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Abstract
The Neotropical realm hosts some of the Earth’s most species-rich biodiversity hotspots, with vascular
epiphytes signi�cantly contributing to this diversity. However, many regions of the Neotropics where
epiphytic species of restricted distribution are reported coincide with threatened ecosystems, such as the
tropical montane cloud forest. Moreover, epiphytes may be especially vulnerable to land use and climate
change impacts due to their dependence on host trees. We assessed the conservation status of vascular
epiphytes in the Neotropics for the families that represent over 80% of the global epiphyte diversity
(Araceae, Bromeliaceae, Orchidaceae, Piperaceae, and Polypodiaceae) and identi�ed geographical
centers of accumulation of threatened epiphyte species. We gathered information from free-access web
repositories, speci�c epiphytic plant databases, and scienti�c and grey literature. We assessed the
extinction risk of 11,446 epiphyte species following IUCN Red List guidelines, using Criterion B
(geographic range size). We found nearly 60% (6,721 species) to be threatened, with 1,766 critically
endangered (CR), 3,537 endangered (EN), and 1,418 vulnerable (VU). The threatened species are mainly
found in the centers of endemism of vascular epiphytes in Central America, the northern Andes, and the
Atlantic Forest. Our study emphasises that the centers of threatened species largely coincide with
diversity hotspots, highlighting epiphytes as an especially vulnerable group that requires urgent
conservation actions.

Introduction
Epiphytes are plant species that germinate and grow non-parasitically on other plants, mostly trees, where
they spend their whole life cycle without root contact with the soil; and thus have a close association with
host traits and atmospheric climate (Zotz, 2016). Epiphytes contribute about 10% to the global vascular
�ora (Taylor et al. 2021; Zotz et al. 2021b). They are particularly conspicuous in tropical and subtropical
regions, considered among the world’s most diverse areas (Mittermeier et al. 1999; Myers et al. 2000),
where epiphytes may represent 20–40% of the �ora (Taylor et al. 2021). The Neotropics (tropical
America) is one of the most diverse biogeographic realms (Zizka 2019; Raven et al. 2020) and is home to
60% of all vascular epiphyte species currently known, represented most prominently in the families
Orchidaceae, Bromeliaceae, Araceae, Polypodiaceae, and Piperaceae (Gentry and Dodson 1987; Taylor et
al. 2021).

Vascular epiphytes, which represent a substantial proportion of the total biomass in certain forests
(Caballero-Rueda et al. 1997; Martínez-Meléndez et al. 2022; Zotz 2016), in�uence nutrient cycling
(Aguilar-Cruz et al. 2022; Benzing and Seemann 1978) and facilitate animal life in the canopy
(Richardson et al. 2000; Stuntz et al. 2002). Epiphytes have speci�c unique morpho-anatomical and eco-
physiological traits that allow them to thrive on trees, including foliar trichomes, tank-forming rosettes,
poikilohydry, succulence, and CAM photosynthesis, that allow them to thrive on trees (Benzing 1986;
Gri�ths and Smith 1983; Hietz 2011; Krömer et al. 2007). As epiphytes have no direct contact with the
soil, they are strongly coupled with the atmosphere and capture nutrients and water from different types
of precipitation (Zotz et al. 2010; Zotz 2016).
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Due to their structural dependency, epiphytes are particularly vulnerable to the effects of landscape
modi�cation and climate change (Foster 2001; Köster et al. 2009), especially in montane ecosystems
(humid montane forests of Central or South America), where these plants are most diverse and abundant
at mid-elevations (Cardelús et al. 2006; Krömer et al. 2005). Within the Neotropics, land use change
(encompassing forest clearing for agriculture, selective logging, urbanisation, and road construction) is
the strongest driver of biodiversity loss (Nakamura et al. 2017; Sala et al. 2000), and epiphytes are one of
the �rst life forms to be affected by deforestation (Sodhi et al. 2008). Moreover, in these montane
ecosystems is also where epiphytes are the most affected by climate change (Foster 2001; IPBES 2018;
Knight 2022), i.e., through the reduction of the fog belt used as a water source. Because humid
microclimates act as a buffer by providing atmospheric water (Werner et al. 2011), any alteration in
montane forest ecosystems can lead to a decrease in species numbers of epiphytes due to local
extinction and further changes in species composition (Barthlott et al. 2001; Köster et al. 2009; Krömer et
al. 2019, 2021; Zuleta et al. 2016).

In tropical montane regions, there is a high prevalence of species with restricted ranges, and a notable
abundance of endemic species (Kessler 2002a, b); these plants are more prone to extinction because of
their isolation and adaptation to climatically stable environments (Stevens 1989). The vulnerability of
these species to disturbance is enhanced by habitat loss or climatic changes, which may be even more
pronounced for species distributed in few localities (Christiansen and Fenchel 2012; Schoener and Spiller
1987; Williams et al. 2009). However, adverse effects on epiphytes cannot be viewed in isolation, since
any negative impact on epiphytes will similarily affect other components of the forests (Thomsen et al.
2018; Zotz and Bader 2009).

Conservation efforts to preserve ecosystems inhabited by epiphytes, such as the creation and
maintenance of protected areas, often focus on sites with a concentration of endemic and threatened
species (Mittermeier et al. 1999; Myers et al. 2000). Since conservation efforts are resource-limited, it is
critical to know the identity and distribution of the most threatened species. The Red List of the
International Union for Conservation of Nature (IUCN) is a prime source for this information, comprising
extinction risk assessments for more than 140,000 plant and animal species (at the time of writing).
Unfortunately, each extinction risk assessment using the IUCN Red List Categories requires data on range
size, abundance, population, and temporal trends, which are only available for a few species. Therefore,
not surprisingly, the Red List includes assessments for < 20% of the estimated global vascular �ora
(57,987 versus an estimated 342,953 �owering plant species; Govaerts et al. 2021). Many of those
species considered threatened in the IUCN Red List have not been recorded in any protected area (e.g., see
Tabarelli et al. 2005 for the Atlantic Forest and Oliveira et al. 2017 for Brazil).

Assessments at the regional (state) and national (country) levels are accessible for certain taxonomic
groups that contain epiphytic species in the Neotropical region (e.g., Armenta-Montero et al. 2015; Krömer
et al. 2013, 2019; Millner et al. 2020; Vergara-Rodríguez et al. 2017). Most of these evaluations use IUCN
Criterion B, which considers species range size together with its fragmentation, �uctuation, and decline to
estimate extinction risk (IUCN 2022b). While full species assessments for the IUCN Red List are time-
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consuming and require a thorough assessment process by trained assessors and extensive
documentation, the broader and independent application of IUCN criteria using predictive approaches
(see Cazalis et al. 2022 for an overview) have been useful in evaluating groups of species
simultaneously, which has led to automated assessments at the global scale for 47% of orchid species
(Zizka et al. 2021), and continental scale (Neotropics) for 93% of bromeliads (Zizka et al. 2020b), and
98% of the species of the aroid genus Anthurium Schott (Reimuth and Zotz 2020).

Despite the above-mentioned efforts, the extent to which epiphytic species are threatened and their
speci�c locations within the Neotropics remains unclear. To better inform protected area planning, we
conducted an automated conservation assessment using unique data based on the geographic
distributions of the �ve most representative epiphyte taxonomic groups - Araceae, Bromeliaceae,
Orchidaceae, Piperaceae, and Polypodiaceae -, which together account for approximately 80% of all
epiphyte species (Zotz et al. 2021b). As a result, we expected high numbers of threatened species
concentrated in centres of endemism and highly diverse areas.

Methods

Study area
We focus on the Neotropics following Morrone et al. (2022), who de�ne the Neotropics as the tropical
areas of America, including three subregions (Antillean, Brazilian, and Chacoan) and two transition zones
(Mexican and South American), and explicitly exclude the southern portion of the Andes based on the
taxon-area cladograms of vascular plants and animal taxa (Morrone 2014; Morrone et al. 2022). In
addition, southern Florida (Escalante et al. 2013) and northern Mexico (Morrone 2014) were also
excluded since they belong to the Nearctic region (Holarctic realm).

Database
We compiled a database of geo-referenced geographic records of species of the �ve most species-rich
families within epiphytes: Araceae, Bromeliaceae, Orchidaceae, Piperaceae, and Polypodiaceae. We
retrieved herbarium records from the Global Biodiversity Information Facility (GBIF 2022). This data was
complemented with information from other databases such as the Epiphyte Inventory Group EPIG-DB v1
database (Mendieta-Leiva et al. 2020), Atlantic epiphytes (Ramos et al. 2019), Amazonian epiphytes
(Araujo et al. 2022), the South American Dry Diagonal Forest Epiphytes database (Flavio N. Ramos,
unpublished data), neotropical Araceae (Alejandro Zuluaga, unpublished data), epiphytes of the Sierra
Madre of Chiapas (Jimenez-López et al., 2023a), Usumacinta River basin �ora (Jiménez-López et al.,
2023b), Biovera-Epi (Guzmán-Jacob et al. 2021), Polypodiaceae of America (Michael Kessler,
unpublished data), and Marie Selby Botanical Gardens herbarium (Bruce Holst, unpublished data).
Furthermore, we included data from the scienti�c and grey literature published between 1927 and 2021
(Supporting information: supporting method SM1 and Table S1). For Bromeliaceae, we used data from
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the “bromeliad” package (Zizka et al. 2020a). For Piperaceae, consisting mainly of species of the genus
Peperomia Ruiz & Pav. (Zotz et al. 2021b), we also included data with reliable identi�cation from
iNaturalist (https://www.inaturalist.org/) revised by the group’s expert (Guido Mathieu, pers. comm.). Data
sources can be reviewed in the Supporting information: Table S2.

Since records from public databases (e.g., GBIF and iNaturalist) are error-prone (Maldonado et al. 2015;
Zizka et al. 2020a), we only selected records from herbarium specimens (as “preserved specimens” and
“material samples” in GBIF). We removed common geographic errors with “CoordinateCleaner v. 2.0–
20”(Zizka et al. 2018) and records without geographic coordinates. Databases were joined using the
biodiversity data cleaning package “bdc v. 1.1.1” (Ribeiro et al., 2022). To avoid data with possible
taxonomic issues, we standardised scienti�c names with the package “LCVP v. 1.0.3” (Freiberg et al.
2020).

Because growth forms are not accurately and consistently speci�ed in GBIF and additional literature, we
used EpiList 1.0 to identify holo- and hemiepiphytes (Zotz 2016; Zotz et al. 2021a), but excluded nomadic
vines (i.e., climbing plants that do not have an “epiphytic” phase as these never lose contact with the soil;
Moffett 2000; Zotz 2013). For Orchidaceae, Bromeliaceae, and Polypodiaceae, we selected only the
species listed in EpiList. For Araceae, we used a species list proposed by Alejandro Zuluaga (unpublished
data) since EpiList contained some nomadic vines species for this family. For Piperaceae, we used
EpiList, the epiphytic species reported in Flora Mesoamericana (Callejas 2020), and two other recent
publications of epiphytic species in the family (Jimeno-Sevilla et al. 2018; Vergara-Rodríguez et al. 2017)
to include a most up-to-date species list for the family. All modi�cations to the EpiList are shown in the
Supporting information (Table S3). Finally, we removed duplicated records. All analyses were performed
using the software R version 4.2.2 (R Core Team 2022).

Current Red List Categories And Preliminary Assessment Of The
Conservation Status
We downloaded the conservation assessments for all available vascular epiphyte species from
www.iucnredlist.org (IUCN 2022a) using the IUCN API through the “rredlist v. 0.7.0” package (IUCN 2021)
to obtain extinction risk categories of already assessed epiphytic species.

We then preliminarily assessed the extinction risk of epiphyte species belonging to the families Araceae,
Bromeliaceae, Orchidaceae, Piperaceae, and Polypodiaceae using the package “ConR v. 1.3.0” (Dauby et
al. 2017), which simulates an assessment following IUCN criterion B, by calculating the Extent of
Occurrence (EOO, a convex hull around known occurrences), approximating Area of Occupancy (AOO, the
area of occupied grid-cells) from geo-referenced occurrences and assuming ongoing range reduction in
all species. We used a shape�le of Protected Areas of the World (UNEP-WCMC 2022) to include threat
levels in the estimation of the locations, assuming that epiphyte populations within protected areas are
under a reduced degree of threat (Dauby et al. 2017). Whenever the EOO and the AOO subcriteria lead to
different categories, we selected the highest category of extinction risk following IUCN guidelines (IUCN

http://www.peperomia.netbelgium/
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2022b). We identi�ed the level of risk for extinction in a particular species by categorising it as either
Least Concern/Near Threatened (not threatened), Vulnerable -VU-, Endangered -EN-, or Critically
Endangered -CR-. We mapped the number of occurrences and the number of threatened species per 1-
degree grid cell with the “map.res” function in the “ConR v. 1.3.0” package (Dauby et al. 2017). Finally, we
mapped the resulting raster in Quantum GIS v. 3.22 (2022). We emphasise that our automated
assessments are preliminary, but are con�dent that they can provide a data-driven baseline of extinction
risk in epiphytes.

Results

Species occurrences
We obtained 1,892,483 occurrence records of vascular epiphytes within the Neotropics. After geographic
cleaning and taxonomic scrubbing, we retained 581,848 records of 11,446 epiphyte species: there were
8,097 epiphyte species of Orchidaceae (71% of all species in the dataset), 1,617 (14%) of Bromeliaceae,
675 (6%) of Araceae, 606 (5%) of Polypodiaceae, and 451 (4%) of Piperaceae (see complete species list
in the Supporting information, Table S5). GBIF contributed most of the data (41%), followed by the EpIG
database (23%) and online sources (12%). Other ten data sources accounted for the remaining 24% of the
records.

The analysed set of species was widely distributed throughout the Neotropics, from northern Mexico to
southern Brazil and northern Argentina. Most records were from Mexico, Central America, northwestern
Andes, Ecuador, and southeast Brazil, while relatively few data were available for northwestern Brazilian
Amazonia, the Llanos, and the south of the Neotropical region (Fig. 1). According to our database, areas
with more species mostly matched areas with more collections.

Iucn–red List: Current Assessments
Only 4% of the epiphyte species evaluated here (481 vascular epiphyte species) had existing
assessments from the IUCN Red List (made between 2003 and 2022; Supporting information, Table S5).
The IUCN-RL (2022) reports the extinction risk for 212 (44%) threatened species (28 critically endangered -
CR-, 90 endangered -EN-, and 94 vulnerable -VU-), 38 (8%) near threatened species -NT-, 170 (35%) species
of least concern (LC), and 61 (13%) species with de�cient data (DD; i.e., appropriate data on distribution is
lacking). Bromeliaceae and Orchidaceae had the highest number of evaluated species (184 and 181,
respectively), whereas, in Araceae, there were 92 species (all belonging to the genus Anthurium); in
Piperaceae, 20 species (all Peperomia), and Polypodiaceae, only four species in three genera
(Campyloneurum, Ceradenia, and Pecluma) were currently evaluated. Within bromeliads and orchids,
assessed species belong to 12 and 65 genera, respectively.

Conr: Preliminary Assessments
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The preliminary conservation assessment identi�ed 4,725 species in the “LC or NT” category. However,
there were 6,721 species (nearly 60% of the evaluated species) as possibly threatened according to the
IUCN Criterion B: 1,766 (26%) were critically endangered -CR-, 3,537 (53%) endangered -EN-, and 1,418
(21%) vulnerable -VU- (Table 1 and Supporting information, Table S4). Extinction risks were relatively high
among Orchidaceae (64%), Piperaceae (54%), and Bromeliaceae (50%), while proportions were lower in
Araceae (44%) and Polypodiaceae (33%) (Table 1).

Table 1
Results of a preliminary automated assessment using range size
and ConR, the number of epiphyte species assigned to extinction

risk categories following Criterion B assuming constant threat, and
the proportion of threatened epiphyte species per family. LC: Least

Concern, NT: Near Threatened, EN: Endangered, VU: Vulnerable.
Family LC or NT CR EN VU Total

Araceae 377 45 164 89 675

Bromeliaceae 808 153 470 186 1,617

Orchidaceae 2,924 1,470 2,686 1,017 8,097

Piperaceae 208 62 126 55 451

Polypodiaceae 408 36 91 71 606

Total 4,725 1,766 3,537 1,418 11,446

The results of our preliminary assessment were consistent with the current Red List categories
(supporting information, Table S4) in 222 of the 481 species (46%). A category was assigned for 61
species previously considered as Data De�cient (DD) (9 species in LC/NT, 3 in VU, 25 in EN, and 24 in CR).
Discrepancies were found in 198 cases, assigned to a higher (29%) or lower threat category (12%).

Eleven genera accounted for ca. 50% of the threatened species in this study, which belong to Orchidaceae
(7 genera; 2,555 species), Bromeliaceae (2; 391), Araceae (1; 283), and Piperaceae (1; 243). Epidendrum,
Stelis, Lepanthes, Anthurium, Masdevallia, and Pleurothallis accounted for 34% of all threatened species
(Table 2).
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Table 2
Genera with the highest number of threatened epiphyte species based
on a preliminary automated assessment using range size and ConR,
the number of epiphyte species assigned to extinction risk categories

following Criterion B assuming constant threat. LC: Least Concern,
NT: Near Threatened, EN: Endangered, VU: Vulnerable.

Genus Family VU EN CR Threatened

Epidendrum Orchidaceae 162 331 132 625

Stelis Orchidaceae 78 267 237 582

Lepanthes Orchidaceae 63 320 159 542

Anthurium Araceae 85 155 43 283

Masdevallia Orchidaceae 42 157 76 275

Pleurothallis Orchidaceae 52 149 73 274

Tillandsia Bromeliaceae 48 140 65 253

Peperomia Piperaceae 55 126 62 243

Vriesea Bromeliaceae 33 76 29 138

Oncidium Orchidaceae 31 67 33 131

Acianthera Orchidaceae 32 59 35 126

The number of epiphyte species in an extinction risk category varied among regions, with many
threatened species in Mexico, Central America, and the northwestern Andes. There were also threatened
species concentrated in the Napo Moist and Atlantic Forests (Fig. 2). Although the number of threatened
species was generally highest in lower latitudes, Central America includes a substantial number of
Orchidaceae and Polypodiaceae, the Atlantic Forest was important for Bromeliaceae, and the
southwestern Andes for Polypodiaceae and Piperaceae.

Discussion
Our database covers > 60% of the 17,433 epiphyte species recorded for the Neotropics (Taylor et al.
2021). This amount represents more than 10% of the estimated 118,000 vascular plants in the region
(Raven et al. 2020). This study reveals that nearly 60% of the evaluated Neotropical epiphyte species are
likely under some level of extinction risk. The number of species threatened with extinction may thus be
higher in epiphytes than in many other groups for which estimates exist; for instance, threatened species
levels were estimated at 11% for legumes, 19% for bryophytes, 16% for pteridophytes, 17% for
monocotyledons, 40% for gymnosperms (Brummitt et al. 2015), and ca. 30% for all land plant species
(Pelletier et al. 2018). While these numbers have been obtained using different methodologies and our
�gure needs to be interpreted with caution, since it is based on the automated application of Criterion B,
the absolute numbers from our study are alarming, with over 6,700 epiphyte species potentially at
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elevated risk of extinction. This number could increase further, as our analysis did not include
approximately 37% of Neotropical epiphyte species other than the �ve focal families of this study.

The need for extinction risk assessments of all known plant species at national, regional, and
international levels has been emphasised in various studies (Callmander et al. 2005; Cazalis et al. 2022;
Miller et al. 2012). However, current assessment rates must be revised to achieve conservation goals such
as the Barometer of Life (Bachman et al. 2019). In this context, automated assessments based on
digitally available geographic occurrence records could be crucial in identifying species or groups facing
the highest extinction risk to focus manual assessments on species most needing them (Zizka et al.
2020a).

Our assessment differs in the current threat categories of more than 50% of the epiphyte species
previously classi�ed by the IUCN-RL. Most of these species were classi�ed by us in a higher class (i.e.,
higher risk). This �nding stresses the need for caution in interpreting automated assessments based
solely on digitally available occurrence data (Rivers et al. 2011; Zizka et al. 2020b), although with no
better alternatives to keep the IUCN-RL updated, these assessments can provide a valid baseline
(Rondinini et al. 2014). For instance, other approaches found a similar proportion of species as
threatened for instance between 51–84% in a limited sample of 116 orchid species from New-Guinea (Nic
Lughadha et al. 2019).

Among the evaluated Neotropical epiphyte families, we found a higher the extinction risk in Bromeliaceae,
Orchidaceae, and Piperaceae, with more than 50% of the species in some category of threat, compared to
30–40% in Araceae and Polypodiaceae. Epiphytic species of the latter two families have the widest
distribution ranges (Maria Judith Carmona-Higuita et al., unpublished data) probably due to their
dispersal type (e.g., �eshy fruits by ornithochory and chiropterochory, spores by anemochory; Cockle
2001; Mayo et al. 1997; Smith 1972) and less speci�c habitat requirements (Kessler 2010; Peck et al.
1990), whereas bromeliads and orchids are at the other extreme, with the narrowly endemic species
occupying small areas due to speci�c interactions (e.g., dispersal agents, pollinators, and mycorrhiza;
Davis et al. 2015; Jacquemyn et al. 2015; Rasmussen and Rasmussen 2009). Nevertheless, Araceae
(including terrestrial and climbing species) have been previously reported among the most species-rich
and cosmopolitan �owering plants with many endangered species (Baillie et al. 2004), and some regions
have a great proportion of threatened species due to major habitat loss (e.g., Krömer et al. 2019).

Most threatened bromeliads are found in the Atlantic Forest in eastern Brazil, where about 90% of local
species are endemic (Ramos et al. 2021; Zizka et al., 2020b). This is also a diversi�cation centre for the
family (Givnish et al. 2011; Martinelli et al. 2008). Therefore, species with restricted distributions are likely
causing the concentration of threatened species in this region.

Our study identi�es the Neotropical epiphytic orchids as the most threatened group, with 64% of their
species in a risk category, as indicated by a previous global assessment (Zizka et al. 2021). Since orchids
are economically important in horticulture, as well as in the pharmaceutical and food industries (Hinsley
et al. 2018; Hossain 2011; Liu et al. 2014; Subedi et al. 2013), and also used in cultural and religious
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celebrations (Jiménez-López et al. 2019c; Solano-Gómez et al. 2010), so many species are locally
endangered due to illegal harvesting (Cruz-Garcia et al. 2015; Flores-Palacios and Valencia-Diaz 2007;
Jiménez-López et al. 2019a, b; Krömer et al. 2018, 2021). Although the Convention on International Trade
in Endangered Species of Wild Fauna and Flora (CITES 1973) regulates the trade of orchids (Hinsley and
Roberts 2018), wild-harvested orchid taxa are still sold globally in domestic markets and the internet,
often in massive quantities (Hinsley et al. 2016, 2017; Perdue 2021; Thomas 2006; Ticktin et al. 2020), so
there is an urgent need for identifying the most endangered species to prioritise their conservation.

Our study further suggests that the most species-rich genera within the Orchidaceae family are the most
vulnerable to extinction, with Epidendrum at 62% of their species under threat, Lepanthes at 77%, and
Stelis at 73%. About 50% of Epidendrum species are reported as endemics in some Neotropical regions
(Central America; Karremans 2021). Pleurothallidinae comprises 44 genera (including Lepanthes and
Stelis) and 5,100 exclusively Neotropical species (Karremans 2016) distributed mainly in the highlands of
the northern Andes and Central America, where they are representative elements of the orchid �ora and
make up most of their species richness (Pérez-Escobar et al. 2017). However, the causes of these high
proportions of affected species require further ecological studies since the categorisation is mainly
related to their restricted range (Criterion B), and the probability that a given species has a narrow range is
in�uenced by different factors, speci�cally by taxon-speci�c traits and by orographical and historical
abiotic factors (Kessler 2002b). It is possible that during Pleistocene climate changes, a multitude of
fragmentation and isolation events have promoted speciation, especially of these diverse orchid genera,
which can maintain relatively small viable populations within small areas (Jost 2004; Müller et al. 2003).

In Piperaceae, the complicated taxonomy may have led to fewer distributional data, probably in�uencing
the estimation of threat categorisation (Mathieu 2007; Mathieu et al. 2015). Among the studied families,
it is perhaps the one with the largest taxonomical issues (“herbarium names”; Mathieu 2007).
Nevertheless, many endemic species have been reported in southeast Mexico, the Andes, and Amazon
regions (de Figueiredo and Sazima 2007; Frenzke et al. 2015; Mathieu 2001–2020; Vergara-Rodríguez et
al. 2017), where the main threats are the continued loss and fragmentation of natural habitats, and these
species should be considered as a conservation priority.

Extinction risk was not distributed equally across geographic regions in the Neotropics. There were large
numbers of possibly threatened species in the areas with high epiphyte richness, which usually are
important centres of diversi�cation for the evaluated families, as in southern Mexico, Central America, the
Andes, and the Atlantic Forest in eastern Brazil (Givnish et al. 2014, 2015; Pérez-Escobar et al. 2017).
However, the primary source of bias in the Red List assessment of the �ora is highly variable geographic
coverage. Coverage of plants on the Red List broadly re�ects overall patterns of plant species richness,
which are also re�ected in the areas with fewer evaluated species (Bachman et al. 2019). Importantly,
regions with high species numbers tend to be less fully sampled than species-poor regions, even with
higher total numbers of records (Soria-Auza and Kessler 2008).
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These high-diversity regions or “hotspots” are also the ones with the highest pressure by land use change
between 2001 to 2020, according to Global Forest Watch (2014). Assessments of epiphyte families in the
most diverse regions of the Neotropics, e.g., Colombia (Calderon 2007; García and Galeano 2006) and
Brazil (Freitas et al. 2016), mention deforestation, climate change, and illegal trade as the main causes of
extinction of orchid and bromeliad species, placing these families among the most vulnerable plant
groups in the Neotropical region.

Conclusion
Our �ndings from a range-based preliminary assessment of species extinction risk suggest that many
threatened species are likely concentrated in centers of endemism and highly diverse areas and that a
surprisingly large number of epiphyte species may require consideration in conservation strategies.
Effective strategies must be developed to support the establishment of nature reserves, which will be
necessary to maintain the current diversity of these threatened groups. Achieving this goal will require
further studies and mobilising herbarium data. Colombia, Ecuador, Mexico, Brazil, and certain Caribbean
islands have the highest vascular epiphyte diversity. Unfortunately, tropical forests are under threat due to
ongoing human disturbance, including deforestation and fragmentation. As a result, national and
regional conservation assessments are required to improve the precision of our �ndings. To promote in
situ protection and ex-situ conservation programs, these assessments must be communicated to
governments, institutions, and decision-makers responsible for biodiversity conservation. The Neotropics
is one of the species-richest regions in the world, and its protection is critical to maintaining global
biodiversity.
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Figure 1

The number of occurrence records (log-transformed) of the richest vascular epiphyte families per 1-
degree grid-cell within the Neotropical region. Representative silhouettes of taxa used in �gures 1 and 2
were taken from PhyloPic version 2.0. under Attribution-NonCommercial-ShareAlike 3.0 Unported
(https://creativecommons.org/licenses/by-nc-sa/3.0/). For Araceae (German R. Verdilak,
https://www.phylopic.org/images/7dc1b40b-c27a-4a2a-b8f1-d78ac92bbb90/anthurium-clarinervium),
Bromeliaceae (Maija Karala; https://www.phylopic.org/images/e16c940c-f73d-43a2-824b-
f3582012a93e/tillandsia-dyeriana), Orchidaceae (Mason McNair,
https://www.phylopic.org/images/bb459b30-2370-4b7f-a1f9-f0d836aa35d1/cypripedium-kentuckiense),
Piperaceae (Melissa Ingala, https://www.phylopic.org/images/45553c37-70c3-4261-a9ee-
d7f525529c90/piper), and Polypodiaceae (Mason McNair, https://www.phylopic.org/images/aea1dbe9-
4d59-4d3f-992e-994fc4c10365/polypodium-glycyrrhiza).

Figure 2

The number of threatened epiphyte species (log-transformed) at a 1-degree resolution within the
Neotropics.
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