL identified in KARMA, effect sizes were compared with cis- 160 

pQTL previously reported for a subset of 90 proteins measured using Olink PEA in the SCALLOP CVD-I 161 

study 7. Measurements for all 90 proteins were available in the KARMA study. Of those 90, cis-pQTL 162 

for 33 of the proteins reported by the SCALLOP CVD-I study were associated in KARMA at p<0.05. The 163 

Pearson correlation coefficient between effect sizes for the 33 overlapping variants was 0.91 164 

(supplementary figure 4). 165 

 166 
To also investigate the generalisability of the identified cis-pQTL, the variants, or those in high linkage 167 

disequilibrium (LD) (>0.8), were looked up in previously published studies reporting cis-pQTL based   168 

on the Somascan proteomics platform 26,27. The overlap of Olink proteins available after quality  169 

control in the KARMA study and proteins measured in previously published work based on the 170 

Somascan platform was 569 proteins (supplementary table 1). Of the 603 significant cis-pQTL 171 

observed in KARMA for the subset of overlapping proteins, we observed evidence of replication for 172 

374 proteins at Bonferroni-corrected p<6.1x10-5 whereas a total of 229 cis-pQTL did not show 173 

evidence of replication at the aforementioned p-value threshold. 174 

 175 

Mendelian randomization analysis 176 

 177 

We performed two-sample inverse-variance weighted or Wald-scores MR analysis using protein 178 

exposures from the KARMA cis-pQTL to investigate potential causal effects on breast cancer risk  179 

using outcome data from BCAC and from the FinnGen R8-UK-biobank meta-analysis 5. We were 180 

unable to identify genetic proxies for seven of the proteins with cis-pQTL in KARMA, resulting in the 181 

testing of 730 protein exposures. Of those, seven proteins surpassed the statistical threshold for 182 

significance (p<7.5x10-5) in the discovery study (Figure 3) of which five replicated in the independent 183 

breast cancer case control study from FinnGen 20 and UK-biobank 21 with consistent effect sizes and 184 

directions (Table 2). The replicated proteins, shown here by the names of their encoding genes, were 185 

CD160, DNPH1, LAYN, LRRC37A2 and TLR1. The full summary of MR results is provided in 186 

Supplementary table 4. 187 



We further investigated whether the five proteins with replicated MR evidence for all breast cancers 188 

were equally associated in estrogen-receptor (ER) positive compared to ER negative breast cancer 189 

(Table 3). However, the effect sizes were similar across ER+ and ER- breast cancer risk, suggesting 190 

these five proteins associate equally with ER+ and ER- breast cancer risk. 191 

 192 
It was also hypothesised that proteins with MR evidence for an etiologically important role in breast 193 

cancer might influence breast cancer risk via a breast cancer risk factor. To test this, further MR 194 

analysis was performed using GWAS of potential breast cancer risk factors as outcomes, including 195 

age at menarche, age at menopause, waist-hip ratio, mammographic density, sex hormone binding 196 

globulin and insulin growth factor 1 levels (IGF-1) 28. LRRC37A2 showed MR evidence for later age at 197 

menarche and earlier age at menopause in two independent outcome datasets, and also for higher 198 

IGF-1 levels (Supplementary table 2). CD160 showed nominal MR evidence for an etiological role 199 

lower age at menarche. 200 

 201 
To summarise, the MR analysis showed that genetic elevation of CD160, DNPH1, LAYN, LRRC37A2 202 

and TLR1 associate with breast cancer risk, and with similar effects on ER+ and ER- cancer. 203 

 204 

Colocalisation analysis 205 

 206 

All imputed variants in proximity to the cis-pQTL for proteins with significant MR evidence were 207 

visually inspected with the corresponding genomic region for breast cancer risk using mirror plots. 208 

The cis-regions around DNPH1 and LRRC37A2 showed the strongest degree of concordance between 209 

lead variants for protein levels and breast cancer risk (Supplementary figure 7 and 8). Lead pQTL in 210 

cis-regions for CD160, LAYN and TLR1 were not the variants with the lowest p-values for breast 211 

cancer risk but were localised in the same, size limited, genomic region. We considered the cis-pQTL 212 

to be colocalised with breast cancer risk (Supplementary figure 6, 8 and 10). 213 

 214 

Systematic search for drugs targeting CD160, DNPH1, LAYN, LRRC37A2 and TLR1 215 

 216 

To investigate if any of the five proteins identified in the present investigation had been previously 217 

explored as drug targets, we performed a systematic search across several databases, including NIH 218 

Pharos Consortium, IUPHAR/BPS Guide to Pharmacology, DrugBank and ClinicalTrials.gov. With the 219 

exception of LAYN, targeted by Hyaluronic acid, none of the proteins were registered as known drug 220 

targets 29. 221 



Discussion 222 

 223 

We measured 2,949 circulating proteins in plasma from 598 women to identify 812 independent cis- 224 

pQTL which were applied in MR to investigate associations between genetically predicted protein 225 

levels and breast cancer risk. We found that genetically lower levels of CD160 and LRRC37A2 and 226 

genetically higher levels of DNPH1, LAYN and TLR1 were associated with increased risk of breast 227 

cancer. In addition, genetically higher levels of LRRC37A2 associated with age at menarche, which 228 

adds to previous knowledge of its modest MR evidence for breast cancer risk 28. MR using cis-pQTL 229 

instruments allowed us to model life-long genetic exposure to higher/lower protein levels, which 230 

implies an aetiologically important role of associated proteins in disease. In our companion paper by 231 

Grassmann et al., we found no circulating proteins associated with 2-year risk of incident breast 232 

cancer. Indeed, none of the five proteins identified in the present investigation were significantly 233 

associated with incident breast cancer. This indicates that genetically predicted protein levels did not 234 

capture this short-term risk. 235 

 236 
Among the five proteins identified in our study, DNPH1, also described as Rcl, encodes the enzyme 237 

2'-deoxynucleoside 5'-phosphate N-hydrolase, which plays a role in nucleotide metabolism and is a 238 

target of ETV1 -a transcription factor expressed in breast tumours 30. Two independent CRISPR 239 

screens for modulators of BRCA-associated breast tumour sensitivity to PARP inhibitors, an 240 

established treatment in BRCA-deficient breast cancer, have shown that genomic inhibition DNPH1 241 

sensitizes BRCA-deficient cells to treatment with PARP inhibitors 31,32. The lead pQTL identified in 242 

KARMA, rs75591122, is located ~18.2 kbp upstream from the DNPH1 gene on chromosome 6 and is 243 

one of several variants proximal to the DNPH1 gene associated with DNPH1 gene expression levels 244 

across multiple tissues 33. Genetically increased circulating protein levels of DNPH1 was in our study 245 

associated with increased breast cancer risk, which is concordant with experimental studies 246 

suggesting that DNPH1 inhibition in breast cancer may be promising avenue for drug development. 247 

 248 
Another of the five proteins was CD160, which is a receptor expressed in immune cells that has been 249 

described to play important roles in NK cell biology, predominantly functioning as an activating NK- 250 

cell receptor 34. CD160 is predominantly expressed on healthy NK cells and is one of the driver genes 251 

for a specific NK subset related to higher cytokine production 35. Reduction in CD160 expression led  252 

to impaired NK cells and poor outcomes in Hepatocellular carcinoma patients 36 and since 253 

dysfunctional NK cells also correlate with breast cancer progression 37 it can be hypothesized that 254 

CD160 could have a similar protective role in breast cancer. Indeed, in our study, genetically elevated 255 

circulating protein levels of CD160 associated with a protective effect in breast cancer, suggesting 256 



that a drug activating CD160 specifically on NK cells may enhance anti-tumour immune responses in 257 

breast cancer. 258 

 259 
Our search for drug targets highlighted the connection between LAYN and Hyaluronic Acid. LAYN 260 

encodes Layilin, which is a talin-binding transmembrane and integral membrane protein functioning 261 

as a receptor for Hyaluronic acid (HA), with a role in cell adhesion and motility 38,39. HA is an 262 

extracellular matrix component that impacts tumor microenvironment where elevated HA levels has 263 

been reported in multiple cancer types including breast cancer 40. Interestingly, targeted depletion of 264 

HA controlled the breast cancer tumor growth in xenotransplant mouse models of  265 

immunocompetent mice but not of immunodeficient mice, which indicates a potential tumor- 266 

immunity role for its receptors i.e. Layilin 41. Accordingly, high LAYN expression belongs to 267 

transcriptomic signatures specific for regulatory T cells (Tregs) and exhausted CD8+ T cells for several 268 

cancer types including breast cancer 42 43. In our study, genetic elevation of LAYN protein levels 269 

associated with increased breast cancer risk, suggesting a LAYN inhibitor would be desired for 270 

treatment of breast cancer. However, mechanistic studies will be required to confirm the direction of 271 

effect proposed by the MR evidence and to validate LAYN as drug target in breast cancer. 272 

 273 
Several other studies have investigated genetic elevation of circulating proteins to identify potential 274 

aetiological or causal factors for breast cancer risk. Murphy et al. reported that genetically elevated 275 

circulating insulin growth factor levels (IGF-1) were associated with a weak but significantly increased 276 

risk of breast cancer whereas IGF-binding protein-3 was unassociated 44. Zhu et al. demonstrated 277 

absence of association with breast cancer for genetically elevated levels of C-reactive protein 45 and 278 

Shu et al. reported a wider MR analysis, instrumenting 1,469 proteins using Somascan-based pQTL in 279 

the INTERVAL cohort, of which genetic instruments for 26 proteins were found to be associated 45,46. 280 

Bouras et al. instrumented 47 inflammatory cytokines and reported that genetically increased levels 281 

of CXCL1 and decreased levels of MIF associated with breast cancer 47. Our study included 10 of the 28 282 

proteins previously reported in breast cancer MR studies, and while none of the reported proteins 283 

surpassed statistical significance in our study, SCG3 and TFPI showed nominal significance in our 284 

discovery MR (Supplementary table 4). 285 

 286 
Our study has both strengths and limitations. One of the strengths is the large number of proteins 287 

tested for cis-pQTL and that the cis-pQTL used to instrument genetic elevation using MR were 288 

identified in women only, which should provide better estimates in MR for female breast cancer. 289 

Another strength is that the protein exposures meeting statistical significance in our discovery MR, 290 

using data from the BCAC consortium as outcome, were replicated in the independent case-control 291 

analysis that combined breast cancer cases and controls in FinnGen and the UK-Biobank. 292 



However, our study had limited sample size for discovering cis-pQTL with smaller effect sizes. 293 

Therefore, we cannot exclude that additional proteins on the Olink Explore II panels harbour 294 

significant cis-pQTL but remained undetected in the KARMA sample. To decrease the false-negative 295 

error rate we only included variants in cis to decrease the multiple-test burden and corrected the p- 296 

value threshold for significant for the number of independent variants in each cis-region. Effect-sizes 297 

observed in KARMA were highly concordant with an overlapping set of 33 cis-pQTL for proteins 298 

measured with Olink PEA that were previously reported. To evaluate the robustness of cis-pQTL 299 

identified in KARMA, we sought replication for an overlapping set of 569 proteins measured with 300 

Somascan. Of those, 2/3 (374/569) were replicated, which is on par with the expected replication 301 

rate given differences in protein analysis methods 16. 302 

 303 
In conclusion, by applying an MR approach for a broad range of circulating proteins we found that 304 

genetically elevated CD160, DNPH1, LAYN, LRRC37A2 and TLR1 associate with breast cancer. This 305 

suggests that these five proteins play an aetiological or causal role in breast cancer, providing a basis 306 

for further functional evaluation of their potential as drug targets. 307 

 308 

Materials and methods 309 

 310 

KARMA study collection 311 

 312 

We included 299 breast cancer cases and 299 breast cancer free controls from the Swedish KARMA 313 

study in the analysis. The cohorts are thoroughly described elsewhere and previously analysed in 314 

several BCAC studies. Briefly, the KARMA Cohort consists of 70,877 women performing a screening or 315 

clinical mammogram at 4 hospitals in Sweden during the period October 2010–March 2013. 316 

 317 

Plasma protein measurements on Olink Explore 318 

 319 

Plasma proteomics was performed in samples from 299 BC cases and 299 BC free controls from the 320 

Swedish KARMA study using the Olink Explore I and II panels (Olink Proteomics AB, Uppsala, Sweden) 321 

according to the manufacturer's protocol. Explore combines the Proximity Extension Assay (PEA) 322 

technology with Next generation sequencing (NGS). 323 

 324 
In brief, the PEA technology uses matching pairs of oligonucleotide-labelled antibody probes. The 325 

PEA probes bind to target antigens producing a binding complex where the complimentary 326 

oligonucleotides exist in close proximity to each other, enabling the formation of a target sequence. 327 

The dual targeting of probes has been proven to produce outstanding specificity enabling for a high 328 

degree of multiplexing while maintaining sensitivity and a broad dynamic range. In the Olink Explore 329 



protocol, target sequence is amplified in a double PCR reaction and purified before the NGS. The 330 

sequence data is processed and normalized to produce Olinks relative quantification unit Normalized 331 

Protein eXpression (NPX). The produced DNA signal functionally works as a proxy for the protein  332 

levels present in the sample. Further details on the Olink Explore protocol and internal quality control 333 

are available in the Supplementary methods 1 document. 334 

 335 

Olink analysis quality control 336 

 337 

The Olink QC-system includes negative controls, used to monitor the background noise and to set the 338 

limit of detection (LOD). Supplementary figure 1 and Supplementary table 5 show the percentage of 339 

samples with NPX above LOD. 340 

 341 

Association with clinical characteristics 342 

 343 

For each of the 2,949 measured protein levels, the following linear regression model was fitted: NPX 344 

~ age + bmi + menopause_preVSperi + menopause_preVSpost + birth_times + hrt_status + 345 

alcohol_gram_week + smoking_status where menopause_preVSperi contrasts pre- versus peri- 346 

menopausal patients, menopause_pre VS post contrasts pre- versus post-menopausal patients, 347 

hrt_status contrasts current users of hormone replacement therapy versus patients who have never 348 

used it or who have used it in the past, and smoking_status contrast current smokers versus those 349 

who have never smoked or smoked in the past. All p-values were FDR corrected for the 2,949 x 7 350 

performed tests. 351 

 352 

Protein QTL mapping 353 

 354 

Genome-wide genotyping in the KARMA study was performed using the Illumina iSelect or Oncoarray 355 

arrays, followed by imputation using the Wellcome Trust Sanger Institute imputation service using   356 

the 1000 genomes phase 3 as reference. Standard quality control was applied as previously   357 

described. Variants with a minor allele frequency < 0.01 were filtered out prior to analysis. The final 358 

dataset included 9,087 million variants. 359 

Proteins >75 % of NPX values below LOD were filtered out before the pQTL analysis, yielding a total  360 

of 2,476 proteins in the analysis. Values below LOD were included. The pQTL discovery analysis was 361 

performed using an additive model with adjustments for age, BMI and 10 genetic PCs in PLINK 2.0 .  362 

To preserve statistical power for pQTL identification, only variants within a 1 mega-base pair window 363 

of the protein coding gene were tested for association with respective circulating protein level. To 364 

manage multiple test correction, while limiting false-negatives, the total number of variants per cis- 365 



region were calculated as well as the number of independent variants (R2<0.1). The average number 366 

of variants per cis-region was 6,249 (Supplementary Figure 5) and 180 independent variants (min,max 367 

12-511). Statistical significance was therefore defined as an alpha of 0.05 divided by 180 to      368 

account for average number of independent variants tested per cis-region (p=2.77E-04). A false- 369 

discovery rate (FDR) at 5 % provided a similar estimate (p< 5.54E-04). 370 

 371 

Mendelian Randomization analysis 372 
 373 

We performed Two-sample MR using the R package Two-Sample MR to test for proteins with a 374 

potential causal role in breast cancer. Independent cis-pQTL (r2 < 0.001) were used as instrumental 375 

variables (IV), and GWAS of breast cancer risk from the BCAC consortium were used as outcome, 376 

which included data from 122,977 breast cancer cases and 105,974 controls. In the case of a single 377 

independent IV Wald Ratio was applied, otherwise inverse-variance weighted estimates were 378 

reported. The threshold for statistical significance was defined as (7.5x10-5) to account for multiple 379 

testing. The replication analysis was performed in a meta-analysis of FinnGen R9 and the UK-biobank, 380 

which included 25,807 cases and 355,307 controls. Only the seven proteins that met statistical 381 

significance in the BCAC discovery analysis were included in the replication analysis, and hence a 382 

nominal p-value of 0.05 was considered statistically significant. 383 

 384 
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Tables 417 

 418 

Table 1 419 
 420 
 421 

Variable Controls (BC negative) Cases (incident BC) 

Number of individuals 299 299 

Age at baseline (S.D) [years] 58.83 (9.26) 58.11 (9.49) 

Body mass index at interview (S.D) [kg/m2] 25.20 (4.16) 25.73 (4.14) 

Hormone replacement therapy ever [%] 35.66 37.76 

Current smoker at interview [%] 11.23 16.32 

Family history of BC [%] 11.27 20.92 

 422 
 423 
 424 
 425 

Table 2 426 
 427 
 428 

Exposures BCAC, all breast cancer FinnGen and UK-Biobank 

Protein nsnp beta pval nsnp beta pval 

CD160 1 -0.09 1.70E-06 1 -0.07 1.50E-02 

DNPH1 1 0.08 3.80E-07 1 0.05 3.50E-02 

LAYN 1 0.13 1.40E-05 1 0.12 8.40E-03 

LRRC37A2 1 -0.05 5.70E-10 1 -0.05 6.80E-05 

MST1 1 0.03 7.20E-05 1 0.02 6.60E-02 

TLR1 1 0.07 6.40E-06 1 0.11 7.40E-05 

TXK 1 0.07 3.10E-06 1 0.03 3.40E-01 

 429 

Table 3 430 
 431 
 432 

 ER+ breast cancer ER- breast cancer 

Exposures BCAC FinnGen BCAC FinnGen 

Protein beta pval beta pval beta pval beta pval 

CD160 -0.08 5.10E-04 -0.14 6.90E-03 -0.06 9.30E-02 -0.07 2.80E-01 

DNPH1 0.08 6.20E-06 0.07 8.80E-02 0.09 6.00E-04 0.05 3.40E-01 

LAYN 0.12 5.50E-04 0.13 1.20E-01 0.12 2.60E-02 0.17 1.00E-01 

LRRC37A2 -0.04 1.80E-06 -0.06 3.50E-02 -0.04 7.90E-03 -0.01 8.30E-01 

TLR1 0.07 1.60E-04 0.11 4.10E-02 0.09 2.30E-03 0.11 9.40E-02 
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 586 
Figure 1.    Flow chart of study design, analyses and main results587 



Figure 2 588 
 589 
 590 

 591 
 592 

Figure 2: Volcano plots showing estimated effect sizes (x-axis) and the corresponding non-adjusted – 593 
log10(p-value) (y-axis). Effect sizes were given by a linear regression model per protein, including all 7 594 
traits. Each panel shows one of the investigated baseline traits, corresponding to one term in the 595 
regression model. The names of the topmost significant proteins per trait are indicated in each 596 
panel. The number of proteins reaching FDR corrected statistical significance were for age:459, 597 
Alcohol consumption:172, Birth times:7, BMI:684, HRT:93, Menopause pre vs. peri:18, Menopause 598 
pre vs post:127, Current smoking:213. 599 



Figure 3 600 
 601 
 602 

 603 
 604 

Figure 3: Mendelian randomization analysis on breast cancer risk in the BCAC study was performed 605 
by modelling exposure to genetically higher plasma levels of 730 proteins with at least one cis-pQTL. 606 
The Y-axis shows the -log10 p-value of the Wald-score or IVW and the X-axis shows the beta- 607 
estimates of the MR result for each protein that was tested. 608 
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