Adediran, G. A., Ngwenya, B. T., Mosselmans, J. F., Heal, K. V., Harvie, B. A. 2015. Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in brassica juncea. J. Hazard. Mater. 283, 490-499.
Arnon, A., 1967. Method of extraction of chlorophyll in the plants. Agron. J. 23, 112–121.
Braud, A., Jézéquel, K., Vieille, E., Tritter, A., Lebeau, T. 2006. Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut. 6(3-4), 261-279.
Chaoui, A., Ferjani, E. E., 2005. Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. Plant Biol. Pathol. 328, 23-31.
Chen, T., Liu, X., Zhang, X., Chen, X., Tao, K., Hu, X. 2016. Effect of alkyl polyglucoside and nitrilotriacetic acid combined application on lead/pyrene bioavailability and dehydrogenase activity in co-contaminated soils. Chemosphere 154, 515-520.
Chen, X., Liu, X., Zhang, X., Cao, L., Hu, X. 2017. Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. J. Hazard. Mater. 325, 319-326.
Das, A., Kamal, S., Shakil, N. A., Sherameti, I., Oelmüller, R., Dua, M. 2012. The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, coleus forskohlii. Plant Signal Behav. 7(1), 103-112.
Deshmukh, S. D., Kogel, K. H. 2007. Piriformospora indica protects barley from root rot caused by Fusarium. J. Plant Dis. Prot. 114 (6), 263-268.
Ehsan, S., Ali, S., Noureen, S., Mahmood, K., Farid, M., Ishaque, W. 2014. Citric acid assisted phytoremediation of cadmium by Brassica Napus L. Ecotoxicol. Environ. Saf. 106, 164-172.
Gaonkar, T., Bhosle, S. 2013. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere 93 (9), 1835-1843.
Ghabooli, M., Khatabi, B., Ahmadi, F. S., Sepehri, M., Mirzaei, M., Amirkhani, A. 2013. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J. Proteomics. 94 (20), 289-301.
Glickmann, E., Dessaux, Y. 1995. A critical examination of the specificity of the salkowski reagent for indole compounds produced by phytopathogenic bacteria. Applied. Environ. Microbiol. 61, 793-796.
Guan, S. Y. 1986. Soil enzymes and analytical methods. Beijing: Agric. press.
Guo, H.P., Hong, C.T., Chen, X.M., Xu, Y.X., Liu, Y., Jiang, D.A., Zheng, B.S., 2016. Different growth and physiological responses to cadmium of the three Miscanthus species. PLoS One 11, e0153475.
Hou, Y., Liu, X., Zhang, X., Chen, X., Tao, K., Chen, X. 2015. Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils. Environ. Sci. Pollut. Res. Int. 22 (22), 17780-17788.
Jogawat, A., Saha, S., Bakshi, M., Dayaman, V., Kumar, M., Dua, M. 2013. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav. 8, 26891.
Johnson, D. L., Mcgrath, S. P. 2005. Soil microbial response during the phytoremediation of PAH contaminated soil. Soil Biol. Biochem. 37 (12), 2334-2336.
Juwarkar, A. A., Nair, A., Dubey, K. V., Singh, S. K., Devotta, S. 2007. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68 (10), 1996-2002.
Karene, G., Huang, X. D., Bernardr, G., Brucem, G. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci. 176 (1), 20-30.
Li, L., Chen, X., Ma, C., Wu, H., Qi, S. 2016. Piriformospora indica requires kaurene synthase activity for successful plant colonization. Plant Physiol. Biochem. 102, 151-160.
Li, Y., Liu K., Wang Y., Zhou Z., Chen, C., Ye, P., Yu, F. 2018. Improvement of cadmium phytoremediation by Centella asiatica L. after soil inoculation with cadmium-resistant Enterobacter sp. FM-1.Chemosphere. 202, 280-288.
Liu, S.L., Luo, Y. M., Wu, L. H. 2009. Degradation of phenanthrene in soil planted with ryegrass and the effect of phenanthrene on soil enzymes. Acta. Pedologica Sinica. 46(3), 419-425.
Lu, R. K. 1999. Analytical methods of soil agriculture chemistry. China Agricultural Science and Technology Press, Beijing (in Chinese).
Maliszewska-Kordybach, B., Smreczak, B. 2003. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ. Int. 28(8), 719-728.
Mansour, S. A., Gad, M. F. 2010. Risk assessment of pesticides and heavy metals contaminants in vegetables: a novel bioassay method using daphnia magna Straus. Food Chem. Toxicol. 48 (1), 377-389.
Murashige, T. and Skoog, F. 1962. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Culture. Physiologia Plantarum, 15, 473-497.
Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., Naidu, R. 2011. Bioremediation approaches for organic pollutants: a critical perspective. Environ. Int. 37 (8), 1362-1375.
Mulligan, C. N. 2005. Environmental applications for biosurfactants. Environ. Pollut. 133 (2), 183-198.
Obuekwe, I. S., Semple, K. T. 2013. Impact of zinc-copper mixtures on the development of phenanthrene catabolism in soil. Int. Biodeterior. Biodegrad. 85(11), 228-236.
Palaniyandi, S. A., Yang, S. H., Zhang, L., Suh, J. W. 2013. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 97 (22), 9621-9636.
Rezek J., Wiesche C. I. D., Mackova M., Zadrazil, F., Macek, T. 2008. The effect of ryegrass (Lolium perenne) on decrease of PAH content in long term contaminated soil. Chemosphere. 70(9), 1063-1608.
Sahay, N. S., Varma, A. 1999. Piriformospora indica: a new biological hardening tool for micropropagated plants. FEMS Microbiol. Lett. 181, 297–302.
Soil Survey Staff, 2010. Keys to Soil Taxonomy, 11th ed. USDA-Natural Resources Conservation Service, Washington, DC.
Shahabivand, S., Parvaneh, A., Aliloo, A. A. 2017. Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotox. Environ. Safe. 145, 496-502.
Schäfer, P., Kogel, K. H. 2009. The Sebacinoid Fungus Piriformospora indica: An orchid mycorrhiza which may increase host plant reproduction and fitness. Plant Relationship. 5, 99-112.
Shahabivand, S., Parvaneh, A., Aliloo, A. A. 2017. Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicol. Environ. Saf. 145, 496-502.
Sherameti, I., Tripathi, S., Varma, A., Oelmüller, R. 2008. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol. Plant-Microbe. Interact. 21 (6), 799-807.
Tamayo, E., Gómez-Gallego, T., Azcón-Aguilar, C., Ferrol, N. 2014. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front Plant Sci. 5, 547
Tessier, A., Campbell, P. G. C., Bisson, M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51(7), 844-851.
Tribedi, P., Sil, A. K. 2013. Bioaugmentation of polyethylene succinate-contaminated soil with pseudomonas, sp. AKS2 results in increased microbial activity and better polymer degradation. Environ. Sci. Pollut. Res. 20, 1318–1326.
Vahabi, K., Camehl, I., Sherameti, I. 2013. Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid-isoleucine levels in the roots. Plant Signal Behav. 8, 26301-26311.
Verma, S., Varma, A., Rexer, K. H., Hassel, A., Kost, G., Sarbhoy, A. 1998. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia, 90(5), 896-903.
Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M. 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. 102(38), 13386-13391.
Wang, Q., Liu, X., Zhang, X., Hou, Y., Hu, X., Liang, X. 2016. Influence of tea saponin on enhancing accessibility of pyrene and cadmium phytoremediated with Lolium multiflorum in co-contaminated soils. Environ. Sci. Pollut. Res. 23(6), 5705-5711.
Wijayawardena, M. A. A., Naidu, R., Megharaj, M., Lamb, D., Thavamani, P., Kuchel, T. 2015. Using soil properties to predict in vivo, bioavailability of lead in soils. Chemosphere 138, 422-428.
Yang, T., Lin, X. G., Hu, J. L., Zhang, J., Lu, J. L., Wang, J. H. 2009. Effects of arbuscular mycorrhizal fungi on phytoremediation of PAHs-contaminated soil by Medicago sativa and Lolium multiflorum. Ecol. Rural. Environt. 25(4), 72-76.
Zhang, X. Y., Liu, X. Y., Liu, S. S., Liu, F. H., Chen, L. S., Xu, G. 2012. Response characteristics of Scirpus trioueter and its rhizosphere to pyrene contaminated soils at different growth stages. Int. J. Phytorem. 14(7), 691-702.
Zhang, X., Chen, L., Liu, X., Wang, C., Chen, X., Xu, G. 2014. Synergic degradation of diesel by Scirpus triqueter and its endophytic bacteria. Environ. Sci. Pollut. Res. 21(13), 8198-8205.