Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., & Zardecki, C. (2002). The protein data bank. Acta Crystallographica Section D: Biological Crystallography, 58(6 I), 899–907. https://doi.org/10.1107/S0907444902003451
Botha, J., Witkowski, E. T. F., & Shackleton, C. M. (2004). The impact of commercial harvesting on Warburgia salutaris (‘ pepper-bark tree ’) in Mpumalanga , South Africa. Biodiversity and Conservation, 3, 1675–1698.
Choi, K., Kremer, L., Besra, G. S., & Rock, C. O. (2000). Identification and Substrate Specificity of  -Ketoacyl ( Acyl Carrier Protein ) Synthase III ( mtFabH ) from Mycobacterium tuberculosis *. Journal of Biological Chemistry, 275(36), 28201–28207. https://doi.org/10.1074/jbc.M003241200
Chollet, A., Stigliani, J., Rosalia, M., Giorgia, P., Lherbet, C., Constant, P., Quémard, A., Bernadou, J., Pratviel, G., & Bernardes-génisson, V. (2016). Evaluation of the inhibitory activity of ( aza ) isoindolinone- type compounds : toward in vitro InhA action , Mycobacterium tuberculosis growth and mycolic acid biosynthesis. June, 740–755. https://doi.org/10.1111/cbdd.12804
Daffé, M., Quémard, A., & Marrakchi, H. (2017). Mycolic Acids : From Chemistry to Biology. https://doi.org/10.1007/978-3-319-43676-0
Douglas, J. D., Senior, S. J., Morehouse, C., Phetsukiri, B., Campbell, I. B., Besra, G. S., & Minnikin, D. E. (2002). Analogues of thiolactomycin : potential drugs with enhanced anti-mycobacterial activity. Microbiology, 148, 3101–3109.
Frum, Y., Viljoen, A. M., & Drewes, S. E. (2005). and drimane sesquiterpenoids. South African Journal of Botany, 71(3&4), 447–449. https://doi.org/10.1016/S0254-6299(15)30119-8
Gajiwala, K. S., Margosiak, S., Lu, J., Cortez, J., Su, Y., Nie, Z., & Appelt, K. (2009). Crystal structures of bacterial FabH suggest a molecular basis for the substrate specificity of the enzyme. FEBS Letters, 583(17), 2939–2946. https://doi.org/10.1016/j.febslet.2009.08.001
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro : An advanced semantic chemical editor , visualization , and analysis platform. Journal of Cheminformatics, 4, 17. https://doi.org/10.1186/1758-2946-4-17
Jnawali, Nath, H., Hwang, Chul, S., Park, Kil, Y., Kim, H., Lee, Seon, Y., Chung, Tae, G., Choe, Hyeon, K., & Ryoo, S. (2013). Characterization of mutations in multi- and extensive drug resistance among strains of Mycobacterium tuberculosis clinical isolates in Republic of Korea. Diagnostic Microbiology and Infectious Disease. https://doi.org/10.1016/j.diagmicrobio.2013.02.035
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
Kremer, L., Douglas, J. D., Baulard, A. R., Morehouse, C., Guy, M. R., Alland, D., Dover, L. G., Lakey, J. H., Jacobs, W. R., Brennan, P. J., Minnikin, D. E., & Besra, G. S. (2000). Thiolactomycin and Related Analogues as Novel Anti-mycobacterial Agents Targeting KasA and KasB Condensing Enzymes in Mycobacterium tuberculosis *. Jornal of Biomolecular Chemistry, 275(22), 16857–16864. https://doi.org/10.1074/jbc.M000569200
Lawal, I. O., Grierson, D. S., & Afolayan, A. J. (2014). Phytotherapeutic Information on Plants Used for the Treatment of Tuberculosis in Eastern Cape Province , South Africa. Evidence-Based Complementary and Alternative Medicine, 2014(Figure 1).
Madikane, V. E., Bhakta, S., Russell, A. J., Campbell, W. E., Claridge, T. D. W., Elisha, B. G., Davies, S. G., Smith, P., & Sim, E. (2007). Inhibition of mycobacterial arylamine N -acetyltransferase contributes to anti-mycobacterial activity of Warburgia salutaris. Bioorganic & Medicinal Chemistry, 15, 3579–3586. https://doi.org/10.1016/j.bmc.2007.02.011
Maroyi, A. (2013). Warburgia salutaris (Bertol. f.) Chiov.: A multi-use ethnomedicinal plant species. J. Med. Plants Res, 7, 53–60.
Msomi, N. Z., Shode, F. O., Pooe, O. J., Mazibuko-mbeje, S., & Simelane, M. B. C. (2019). Iso-Mukaadial Acetate from Warburgia salutaris Enhances Glucose Uptake in the L6 Rat Myoblast Cell Line. Biomolecules, 9, 1–12.
Nyaba, Z. N., Murambiwa, P., Opoku, A., Mukaratirwa, S., Shode, F., & Simelane, M. (2018). Isolation, characterization, and biological evaluation of a potent anti-malarial drimane sesquiterpene from Warburgia salutaris stem bark. Malar. J, 17, 296.
Rabe, T., & Staden, J. Van. (2000). Isolation of an antibacterial sesquiterpenoid from Warburgia salutaris. 73, 171–174.
Sargsyan, K., Grauffel, C., & Lim, C. (2017). How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/acs.jctc.7b00028
Schiebel, J., Kapilashrami, K., Fekete, A., Bommineni, G. R., Schaefer, M., Mueller, M. J., Tonge, P. J., Kisker, C., Schiebel, J., Kapilashrami, K., Fekete, A., Bommineni, G. R., & Schaefer, C. M. (2013). Structural Basis for the Recognition of Mycolic Acid Precursors by KasA , a Condensing Enzyme and Drug Target from Mycobacterium Tuberculosis * . https://doi.org/10.1074/jbc.M113.511436
Soyingbe, O. S., Mongalo, N. I., & Makhafola, T. J. (2018). In vitro antibacterial and cytotoxic activity of leaf extracts of Centella asiatica ( L .) Urb , Warburgia salutaris ( Bertol . F .) Chiov and Curtisia dentata ( Burm . F .) C . A . Sm - medicinal plants used in South Africa. BMC Complementary and Alternative Medicine, 18, 315.
Sridharan, S., Wang, L., Brown, A. K., Dover, L. G., Kremer, L., Besra, G. S., & Sacchettini, J. C. (2008). NIH Public Access. Journal of Molecular Biology, 366(2), 469–480. https://doi.org/10.1016/j.jmb.2006.11.006.X-Ray
Sridharan, S., Wang, L., Brown, A. K., Dover, L. G., Kremer, L., Besra, G. S., Sacchettini, J. C., & Eugène, P. (2007). X-Ray Crystal Structure of Mycobacterium tuberculosis β -Ketoacyl Acyl Carrier Protein Synthase II ( mt KasB ). 469–480. https://doi.org/10.1016/j.jmb.2006.11.006
Tabuti, J. R. S., Kukunda, C. B., & Waako, P. J. (2010). Medicinal plants used by traditional medicine practitioners in the treatment of tuberculosis and related ailments in Uganda. Journal of Ethnopharmacology, 127, 130–136. https://doi.org/10.1016/j.jep.2009.09.035
Takayama, K., Wang, C., Besra, G. S., Takayama, K., Wang, C., & Besra, G. S. (2005). Pathway to Synthesis and Processing of Mycolic Acids in Mycobacterium tuberculosis Pathway to Synthesis and Processing of Mycolic Acids in Mycobacterium tuberculosis. 18(1). https://doi.org/10.1128/CMR.18.1.81
Wachter, G. A., Valcic, S., Flagg, M. L., Franzblau, S. G., Montenegro, G., Suarez, E., & Timmermann, B. N. (1999). Antitubercular activity of pentacyclic triterpenoids from plants of Argentina and Chile. Phytomedicine, 6(5), 341–345. https://doi.org/10.1016/S0944-7113(99)80056-7
Who. (2019). GLOBAL TUBERCULOSIS REPORT 2019. 1–2.