[1] Zhang, Y., Wei, L., Hu, H., Zhao, Z., Huang, Z., Huang, A., et al. Tribological properties of nano cellulose fatty acid esters as ecofriendly and effective lubricant additives. Cellulose 25:3091-3103 (2018).
[2] Richardson, D.E. Review of power cylinder friction for diesel engines. J Eng Gas Turbines Power 122:506-519 (2000).
[3] Ewen, J.P., Gattinoni, C., Morgan, N., Spikes, H.A., Dini, D. Nonequilibrium molecular dynamics simulations of organic friction modifiers adsorbed on iron oxide surfaces. Langmuir 32:4450-4463 (2016).
[4] Jahanmir, S., Beltzer, M. Effect of additive molecular structure on friction coefficient and adsorption. J Tribol 108:109-116 (1986).
[5] Levine, O., Zisman, W.A. Physical Properties of Monolayers Adsorbed at the Solid–Air Interface. I. Friction and Wettability of Aliphatic Polar Compounds and Effect of Halogenation. J Phys Chem 61:1068-1077 (1957).
[6] Beltzer, M., Jahanmir, S. Effect of additive molecular structure on friction. Lubr Sci 1:3-26 (1988).
[7] Ratoi, M., Anghel, V., Bovington, C., Spikes, H. Mechanisms of oiliness additives. Tribol Int 33:241-247 (2000).
[8] Allen, C., Drauglis, E. Boundary layer lubrication: monolayer or multilayer. Wear 14:363-384 (1969).
[9] Anghel, V., Bovington, C., Spikes, H.A. Thick-boundary-film formation by friction modifier additives. Lubr Sci 11:313-335 (1999).
[10] Kenbeek, D., Buenemann, T., Rieffe, H.: Review of organic friction modifiers-contribution to fuel efficiency? SAE Technical Paper, Place SAE Technical Paper (2000)
[11] Taylor, R.I. Tribology and energy efficiency: from molecules to lubricated contacts to complete machines. Faraday Discuss 156:361-382 (2012).
[12] Kenbeck, D., Bunemann, T. Organic friction modifiers. Lubricant Additives: Chemistry and Applications 2 (2009).
[13] Guegan, J., Southby, M., Spikes, H. Friction modifier additives, synergies and antagonisms. Tribol Lett 67:83 (2019).
[14] Miklozic, K.T., Forbus, T.R., Spikes, H.A. Performance of friction modifiers on ZDDP-generated surfaces. Tribol Trans 50:328-335 (2007).
[15] Campen, S., Green, J., Lamb, G., Atkinson, D., Spikes, H. On the increase in boundary friction with sliding speed. Tribol Lett 48:237-248 (2012).
[16] Unnikrishnan, R., Jain, M., Harinarayan, A., Mehta, A. Additive–additive interaction: an XPS study of the effect of ZDDP on the AW/EP characteristics of molybdenum based additives. Wear 252:240-249 (2002).
[17] Dawczyk, J., Morgan, N., Russo, J., Spikes, H. Film Thickness and Friction of ZDDP Tribofilms. Tribol Lett 67:34 (2019).
[18] Okubo, H., Tadokoro, C., Sasaki, S. Tribological properties of a tetrahedral amorphous carbon (ta-C) film under boundary lubrication in the presence of organic friction modifiers and zinc dialkyldithiophosphate (ZDDP). Wear 332:1293-1302 (2015).
[19] Aktary, M., McDermott, M.T., McAlpine, G.A. Morphology and nanomechanical properties of ZDDP antiwear films as a function of tribological contact time. Tribol Lett 12:155-162 (2002).
[20] Castle, R., Bovington, C. The behaviour of friction modifiers under boundary and mixed EHD conditions. Lubr Sci 15:253-263 (2003).
[21] Ratoi, M., Niste, V.B., Alghawel, H., Suen, Y.F., Nelson, K. The impact of organic friction modifiers on engine oil tribofilms. RSC Adv 4:4278-4285 (2014).
[22] Massoud, T., De Matos, R.P., Le Mogne, T., Belin, M., Cobian, M., Thiébaut, B., et al. Effect of ZDDP on lubrication mechanisms of linear fatty amines under boundary lubrication conditions. Tribol Int 141:105954 (2020).
[23] Ratoi, M., Niste, V.B., Zekonyte, J. WS 2 nanoparticles–potential replacement for ZDDP and friction modifier additives. RSC Adv 4:21238-21245 (2014).
[24] Dawczyk, J., Russo, J., Spikes, H. Ethoxylated amine friction modifiers and ZDDP. Tribol Lett 67:106 (2019).
[25] Dawczyk, J.U. The effect of organic friction modifiers on ZDDP tribofilm. (2018).
[26] Dobrenizki, L., Tremmel, S., Wartzack, S., Hoffmann, D.C., Brögelmann, T., Bobzin, K., et al. Efficiency improvement in automobile bucket tappet/camshaft contacts by DLC coatings–Influence of engine oil, temperature and camshaft speed. Surf Coat Technol 308:360-373 (2016).
[27] Taylor, L., Spikes, H. Friction-enhancing properties of ZDDP antiwear additive: part I—friction and morphology of ZDDP reaction films. Tribol Trans 46:303-309 (2003).
[28] Tasdemir, H.A., Wakayama, M., Tokoroyama, T., Kousaka, H., Umehara, N., Mabuchi, Y., et al. Ultra-low friction of tetrahedral amorphous diamond-like carbon (ta-C DLC) under boundary lubrication in poly alpha-olefin (PAO) with additives. Tribol Int 65:286-294 (2013).
[29] Tasdemir, H.A., Wakayama, M., Tokoroyama, T., Kousaka, H., Umehara, N., Mabuchi, Y., et al. Wear behaviour of tetrahedral amorphous diamond-like carbon (ta-C DLC) in additive containing lubricants. Wear 307:1-9 (2013).
[30] Okubo, H., Watanabe, S., Tadokoro, C., Sasaki, S. Effects of concentration of zinc dialkyldithiophosphate on the tribological properties of tetrahedral amorphous carbon films in presence of organic friction modifiers. Tribol Int 94:446-457 (2016).
[31] Zhmud, B., Roegiers, M. New base oils pose a challenge for solubility and lubricity. Tribology & Lubrication Technology 65:34 (2009).
[32] Tomala, A., Naveira-Suarez, A., Gebeshuber, I.C., Pasaribu, R. Effect of base oil polarity on micro and nanofriction behaviour of base oil+ ZDDP solutions. Tribology-Materials, Surfaces & Interfaces 3:182-188 (2009).
[33] Naveira Suarez, A., Grahn, M., Pasaribu, R., Larsson, R. The influence of base oil polarity on the tribological performance of zinc dialkyl dithiophospate additives. Tribol Int 43:2268-2278 (2010).
[34] Naveira-Suarez, A., Tomala, A., Grahn, M., Zaccheddu, M., Pasaribu, R., Larsson, R. The influence of base oil polarity and slide–roll ratio on additive-derived reaction layer formation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 225:565-576 (2011).
[35] Cyriac, F., Yi, T.X., Poornachary, S.K., Chow, P.S. Effect of temperature on tribological performance of organic friction modifier and anti-wear additive: Insights from friction, surface (ToF-SIMS and EDX) and wear analysis. Tribol Int:106896 (2021).
[36] Dowson, D., Jones, D. Lubricant entrapment between approaching elastic solids. Nature 214:947-948 (1967).
[37] Kaneta, M., Ozaki, S., Nishikawa, H., Guo, F. Effects of impact loads on point contact elastohydrodynamic lubrication films. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 221:271-278 (2007).
[38] Wu, N., Zong, Z., Fei, Y., Ma, J., Guo, F. Thermal degradation of aviation synthetic lubricating base oil. Petroleum Chemistry 58:250-257 (2018).
[39] Bhushan, B.: Frictional heating and contact temperatures. Modern Tribology Handbook, Two Volume Set, pp. 257-294. CRC Press, Place CRC Press (2000)
[40] Bos, J., Moes, H. Frictional heating of tribological contacts. (1995).
[41] Feng, X., Hu, Y., Xia, Y. Tribological research of leaf‐surface wax derived from plants of Pinaceae. Lubr Sci 31:1-10 (2019).
[42] Murase, A., Ohmori, T. ToF‐SIMS analysis of friction surfaces tested with mixtures of a phosphite and a friction modifier. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 31:232-241 (2001).
[43] Murase, A., Ohmori, T. ToF‐SIMS analysis of model compounds of friction modifier adsorbed onto friction surfaces of ferrous materials. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 31:191-199 (2001).
[44] Kano, M., Yasuda, Y., Okamoto, Y., Mabuchi, Y., Hamada, T., Ueno, T., et al. Ultralow friction of DLC in presence of glycerol mono-oleate (GNO). Tribol Lett 18:245-251 (2005).
[45] Taylor, L.J., Spikes, H.A. Friction-enhancing properties of ZDDP antiwear additive: part II—influence of ZDDP reaction films on EHD lubrication. Tribol Trans 46:310-314 (2003).
[46] Campen, S.M. Fundamentals of organic friction modifier behaviour. (2012).
[47] Tang, Z., Li, S. A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr Opin Solid State Mater Sci 18:119-139 (2014).
[48] Bradley-Shaw, J.L., Camp, P.J., Dowding, P.J., Lewtas, K. Self-assembly and friction of glycerol monooleate and its hydrolysis products in bulk and confined non-aqueous solvents. PCCP 20:17648-17657 (2018).
[49] Murgia, S., Caboi, F., Monduzzi, M., Ljusberg-Wahren, H., Nylander, T.: Acyl migration and hydrolysis in monoolein-based systems. Lipid and Polymer-Lipid Systems, pp. 41-46. Springer, Place Springer (2002)
[50] Ueda, M., Kadiric, A., Spikes, H. On the crystallinity and durability of ZDDP tribofilm. Tribol Lett 67:123 (2019).
[51] Tripaldi, G., Vettor, A., Spikes, H. Friction behaviour of ZDDP films in the mixed, boundary/EHD regime. SAE transactions:1819-1830 (1996).
[52] Bell, J., Delargy, K. The composition and structure of model zinc dialkyldithiophosphate anti-wear films. Proceedings of Eurotrib 93:328 (1993).
[53] Bell, J., Delargy, K., Seeney, A.: Paper IX (ii) the removal of substrate material through thick zinc dithiophosphate anti-wear films. Tribology series, pp. 387-396. Elsevier, Place Elsevier (1992)
[54] Taylor, L., Dratva, A., Spikes, H. Friction and wear behavior of zinc dialkyldithiophosphate additive. Tribol Trans 43:469-479 (2000).
[55] Cen, H., Morina, A., Neville, A. Effect of base oil polarity on the micropitting behaviour in rolling‐sliding contacts. Lubr Sci 31:113-126 (2019).
[56] Mabuchi, Y., Kano, M., Ishikawa, T., Sano, A., Wakizono, T. The effect of ZDDP additive in CVT fluid on increasing friction coefficient between belt elements and pulleys of belt-drive continuously variable transmissions. Tribol Trans 43:229-236 (2000).
[57] Koike, A., Yoneya, M. Chain length effects on frictional behavior of confined ultrathin films of linear alkanes under shear. The Journal of Physical Chemistry B 102:3669-3675 (1998).
[58] Lee, C., Li, Q., Kalb, W., Liu, X.-Z., Berger, H., Carpick, R.W., et al. Frictional characteristics of atomically thin sheets. Science 328:76-80 (2010).
[59] Lee, C., Wei, X., Li, Q., Carpick, R., Kysar, J.W., Hone, J. Elastic and frictional properties of graphene. physica status solidi (b) 246:2562-2567 (2009).
[60] Crobu, M., Rossi, A., Mangolini, F., Spencer, N.D. Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS. Anal Bioanal Chem 403:1415-1432 (2012).
[61] Minfray, C., Martin, J., De Barros, M., Le Mogne, T., Kersting, R., Hagenhoff, B. Chemistry of ZDDP tribofilm by ToF-SIMS. Tribol Lett 17:351-357 (2004).
[62] Pidduck, A., Smith, G. Scanning probe microscopy of automotive anti-wear films. Wear 212:254-264 (1997).
[63] Mikhin, N., Lyapin, K. Hardness dependence of the coefficient of friction. Soviet Physics Journal 13:317-321 (1970).
[64] Brow, R.K., Tallant, D.R., Myers, S.T., Phifer, C.C. The short-range structure of zinc polyphosphate glass. J Non-Cryst Solids 191:45-55 (1995).