
A parallel Canny edge detection algorithm based on
OpenCL acceleration
Yupu Song

Shangqiu Polytechnic
Cailin Li

Shandong University of Technology
Qinglei Zhou

Zhengzhou University
Han Xiao ( xiaohan70@163.com)

Zhengzhou Normal University

Research Article

Keywords: Canny algorithm, Edge detection, Graphics Processing Unit (GPU), Open Computing Language
(OpenCL), Parallel algorithm

Posted Date: April 6th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2774366/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2774366/v1
mailto:xiaohan70@163.com
https://doi.org/10.21203/rs.3.rs-2774366/v1
https://creativecommons.org/licenses/by/4.0/

 CaiLin Li
licailin@sdut.edu.cn

Han Xiao

xiaohan70@163.com

1 College of Computer Engineering, Shangqiu Polytechnic, Shangqiu, China

2 School of Civil and Architectural Engineering, Shandong University of
Technology, Zibo, China

3 School of Computer and Artificial Intelligence, Zhengzhou University,

Zhengzhou, China

4 School of Information Science and Technology, Zhengzhou Normal University,

Zhengzhou, China

A parallel Canny edge detection algorithm based on OpenCL acceleration

Yupu Song1 · Cailin Li2 · Qinglei Zhou3 · Han Xiao4

Received: 4 April 2023 / Revised: 20 May 2023 / Accepted: 20 May 2023

Abstract
In the process of Canny edge detection, a large number of high complexity calculations such as Gaussian filtering, gradient
calculation, non-maximum suppression, and double threshold judgment need to be performed on the image, which takes up a
lot of operation time, which is a great challenge to the real-time requirements of the algorithm. In order to solve this problem,
a fine-grained parallel Canny edge detection method is proposed, which is optimized from three aspects: task partition, vector
memory access, and NDRange optimization, and CPU-GPU collaborative parallelism is realized. At the same time, the parallel
Canny edge detection methods based on multi-core CPU and CUDA architecture are designed. The experimental results show
that OpenCL accelerated Canny edge detection algorithm can achieve 20.68 times, 3.96 times, and 1.21 times speedup ratio
compared with CPU serial algorithm, CPU multi-threaded parallel algorithm, and CUDA-based parallel algorithm, respectively.
The effectiveness and performance portability of the proposed Canny edge detection parallel algorithm are verified, and it
provides a reference for the research of fast calculation of image big data.

Key words Canny algorithm · Edge detection · Graphics Processing Unit (GPU) · Open Computing Language (OpenCL) · Par-
allel algorithm

1 Introduction

With the development of computer science, image processing
technology has achieved fruitful research results in recent
years and has been widely used in industrial, military, medi-
cal, and other fields. As the most basic feature of the image,
the edge feature of the image can greatly reduce the image
information to be processed on the premise of retaining the
shape information of the object [1]. The edge of a digital im-
age contains a variety of useful information, which can be
used to detect and recognize images. Digital image edge de-
tection technology is widely used in image segmentation,
motion detection, target tracking, face recognition, and other
fields. Therefore, edge detection is one of the most important
key technologies in the field of image processing [2].

At present, image edge detection algorithms mainly in-
clude edge detection algorithms based on wavelet transform,
edge detection algorithms based on morphology, edge detec-
tion algorithms based on machine learning, and traditional
edge detection algorithms [3]. The edge detection algorithm
based on wavelet transform is used to transform the image
with different scales. When the scale is small, the edge detail
information is rich, and the positioning accuracy is high, but
the anti-disturbance ability is poor. When the scale is large,
the positioning accuracy is low and the anti-jamming ability
is good, so it fuses the results of edge images of each scale,
taking into account the positioning accuracy and anti-jam-
ming ability to a certain extent, but the algorithm complexity

is high [4]. The edge detection algorithm based on morphol-
ogy uses the continuous movement of structural elements in
the image to analyze and process the image and extracts dif-
ferent image features by selecting different structural ele-
ments for opening and closing and other operations. This al-
gorithm is easy to implement, and can effectively remove the
salt and pepper noise, but its edge location accuracy is not
good. Edge detection algorithm based on machine learning
has become a new research direction in recent years. In par-
ticular, the deep features of the image are extracted automat-
ically by deep learning, and a good edge effect is obtained.
Its disadvantage is that it requires a large number of samples
of training and learning, and the computational complexity is
high [5].

The traditional edge detection algorithms include the Rob-
erts operator, Prewitt operator, Sobel operator, and so on.
These algorithms are simple and easy to implement, but their
denoising ability is poor, crack edge recognition is incom-
plete, and pseudo edges are easy to occur. Compared with
these algorithms, the Canny edge detection operator used in
this paper has a strong denoising ability and high detection
accuracy [6]. The Canny edge extraction method was first
proposed by John F.Canny in 1986 [7]. The Canny edge de-
tection method is based on finding the local maximum of the
gradient amplitude of the image. It uses the first derivative of
the Gaussian filter to calculate the gradient amplitude. It uses
the double-domain value method to detect the strong and
weak edges respectively, and only when the strong and weak
edges are connected, the weak edges where the strong edges
are discontinuous will be included in the detection results. As
a result, the influence of noise on the detection results can be
reduced, and the detection results can achieve a better bal-
ance between noise and edge detection. However, the Canny
operator also has obvious shortcomings. Due to the calcula-
tion flow of Gaussian filtering, gradient amplitude and direc-
tion calculation, non-maximum suppression, and double
threshold processing, the algorithm has high complexity and
slow operation speed, which is contrary to the fast and accu-
rate application principle in practical engineering, which
greatly restricts the engineering practicability of the algo-
rithm. In order to improve the computing speed of the Canny
operator, it is a good choice to use Graphics Processing Unit
(GPU) to parallelize processing. GPU has multiple threads
for fast computing of large data with low coupling and high

parallelism. At the same time, the parallel computing of GPU
is becoming more and more mature in recent years, and its
friendly programming operation and people-friendly price
also make it possible to use GPU parallel processing Canny
operator [8, 9]. In order to use GPU parallel processing
Canny operator, it is necessary to optimize and parallelize the
processing process of the Canny operator, so as to meet the
requirements of GPU parallel processing. Through the opti-
mization and transformation of the Canny operator, the pro-
cessing mode of running GPU+CPU reduces the edge detec-
tion time of a 1280 × 720 image to less than 10 ms, which
greatly improves the execution efficiency of the algorithm
and lays a foundation for practical industrial applications.

For the problem that it is difficult to have both effective-
ness and performance portability, this paper re-evaluates and
analyzes all the steps of Canny edge detection according to
the architecture of GPU, so that the key hot steps run com-
pletely on GPU. Based on the architecture of Open Compu-
ting Language (OpenCL), the parallel implementation of the
Canny edge detection algorithm (OCL_Canny) is completed.
By analyzing the conventional inefficient memory access
mode of single work-item and single pixel and the deficiency
of low utilization of GPU memory, the method of vectorized
memory access is proposed, which improves resource utili-
zation and computational efficiency. At the same time, the
OCL_Canny parallel algorithm also has the advantages of
real-time and performance portability.

Therefore, the main contributions of this paper are as fol-
lows: (1) implement the Canny edge detection algorithm
OCL_Canny through heterogeneous computing. (2) The
OMP_Canny and CUDA_Canny parallel algorithms under
the mainstream parallel computing framework of OpenMP
and Compute Unified Device Architecture (CUDA) compare
the time-consuming and accelerated performance with the
OCL_Canny algorithm. (3) The performance of OCL_Canny
on a heterogeneous GPU platform is evaluated, and the port-
ability of its performance is analyzed.

The rest of the paper is arranged as follows. In Section 2,
we review the research results of the Canny edge detection
parallel algorithm, the existing implementation of FPGA and
DSP computing architecture, the existing computing methods
on graphics hardware, and the Canny algorithm on Hadoop
cluster system. Section 3 summarizes the basic principles of
OpenCL architecture and describes the Canny edge detection

algorithm and the parallelism analysis of Canny operators.
Section 4 describes the parallel computing process, design,
and optimization solution of the Canny operator under
OpenCL architecture. Section 5 discusses the design of
OMP_Canny and CUDA_Canny parallel algorithms. Section
6 gives the relevant experimental results and makes an em-
pirical evaluation of the performance of the OCL_Canny op-
erator. Section 7 is the conclusion.

2 Background and introduction of related research

At present, many researchers have researched the implemen-
tation of the Canny edge detection parallel algorithm. SHI
Weizhong et al. [10] proposed an optimization algorithm of
Canny edge detection based on FPGA, which is suitable for
real-time processing in deep space optical autonomous navi-
gation. Jin et al. [11] chose ZC706 as the development plat-
form to accelerate the edge detection of Canny based on the
SDSoC development environment and achieved a speedup of
16.97 times. Keqiang et al. [12] developed a Canny operator
on the TI DSP TMS320C6678 processor, which improves the
speed of the operator. Xiangjiao et al. [13] implemented a
parallel Canny algorithm based on Threading Building Block
(TBB) tool and C++ language and achieved 3.673 times ac-
celeration ratio on a quad-core CPU. Yue et al. [14] realized
the Canny edge detection algorithm on GPU using OpenGL,
and the real-time performance of the algorithm was satisfied.
Bin et al. [15] proposed a method to quickly implement the
Canny operator based on GPU+CPU, with a speedup of up to
5.39 times. Jin et al. [16] proposed a Canny edge detection
algorithm under OpenCL architecture, which achieves 6.16
times speedup without considering data transmission. Some
scholars have studied the implementation of the Canny edge
detection algorithm in Hadoop cluster architecture, which im-
proved the performance of batch processing images [17, 18].

Some scholars have proposed an improved Canny image
edge detection method, which can effectively detect the im-
age edge in real time on FPGA [19, 20]. Lee et al. [21] im-
plemented a Canny edge detector suitable for advanced mo-
bile vision applications on FPGA under the slight sacrifice of
detection effect, which saves the execution time of the system.
Suwen et al. [22] proposed an improved Canny edge detec-
tion algorithm based on the FPGA platform, which improves
the ability of weak edge detection. Shengxiao et al. [23] pro-
posed an improved algorithm for edge detection of the Canny
operator based on the GPU platform, which obtains 64 times

speedup.
Fuqiang et al. [24] designed the line segment detector al-

gorithm with low error rate by using the Canny edge detec-
tion algorithm implemented on FPGA, which has the ad-
vantages of high reliability and high speed. Sivakumar et al.
[25] proposed a new ROI region segmentation method for
MRI images by implementing enhanced Canny operators on
FPGA. Hongye [26] realized the fingerprint acquisition sys-
tem based on DSP by optimizing the Canny edge extraction
operator, which makes the identification speed of the finger-
print wireless acquisition system faster. Rongbao et al. [27]
designed a verticality recognition system based on
DSP+FPGA using the improved Canny algorithm. The re-
sults show that the system has high detection speed, and high
precision and meets real-time requirements. Hanjun et al. [28]
combined the Gaussian mixture model with Canny edge de-
tection to extract the target contour, which shortens the com-
puting time on the CUDA platform and meets the real-time
requirements of video analysis. Tengzhang et al. [29] pro-
posed a method based on the multi-feature Canny edge de-
tection algorithm and the joint probability data association
algorithm for moving multi-ship detection and tracking by
on-orbit satellite. This method can detect and track the target
quickly and accurately on the embedded GPU development
platform.

To sum up, people mainly study the performance of the
Canny algorithm from three aspects. The first is to accelerate
the Canny operator in parallel under the architecture of FPGA,
DSP, GPU, and Hadoop clusters. Although these research re-
sults have achieved a certain degree of performance improve-
ment, the speedup is not high, the computing time is not ideal.
The second is to improve the performance of the improved
Canny operator by improving the Canny operator in some as-
pects, such as optimizing the calculation process. The third is
to apply the Canny operator to a variety of practical applica-
tions to achieve the acceleration of the application system un-
der the parallel computing architecture. However, on the one
hand, the acceleration effect of these research results is not
ideal. On the other hand, Canny edge detection often uses a
single parallel technology to improve the algorithm, without
comparison with other parallel computing models, it cannot
get the best acceleration effect. Current computer systems
generally contain a variety of processors, such as CPU, GPU,
and other types of processors. How to make reasonable and

full use of a variety of computing resources on heterogeneous
computing platforms will become very important.

In this paper, the storage of GPU is designed and used rea-
sonably by using OpenCL parallel acceleration technology to
realize the high-speed computing of the Canny image edge
detection algorithm. By taking the three memory access
modes of image data access on GPU, namely, global memory,
local memory, and constant memory, as a starting point, the
parallel implementation of image Gaussian filtering and im-
age gradient in these three kinds of memory is analyzed and
designed, so that the two operations can be realized more ef-
ficiently on GPU. In the process of research, GPU is used to
realize image Gaussian filtering, image gradient, non-maxi-
mum value suppression of gradient image, and determining
image edge points in parallel. To obtain the fast extraction of
image edge as the goal, the calculation methods of image
Gaussian filtering and image gradient are optimized and im-
proved. From the perspective of saving storage resources and
being more in line with the parallel programming architecture
of GPU, the computing is improved, such as improving the
operation method of the image template and extended image
to make it more suitable for the parallel implementation un-
der GPU. At the same time, the construction of pixel vector-
ization calculation under GPU is applied to the calculation of
image Gaussian filtering and image gradient, which verifies
the effectiveness of the vectorization parallel computing
method of image Gaussian filtering and image gradient cal-
culation.

3 Software model of the Canny algorithm

3.1 Overview of OpenCL

OpenCL is used for a parallel computing platform, which es-
tablishes the writing standard of parallel systems. OpenCL
has a relatively wide range of applications, providing compu-
ting support for CPU, GPU, FPGA, and other devices, and
has become a programming standard in the field of heteroge-
neous systems. OpenCL provides developers with a common
programming interface and a development model for the un-
derlying hardware layout [30].

OpenCL heterogeneous parallel architecture consists of
four parts: platform model, execution model, storage model,
and programming model. The four models support each other
when the OpenCL system is running, and each model has its
own unique role.

(1) Platform model

Host

Compute Unit

Processing Element

Device1

Device2

DeviceN

Fig.1 OpenCL platform model

As shown in Figure 1, the OpenCL platform model con-
sists of a Host connected to one or more OpenCL compute
devices, which is used to realize the data exchange between
the host and the OpenCL devices. CPU, GPU, and other pro-
cessors that support OpenCL all belong to OpenCL devices.
An OpenCL device can be divided into one or more Compute
Units (CU), and each CU is composed of one or more Pro-
cessing Elements (PE) [31].

(2) Memory model

Computer Device P

 Global Memory Constant Memory

Work-Group N

Local Memory N

Computer Unit N

Private

Memory M

Work-Item

M

Private

Memory 1

Work-Item 1

...

Work-Group 1

Local Memory 1

Computer Unit 1

Private

Memory M

Work-Item

M

Private

Memory 1

Work-Item 1

... ...

Host

Host Memory

Computer Device 2

 Global Memory Constant Memory

Work-Group N

Local Memory N

Computer Unit N

Private

Memory M

Work-Item

M

Private

Memory 1

Work-Item 1

...

Work-Group 1

Local Memory 1

Computer Unit 1

Private

Memory M

Work-Item

M

Private

Memory 1

Work-Item 1

... ...

Computer Device 1

 Global Memory Constant Memory

Work-Group N

Local Memory N

Computer Unit N

Private

Memory M

Work-Item M

Private

Memory 1

Work-Item 1

...

Work-Group 1

Local Memory 1

Computer Unit 1

Private

Memory M

Work-Item M

Private

Memory 1

Work-Item 1

...

...

Fig.2 OpenCL memory model

The memory in OpenCL architecture is divided into four
different memory types. The location of each memory in the
platform is shown in Figure 2. These four types of memory
are global memory, constant memory, local memory, and pri-
vate memory [32].

 (3) Execution model
The execution model is shown in Figure 3. The execution

model of OpenCL consists of two parts, one is the host sys-
tem executing on the host machine, and the other is the kernel
software executing on the OpenCL device. The OpenCL ar-
chitecture manages the execution of kernel software in
OpenCL devices by using context in the main system [33].

When the send kernel command is submitted on the host,
the system plans an N-dimensional index space NDRang.
The operation of each point in this space is called a work,
which OpenCL calls a work-item. All work-items in the in-
dex space have their own unique coordinates, which serve as
the global ID for each work-item. When sending kernel exe-
cution commands, the work-item is divided into several areas
of the same size and becomes a collection of work-items,
which are called work-groups. The number of work-items
contained in all work-groups is the same, and similar to the
global ID of work-items, work-groups also have ID, called
work-group ID. Work-items in each work-group have a
unique ID in the work-group, called a local ID. Figure 3 gives
a two-dimensional index space, the size of the index space is
Gx Gy , in which a coordinate system is established to rep-
resent the global ID (,)gx gy of each work-item. The index
space in the graph is divided into multiple work-groups with
Sx Sy work-items. OpenCL stipulates that Gx must be di-
visible by Sx and Gy must also be divisible by Sy [34].

work-group size Sx

work-group (wx, wy)

work-item

(Sx·wx+sx+Fx, Sy·wy+sy+Fy)

(sx,sy)=(0,0)

w
o

rk
-g

ro
u
p
 size S

y

NDRange size Gx

N
D

R
an

g
e size G

y

work-item

(Sx·wx+sx+Fx, Sy·wy+sy+Fy)

(sx,sy)=(Sx-1,0)

work-item

(Sx·wx+sx+Fx, Sy·wy+sy+Fy)

(sx,sy)=(0,Sy-1)

work-item

(Sx·wx+sx+Fx, Sy·wy+sy+Fy)

(sx,sy)=(Sx-1,Sy-1)

Global ID:(gx, gy)

Fig.3 OpenCL execution model

(4) Programming model
OpenCL achieves the goal of acceleration by executing

tasks in parallel, which is divided into task parallelism and
data parallelism. Task parallel mode means that all the work-
ing nodes in the workspace of OpenCL devices are relatively
independent, and the system can accelerate by executing mul-
tiple kernels at the same time or adding local kernel tasks to
the kernel. Data parallel methods are commonly used, and
multiple data are calculated in parallel so that the computa-
tional efficiency is significantly improved.

3.2 Algorithm theory

3.2.1 Canny principle

The Canny operator fully reflects the mathematical charac-
teristics of the optimal edge detector. It is the optimal approx-
imation operator for the signal-to-noise ratio and location

ability and is widely used in image processing and pattern
recognition problems. The Canny operator not only has a
good edge detection performance but also is insensitive to
noise, even in a noisy environment, it also has a good edge
detection effect. Therefore, the Canny operator can be ap-
plied to edge detection in different environments.

(1) Image preprocessing

The images to be detected are usually disturbed by noise.
The amplitude of the gradient near the noise pixel is large,
and the edge detection operator is easy to mistakenly detect
the noise pixel as the edge pixel. Therefore, it is necessary to
remove the noise in the image.

When the image is used for edge detection, the original
data must be processed first. The input image is preprocessed
by convolution filter with Gaussian filter to remove noise and
reduce the influence of noise on gradient calculation, so as to
better realize the effect of edge detection image segmentation.
Therefore, image preprocessing requires convolution of the
original image and Gaussian mask, and the processed image
is more blurred than the original, which is conducive to image
edge detection [35].

In the Canny operator, the smooth denoising of the image
uses the first derivative of the 3 × 3 two-dimensional Gauss-
ian function, and the Gaussian function and image convolu-
tion are shown in equation (1).

()

() () ()

2 2

22

2

1
, ,

2

, , , ,

x y

G x y e

H x y f x y G x y






+
−

 =

 = 

 (1)

In equation (1), (),f x y is the original image, (), ,G x y  is

the Gaussian function,  is the standard deviation of the

two-dimensional Gaussian function, and (),H x y is the im-

age smoothed by the Gaussian filter.
(2) Determine the amplitude and direction of the image

gradient

The amplitude of the pixel gradient of the image (),H x y

can be calculated by the first partial derivative. In calculating
the gradient direction, two 3 × 3 Sobel operators are used as
the first order approximation of the partial derivatives in the x

direction and y direction, as shown in Figure 4 [36].

1 2 1

0 0 0

-1 -2 -1

0 1

0 2

-1 0 1

-2

-1

Fig.4 Sobel operator template

Before determining the amplitude and direction of the im-
age gradient, equation (2) is used to solve the first order par-
tial derivative matrix of the x -axis and y -axis direction.

() () () ()
() () ()

() () () ()
() () ()

, 1, 1 2 1, 1, 1

1, 1 2 1, 1, 1

, 1, 1 2 , 1 1, 1

1, 1 2 , 1 1, 1

P x y H x y H x y H x y

H x y H x y H x y

Q x y H x y H x y H x y

H x y H x y H x y

= + − + + + + +


− − − − − − − +


= − + + + + + +
 − − − − − − + −

 (2)

The amplitude and direction of the gradient are calculated
by the finite difference of the first order partial derivative. For
the calculation results of the gradient amplitude, the non-
maximum value suppression method is adopted. After pro-
cessing, the gradient amplitude M and gradient direction at

the pixel (),H x y of the image can be calculated by equation

(3) and equation (4) respectively [37].

() () ()2 2
, , ,M x y P x y Q x y= + (3)

() ()
()

,
, arctan

,

Q x y
x y

P x y


 
=  

  
 (4)

(3) Perform non-maximum value suppression on the gra-
dient amplitude image to determine the edge point

Non-maximum value suppression is the key to find all the
target edge points in the image. In order to determine the edge,
it is necessary not only to get the global gradient but also to
retain the maximum point of the local gradient and suppress
the non-maximum value. In the 3 × 3 region, the edge can be
divided into four directions: 0°, 45°, 90° and 135°. Similarly,
the reverse direction of the gradient is also four directions
(orthogonal to the edge direction). Therefore, in order to sup-
press the non-maximum value, all possible directions are
quantized into four directions, as shown in Figure 5 [38].

Fig.5 Sector chart

In this way, the direction angle is regulated to the following
four directions:

The vertical edge ― gradient direction is horizontal:

()    , 67.5 , 112.5 112.5 , 67.5x y   −− 

The 135° edge ― gradient direction is 45°:

() ) ), 22.5 , 67.5 157.5 , 112.5x y   −− 

The horizontal edge ― gradient direction is vertical:

() ) ( ( (, 0 , 22.5 22.5 , 0 157.5 , 180 180 , 157.5x y       − − −

The 45° edge ― gradient direction is 135°:

() (  , 112.5 , 157.5 67.5 , 22.5x y    − − 

In the 3 × 3 region, for each pixel in the image, there are
only four possible directions connected to the adjacent points:
0°, 45°, 90°, and 135°, as shown in Figure 6 [39].

1 2 3

5

4

67

8 X

-45°
0°

+45°

90°

0°-45°

Fig.6 Pixel neighborhood structure

At the central pixel (),H x y of each neighborhood is com-

pared with two adjacent pixels along its corresponding gradi-

ent direction (),x y . If the gradient value (),M x y at the

center point is the largest, then the corresponding (),f x y

grayscale value is retained, otherwise, (),f x y grayscale

value is set to 0. As a result, the non-maximum value sup-

pressed image (),f x y is obtained.

(4) Using double threshold algorithm to detect and con-
nect edges of gradient images

In order to reduce the pseudo edge points, the double
threshold algorithm is used to distinguish and connect the
edges. If the edge strength is greater than the high threshold,
it must be the edge point. If the edge strength is less than the
low threshold, it must not be the edge point. If the edge in-
tensity is greater than the low threshold and less than the high
threshold, then see if there are any edge points in the adjacent
pixels of this pixel that exceed the high threshold, if so, it is
the edge point, if not, it is not the edge point [40].

Two thresholds, L
T and H

T , are selected with a ratio of 1:2

or 1:3. For the image (),f x y processed by non-maximum

value suppression processing, if the gradient value of the

pixel is (),
H

M x y T≥ , then the pixel is marked as an edge

pixel, namely, and the (),f x y grayscale value is set to 255.

If the gradient value of the pixel is (),
L

M x y T„ , then the

pixel is marked as a non-edge pixel, namely, and the (),f x y

grayscale value is set to 0. If the gradient value of the pixel is

(),
L H

T M x y T  , then the pixel is marked as "quasi-pixel",

that is, and the (),f x y grayscale value is set to 1. After the

double threshold marking is completed, search for "quasi-

pixel points" in the image, and select the positions of its 8

neighborhood points to find out whether there is a point with

gradient value (),
H

M i j T≥ . If it exists, mark the pixel as an

edge point, otherwise mark the pixel as a non-edge pixel.

3.2.2 Eliminate branches

When using a template to traverse an image, the computation
is out of bounds when traversing to the edge of the image.
Therefore, the edge of the image to be processed is expanded
before the calculation begins. The method of dealing with
edge pixels in this paper is to make full use of the similarity
of the image and take its own pixels to expand the original
image. Suppose that the size of the original image is H H× ,
and the size of the image after edge expansion is H H × , as
shown in Figure 7, the solid line region and the dotted line
region, respectively. When the neighborhood size is n n× ,

the edges of 2n   pixels are filled around the original image.

After extended preprocessing, there is no need for branch
processing, which ensures a high degree of unity of the im-

plementation process, and then improves the parallel poten-
tial of the algorithm.

In this paper, the method of even expansion is used to ex-

pand the edge of the original image. First of all, the gray val-

ues of all the pixels of the original image are filled into the

middle part of the expanded edge image in turn. Then, fill the

left boundary data of the original image into the correspond-

ing left expansion area of the flared image, as pointed by the

red arrow in Figure 7. Fill the right boundary data of the orig-

inal image into the corresponding right expansion area of the

flanged image, as pointed by the green arrow in Figure 7. Fi-

nally, fill the upper boundary data of the expanded image into

the corresponding upper expansion area (including corners)

of the final edge image, as pointed by the black arrow in Fig-

ure 7, and fill the lower boundary data of the expanded image

into the corresponding lower expansion area (including cor-

ners) of the final edge image, as pointed by the blue arrow in

Figure 7.

Original

image

H

H

H＇
H
＇

  2n

  2n

Fig.7 Boundary processing

3.3 Serial system analysis

The 1024 × 1024 image size was used to test, the data bit

depth was 8 bits, and the data format was BMP. When the

CPU is Intel Core i7-8700K and the filter neighborhood size

is 3 × 3, the time-consuming of each calculation step on the

CPU is shown in Table 1. It can be seen from Table 1 that the

most time-consuming step of the whole algorithm is the cal-

culation of Canny edge detection, which includes the Gauss-

ian filtering process for noisy images. The Canny edge detec-

tion step accounts for about 79.72% of the processing time of

the whole Canny system. Therefore, the parallel acceleration

in this paper will mainly focus on the Canny edge detection

part.
Table 1 Time-consuming of each module in the Canny algorithm

Algorithm steps
Time-consuming

by CPU (ms)

Occupancy

time ratio (%)

Read in source image data 2.23 1.20

Extended source image 3.65 1.97

Gaussian template calculation 10.24 5.53

Initialize non-maximum value sup-

pressed image
19.45 10.50

Canny edge detection 147.69 79.72

Output image edge extraction result 2.01 1.08

Total 185.27 100.00

In the calculation process of Canny edge detection, firstly,

Gaussian filtering needs to take a filter window around the

calculation point, and convolution calculation is carried out

in this window. Then, the amplitude and direction of the im-

age gradient need to be determined by using the Sobel oper-

ator, and then the gradient amplitude image is suppressed by

non-maximum value, thus the non-maximum value suppres-

sion image is obtained. Finally, the double threshold algo-

rithm is used to distinguish and connect the edges. Each pixel

in the image data is processed in turn. When the image scale

is large, the system will produce a large amount of computa-

tion. Therefore, reducing the computing time of Canny edge

detection processing is one of the problems to be solved in

this algorithm.

Suppose, the image size is H H× and the neighborhood

size is n n× . Then

Process 1: The time complexity of the process of initializ-

ing a non-maximum value suppression image is ()2Ο H .

Process 2: The time complexity of the step of expanding

the edge of the image is () ()2Ο H Ο H n+ × .

Process 3: The time complexity of the image Gaussian fil-

tering step is ()2 2Ο H n .

Process 4: The time complexity of the process of determin-

ing the amplitude and direction of the image gradient is

()2 2Ο H n .

Process 5: The time complexity of non-maximum value

suppression of gradient amplitude image is ()2Ο H .

Process 6: The time complexity of the process of detecting

and connecting edges of gradient images is ()2Ο 9H .

Therefore, the total time complexity of the Canny edge de-

tection algorithm is:

() () () ()2 2 2 2
2Ο H n + 3Ο H Ο H n Ο 9H+ +× . From

the above analysis, it can be seen that process 3 ~ 6 is a func-

tional part of the Canny edge detection algorithm with rela-

tively high time complexity. Therefore, this paper should

mainly focus on the parallel optimization of process 3 ~ 6,

that is, the stage of Canny edge extraction. To sum up, the

time complexity of the Canny edge detection algorithm is

()2 2Ο H n .

3.4 Algorithm parallel analysis

The parallelism analysis of the hot step process 3―process 6

in the Canny edge detection algorithm is carried out, and the

time complexity of the algorithm is analyzed.

(1) Process 3: From the point of view of the image Gauss-

ian filtering process, the n n× point multiplication is mainly

carried out through the image pixel matrix and the Gaussian

template matrix. The bottom layer of the algorithm processes

a large amount of data, but the operation process is relatively

simple. All pixels in the image can perform the same opera-

tion, there is no data dependence between each point of the

target matrix, these operations can be performed in parallel,

and the algorithm is a memory-intensive algorithm. In view

of this, this paper realizes the optimization of the algorithm

by improving the memory access efficiency and making ra-

tional use of GPU hardware resources.

(2) Process 4: The calculation of the amplitude and direc-

tion of the image gradient is to convolution each pixel with

the Sobel operator in the x direction and y direction respec-

tively, and then calculate the amplitude and direction of the

gradient for the pixel. These computing processes are inde-

pendent of each other and can be calculated in parallel.

(3) Process 5: Each central pixel is compared with two ad-

jacent pixels in the same gradient direction to suppress non-

maximum value pixels. The comparison process of each

group is only related to the amplitude data of the current com-

parison pixels, but has nothing to do with other pixels. Each

group of comparison processes can correspond to a work-

item, so that process 5 can be executed in parallel.

(4) Process 6: The process of judging the edge points of

pixels by using double thresholds does not affect each other

and is independent of each other. It is beneficial to give full

play to the performance advantages of GPU devices.

To sum up, the hot steps of the Canny edge detection algo-

rithm, process 3―process 6, can be executed in parallel,

which is suitable for implementation on GPU. Therefore, a

work-item is created for each pixel so that the corresponding

pixel can be processed accordingly. Because all work-items

perform the same computing process at the same time, the

time complexity of the Canny edge detection parallel algo-

rithm will be reduced to ()2Ο n , which is a very small level

of complexity. If all pixels are not processed in one kernel

function, each work-item will perform the Canny edge detec-

tion kernel function at least 2
H tsum times, where tsum is the

number of work-items. In this case, the time complexity of

the Canny edge detection parallel algorithm will be

()2 2Ο H n tsum . It is important to note that because of the

large number of active work-items that can be maintained in

GPU, tsum is always a large value. Therefore, there exists

the time complexity of the Canny parallel algorithm

() ()2 2 2 2Ο H n tsum Ο H n= .

4 OpenCL implementation of Canny edge detection

algorithm

4.1 Parallel algorithm description

In order to maximize the effective use of GPU hardware

multi-work-item resources, the reconstruction algorithm

must strictly follow the OpenCL multi-work-item framework

processing concept. In the process of image Gaussian blur,

amplitude and direction calculation of image gradient, non-

maximum value pixel suppression, and edge point judgment

by GPU, the important foundation is that there is no correla-

tion between pixel-by-pixel calculation. That is, the pro-

cessing of each pixel is not related to each other. According

to this characteristic, the Canny edge detection task can be

divided into several different kernels using GPU, and the im-

age pixels can be processed and calculated in parallel by mul-

tiple work-items in the kernel. The specific Canny edge ex-

traction parallel algorithm is shown below.
1: Algorithm1 Canny edge detection parallel

algorithm on OpenCL

2: Input: Noisy image matrix srcImageData with image

size H H× ，array  0 : 1GaussTempla e nt n − of

the Gaussian convolution kernel, the array
 0 : 1SobelTempla e nt n − of the Sobel convolu-

tion kernel, each work-item is responsible for Gauss-
ian filtering and processing of Sobel convolution in
two directions of BX BY× pixels.

3: Output: Image matrix desImageData with canny

edge detection

4: Begin

5: CPU main function:

6: srcImageData ← input image with an image
size H H×

7: srcImageDataEx ← extended original image

8:  0 : 1GaussTempla e nt n − ← calculate the

Gaussian filter template

9: GPU kernel function:

10: Initialize the global index ,gx gy of the work-item

in the x and y directions, respectively

11: Initialize the local index ,lx ly of the work-item in

the x and y directions, respectively

12: /* Gaussian filtering */

13: for all work-groups in NDRange par-do

14: Load the input sub-image data that a work-

group need to access from the global memory into a

15: local memory of size SubImage_ds

16: end for

17: for all work-items in work-group par-do

18: for 0i = to BX do

19: for 0j = to BY do

20: for 0
x

f = to 1n− do

21: for 0
y

f = to 1n− do

22:  *gaussPixel i j BX+ ←

Each work-item in the work-group does the

23: convolution operation result

of the corresponding pixel and the Gaussian template

24: end for

25: end for

26: Output  *gaussPixel i j BX+

27: end for

28: end for

29: end for

30: /* Amplitude and direction of image gradient */
31: for all work-groups in NDRange par-do

32: Load the Gaussian filtering sub-image data

that a work-group need to access from the global

33: memory into a local memory of size

SubImage_ds

34: end for

35: for all work-items in work-group par-do

36: for 0i = to BX do

37: for 0j = to BY do

38: for 0
x

f = to 1n− do

39: for 0
y

f = to 1n− do

40:  *convoluti n i j Xo B+ ←

Each work-item in the work-group does the

41: convolution operation result

of the corresponding Gaussian filtering image pixel

42: and the Sobel template

43: end for

44: end for

45: Calculate the gradient amplitude and

direction of pixels

46: end for

47: end for

48: end for

49: /* Determine non-maximum suppressed image */
50: for all work-items in NDRange par-do

51: Judge whether the gradient amplitude of the

neighborhood center pixel is the largest in the

gradient direction

52: end for

53: /*Determine the edge points of the gradient image*/
54: for all work-items in NDRange par-do

55: Using double threshold to judge whether the

pixel of the gradient image is an edge point or not

56: end for

57: Transfer Canny edge detection results

desImageData from global memory to host

memory

58: End

4.2 Calculation process

The edge detection process of the OCL_Canny parallel

algorithm is shown in Figure 8.

GPU device side

CPU host side

Start Read source image
Extended

source image

Get

platform

Create contextual

platforms and devices

Computational

Gaussian filter template

Create program objects

and transfer data

Create Gauss kernel and

set kernel parameters

Launch

Gauss

filtering

kernel

Work-item 0

takes pixel 0

to local

memory

Work-item 1

takes pixel 1

to local

memory

Work-item

H*H-1 takes

pixel H*H-1

to local

memory

Barrier(

) work-

item

synchro

nization

Work-item 0

performs the

convolution of the

neighborhood of

pixel 0 with the

Gaussian template

Work-item 1

performs the

convolution of the

neighborhood of

pixel 1 with the

Gaussian template

Work-item H*H-1

performs the

convolution of the

neighborhood of

pixel H*H-1 with

the Gaussian

template

Y
N

End

Visualization of

Canny image

edge extraction

results

Transfer

edge

detection

results to

host

memory

Create image

gradient kernel

and set kernel

parameters

Launch

image

gradien

t kernel

Initialize non-maximum

suppressed image

Get computing

equipment (GPU)

Create command

queue

Read the kernel source

code of the kernel file

Create non-

maximum suppressed

image kernel and set

kernel parameters

Launch non-

maximum

suppressed

image kernel

Create image edge

detection kernel

and set kernel

parameters

Launch

image edge

detection

kernel

Work-item 0

takes Gauss

filtering pixel

0 to local

memory

Work-item 1

takes Gauss

filtering pixel

1 to local

memory

Work-item

H*H-1 takes

Gauss

filtering pixel

H*H-1 to

local memory

Barrier(

) work-

item

synchro

nization

Work-item 0

performs the

convolution of the

neighborhood of

Gauss filtering

pixel 0 with the

Sobel template

Work-item 1

performs the

convolution of the

neighborhood of

Gauss filtering

pixel 1 with the

Sobel template

Work-item H*H-1

performs the

convolution of the

neighborhood of

Gauss filtering

pixel H*H-1 with

the Sobel template

Work-item 0

performs non-

maximum

suppression on

pixel 0

Work-item 1

performs non-

maximum

suppression on

pixel 1

Work-item

H*H-1

performs non-

maximum

suppression on

pixel H*H-1

Work-item

0 judges

edge points

on pixel 0

Work-item

1 judges

edge points

on pixel 1

Work-item

H*H-1

judges edge

points on

pixel H*H-1

Fig. 8 OCL_Canny algorithm flow

The first step of the OCL_Canny parallel algorithm is to

read the original image file to obtain image information and

to expand the original image according to the size of the

neighborhood window. Initialize the edge point image for

subsequent calculation. Next, determine the platform for

OpenCL execution, and then determine the device that

performs the OpenCL calculation after determining the

platform for execution. Create a context after determining the

device.

After creating the context, you need to create a command

queue. The operations such as extending the original image

data transmission, Gaussian template data transmission, ini-

tializing the edge point image, and executing the kernel be-

tween the host and OpenCL devices are all done by queuing

up to the command queue, and then the command queue

passes each command to the OpenCL hardware unit for exe-

cution.

After that, the kernel code is compiled. First of all, the ker-

nel source code is obtained from the host side and the

program object is created, then the OpenCL device compiles

and constructs the program object using the kernel source

code, and finally constructs the kernel object to complete the

compilation of the kernel code.

When the kernel function needs input parameters to pro-

vide calculation data, the corresponding application program

interface function is called on the host side to complete the

initialization of the input parameters. In addition, the work-

group and work-item parameters used for execution on the

device also need to be set in advance.

After the above operations are completed, the queuing

operation is carried out, and the kernel function is sent to the

corresponding command queue through the queuing

command. The computing device interacts with the

command queue and executes the corresponding kernel

functions. The kernel functions of the OCL_Canny parallel

algorithm include generating Gaussian filtered image kernel,

generating gradient image kernel, generating edge point

image kernel, and generating edge image kernel.

The operation of the kernel function is mainly the calcula-

tion and update of the incoming parameter variable, and the

next call is the update status of the variable, and the four ker-

nels are executed serially through CPU control. The execu-

tion process of the corresponding kernel function in this pa-

per is as follows:

① Gaussian filtered image kernel. According to equation

(1), the extended image data is convoluted with the Gaussian

template data and the information is updated.

② Gradient image kernel. According to equation (2) ~ (4),

the Gaussian smoothing image data is convoluted with the

Sobel template data, and the gradient amplitude and direction

of the corresponding pixels are calculated.

③ Edge point image kernel. The gradient image is sup-

pressed by non-maximum value, and the edge points of the

image are preliminarily determined.

④ Edge image kernel. The edge points of the image are

finally determined and connected by the double threshold

method.

After the OpenCL device performs the calculation, it trans-

mits the results of Canny edge detection back to the host side

and destroys the allocated resources.

4.3 Acceleration strategy of the algorithm

The Canny edge detection algorithm has obvious data com-

puting parallelism. The processing of Gaussian filtering, cal-

culating the gradient of the image, suppressing non-maxi-

mum value pixels, and judging edge points with double

thresholds are only related to the position of the image pixels,

and the calculation process of each pixel is exactly the same.

The mapping between the pixel and the OpenCL core

mainly lies in the one-to-one logical correspondence between

the work-item and the pixel. Figure 9 shows the mapping re-

lationship between the NDRange workspace of the GPU and

the image data matrix. The image frame H H× image data is

arranged according to the one-dimensional linear organiza-

tion in the system and can be decomposed into several non-

overlapping sub-image blocks. Each sub-image block con-

tains some pixels of the image. The kernel function creates

an NDRange workspace that identifies the index, as shown in

the lower dotted frame in Figure 9. Through the mapping of

OpenCL work-items to image pixels, each OpenCL work-

item uses a unique work-item index to calculate the data that

needs to be processed to achieve maximum parallelism.

Processing more data in a shorter time has always been one

of the goals of high-performance computing. OCL_Canny

parallel algorithm proposes a vectorization method to process

multiple pixels at a time for each work-item. In the algorithm,

the Gaussian filtering operation and the Sobel image gradient

operation of four adjacent pixels in the sub-image block are

scheduled on one work-item in turn. The calculation of the

four output results is completed on the same work-item, and

each cycle can complete the calculation of the output result

of one pixel, thus completing the traversal of the four pixels.

The coordinate transformation of the pixel is shown in equa-

tion (5).

() ()
() ()

_ _ 0 , _ _ 1

_ _ 0 , _ _ 1

lx get local id ly get local id

gx get global id gy get global id

= =

= =
 (5)

Among them, ,lx ly represents the local ID of the work-item
in the ,x y direction respectively in the work-group. ,gx gy

represents the global ID of work-items in the ,x y direction

respectively in the workspace. Through the four variables,
the precise scheduling of OpenCL work-items can be com-
pleted.

 Image data storage format

NDRange index space

work-group

(0, 0)

work-group

(N, 0)

work-group

(0, M)

work-group

(N, M)

work-group

(0, GX-1)

work-group

(N, GX-1)

 p 0 p 1 p 2 p 3 p m p j

 Sub-image Sub-image Sub-image

 block 0 block 1 block p

H×H

Sub-image

block i

work-group

(GY-1, 0)

work-group

(GY-1, M)

work-group

(GY-1, GX-1)

work-group(N, M)

work-item

(0, 0)

work-item

(r, 0)

work-item

(0, q)

work-item

(r, q)

work-item

(0, EX-1)

work-item

(r, EX-1)

work-item

(EY-1, 0)

work-item

(EY-1, q)

work-item

(EY-1, EX-1)

MappingMapping

Fig. 9 Corresponding relation of the work-item index and image pixel coordinate

4.4 Algorithm optimization

4.4.1 Data storage adjustment

(1) Local memory optimization

In the processing of the four tasks of the Canny operator, the

calculation of the boundary points in the work-group needs

to cross the boundary. In order to prevent the image from

crossing the boundary, the original image is extended to an

expanded image in this paper. Suppose the template size is

n n× and the original image size is H H× . When calculat-

ing the Gaussian filter, gradient amplitude, and direction, the

size of the expanded image is () ()1 1H n H n+ −  + − . In this

case, the basic data area size of non-maximum value suppres-

sion and double threshold judgment of gradient image is

H H× , then the size of the extended data area is also

() ()1 1H n H n+ −  + − .

It takes about 400 ~ 600 clock cycles to access data from

global memory in the GPU, while it takes only 1~16 clock

cycles to access data directly from local memory. The access

speed of local memory is much higher than that of global

memory. In the OCL_Canny parallel algorithm with global

memory, it is necessary to access the global memory

()2 21 4H n n+ −   times. By fetching the extended data

area data from the global memory to the local memory, and

taking the local memory as the memory for accessing the data

when the work-item is calculated, the number of visits to the

global memory is reduced to ()2
1 2 4H n n+ −   times.

Therefore, the optimized OCL_Canny parallel algorithm can

significantly reduce the number of times of accessing global

memory and greatly improve the access efficiency of the

GPU.

(2) Constant memory optimization

In the OCL_Canny parallel algorithm, image preprocessing

and image gradient calculation are completed under convo-

lution computation. Since the convolution operation of the

image needs to traverse the image pixels, when processing

each pixel, it is necessary to read the corresponding pixels in

the 2
n neighborhood to multiply and add with the Gaussian

template and the Sobel template. It requires frequent access

to memory and the calculation is very time-consuming. Con-

sidering that the constant memory has a cache mechanism

when the access is hit, there is only one clock cycle delay.

Therefore, in order to improve the access efficiency, the

Gaussian template and the Sobel template are stored in the

constant memory for all work-items to read. The constant

memory has a 64 KB cache, and the storage space needed to

store the Gaussian template and the Sobel template is

()23 4n  B, which meets the maximum space requirements

of the constant memory of 64 KB.
(3) Data reusability

From the processing flow of the Canny operator, we can see

that each step of the algorithm is designed with a kernel,

which is implemented with four kernels. Because there is a

logical correlation between the kernel, that is, the results after

the execution of the previous task need to be provided to the

next task. Therefore, each kernel can store the calculation re-

sults in the global memory and wait for the next kernel to be

read. By improving the data reusability, the data transmission

times between CPU and GPU are reduced, thus the memory

communication delay is hidden.

4.4.2 NDRange optimization

According to different GPU hardware, change the number of
work-items in each work-group in the kernel function to
achieve optimal performance. If the number of work-items is
too small, it will cause most of the PEs to be idle, waste re-
sources, and low performance. If the number of work-items
is too large, due to the limitation of hardware resources, it
may not be possible to actually start enough active work-
items, which will cause too many work-items to be in a
blocked state and also cause performance degradation.

Therefore, in order to ensure the optimal performance of the
OCL_Canny parallel algorithm on the GeForce GTX 1050
graphics card, the operation time of the algorithm is meas-
ured under different work-group dimensions, and the specific
test data are shown in Table 2.

Table 2 Operation time of the OCL_Canny parallel algorithm

Image size
Parallel time corresponding to different work-group sizes (ms)

4×4 8×8 16×16 24×24 32×32

256×256 3.87 3.62 3.02 3.58 4.27

512×512 6.75 5.09 4.28 5.01 5.39

1024×1024 20.78 12.78 10.31 12.66 13.42

It can be seen from the above experimental results that for

GeForce GTX 1050 graphics cards, the maximum number of

work-items per work-group is 1024. An error will be reported

when running over this number. At the same time, 16 × 16 is

also the best operating efficiency point.

5 Other parallel schemes

5.1 The OMP_Canny parallel algorithm

The parallel processing of the Canny edge detection algo-
rithm is realized by using OpenMP parallel technology. With
the addition of parallel task scheduling at the top level, this
coarse-grained parallel processing method can realize Gauss-
ian filtering, calculating image gradient, suppression of non-
maximum value pixels, and parallel computing of edge points
judged by double thresholds. This paper mainly adopts the
static scheduling mode, and the specific parallel process:
when m CPU cores are allocated to process the image size

H H× , each core (or thread) will process ()H H m× im-

age data.

The parallel model of OpenMP is in the form of Fork-Join,

and the area between Fork and Join is a parallel region. When

the original thread encounters a parallel structure instruction,

it creates a thread group and executes the next instruction in

parallel, that is, the Fork action. When exiting the parallel

structure, only the original thread continues to execute, and

the other threads end, that is, the Join action. The

OMP_Canny parallel algorithm executes the Fork action to

open the parallel region at the starting position of the Gauss-

ian filtering operation, and executes the Join action to end the

parallel region when the detection of all edge points of the

image is completed, thus forming the following four parallel

regions.

(1) Parallel region of smooth image. First initialize the var-

iable, then convolution the neighborhood of the pixel with the

Gaussian filter template, and finally, update the convolution

value back to the corresponding position of the image.

(2) The parallel region that determines the amplitude and

direction of the image gradient. Firstly, the variables are ini-

tialized in x y、 direction, and then the neighborhood of the

pixel after the Gaussian filter is convoluted with the Sobel

filter template in x y、 direction, respectively. Finally, the

gradient amplitude and gradient direction of the pixel are cal-

culated.

(3) Determine the parallel region of the non-maximum

value suppressed gradient image. According to the gradient

direction of the pixel, the pixel is suppressed by non-maxi-

mum value, and the non-maximum value suppression image

is obtained.

(4) Determine the parallel region of image edge points. Us-

ing a double threshold algorithm to detect edge points and

connect the edges of non-maximum value suppressed images.

5.2 The CUDA_Canny parallel algorithm

According to the parallelism analysis of the Canny algorithm,
there are obvious data computational parallelism in image
Gaussian filtering, calculating the amplitude and direction of
image gradient, non-maximum value suppression gradient
image generation, and image edge point detection. The map-
ping between the image and the execution thread mainly lies
in the correspondence between the pixel and the CUDA
thread. If the image size is H H× and the GPU has a stream-
ing multiprocessors, the image data of H H× size is inputted
into the GPU memory. In the software architecture, each
GPU streaming multiprocessor contains b thread blocks and
each thread block contains c threads, so it can be calculated
that each thread can complete the Gaussian filtering pro-

cessing of () ()H H a b c   pixels. The parallel processing

of the gradient amplitude and gradient direction of each pixel
is the same. In the experiment of CUDA_Canny parallel al-
gorithm implementation, the GPU used is GTX 1050 with 24
streaming multiprocessors, each streaming multiprocessor
contains 32 thread blocks, and each thread block has 1024
threads.

6 Data testing and result discussion

6.1 Experimental conditions

(1) The hardware platform is built. This experimental scheme
uses two different environments with heterogeneous compu-
ting capabilities, and the specific hardware configuration in-
formation is shown in Table 3.

Table 3 Performance parameters of GPU Computing platform

Configu-

ration

number

CPU type
CPU fre-

quency

Memor

y/GB
GPU type

Video

memory

Number

of CUDA

cores

Number

of SM

Number of

blocks per

SM

Number of

threads per

block

Configu-

ration 1

Intel Core i7-

8700K (six

cores)

3.7 GHz 4
Geforce GTX

1050

3 GB

GDDR5
768 24 32 1024

Configu-

ration 2

AMD Ryzen 5

3600XT (six

cores)

3.8 GHz 4
Radeon RX

560

4 GB

GDDR5
896 28 32 1024

(2) The software platform is built. The operating system is Microsoft Window 10 64-bit, the GPU application program-

ming interface is CUDA 10.2, the OpenCL version is AMD

APP SDK 3.0, and the development environment is Mi-

crosoft Visual Studio 2017.

6.2 Image quality evaluation

6.2.1 Visual effect comparison

In order to verify the effectiveness of this method, five im-
ages are selected as test objects. The resolutions of the images
"Star", "Cameraman", "Head CT", "Painting" and "Light-
house" are 256 × 256, 256 × 256, 512 × 512, 380 × 375, and
512 × 512, respectively. Four serial/parallel Canny edge de-
tection algorithms are tested and the experimental results are
shown in Figure 10.

It can be seen from Figure 10 that the Star result image is

completely connected, without disconnection, with good co-

herence and high definition. The cameraman outline of the

Cameraman result image and the lines of the camera bracket

are very smooth. In the Head CT result image, the outer con-

tours of the brain (the gray area in the image), the outer con-

tours of the spinal cord, and the outer contours of the head

are very clear and very smooth, and there are almost no

breakpoints. In the four figures of the Painting result image,

the outline of each figure is closed and can be clearly ob-

served. The texture of the exterior wall, the fence, and the

edges of the eaves are very clear in the Light-house result

image.

Star

Camera-

man

Head CT

Painting

Light-

house

 (a) Original image
(b) CPU_Canny edge

detection result

(c) OpenMP_Canny

edge detection result

(d) CUDA_Canny

edge detection result

(e) OpenCL_Canny

edge detection result

Fig. 10 Edge detection effect images of four different Canny algorithms

It can be seen from Figure 10 that the effects of the serial
Canny algorithm and optimized accelerated algorithm are ba-

sically the same, and the four edge detection operators can

obtain image edges more accurately. The above experiments

show that the OCL_Canny parallel algorithm is feasible.

6.2.2 Comparison of evaluation parameters

In order to evaluate the effect of image edge detection, the
average gradient value of the image is selected as the evalu-
ation parameter. The Average Gradient (AG) is also called
image sharpness, which is an indicator of the rate of gray
change in image. The average gradient is defined as:

() () (), , 1,
x

D i j I i j I i j= − + (6)

() () (), , , 1
y

D i j I i j I i j= − + (7)

() ()()
1 1

2 2

0 0

1 1
, ,

2

M N

x y

i j

AG D i j D i j
M N

− −

= =

= +
  (8)

Among them, () (), , ,
x y

D i j D i j denotes the gradient of the

image in the x direction and y direction respectively. (),I i j

is the gray value of the image (),i j , (),i j is the position in-

dex of the pixel in the image, and the image frame size of the
image I is M N . The image average gradients of different
Canny edge detection algorithms are shown in Table 4.

Table 4 Average gradient of Canny edge detection algorithm in different images

Processing

method
Star

Camera-

man
Head CT Painting

Lighthouse

No processing 2.79 7.16 5.54 0.88 13.08

CPU_Canny 5.72 34.59 12.09 4.20 30.64

OMP_Canny 5.73 34.59 12.09 4.20 30.64

CUDA_Canny 5.73 34.59 12.11 4.20 30.95

OCL_Canny 5.73 34.59 12.12 4.20 30.95

It can be seen from Table 4 that the average gradient ob-

tained by the OCL_Canny parallel algorithm on the test im-

age set is the largest, indicating that the algorithm in this pa-

per is the best in preserving edge details. At the same time,

the average gradient data of the test image under serial/paral-

lel Canny edge extraction are almost the same. It shows that

the OCL_Canny parallel algorithm is correct and feasible.

6.3 Analysis of experimental data

6.3.1 Operation time comparison

In order to verify the high performance of the proposed algo-
rithm, nine groups of images of different sizes are selected
for experimental analysis. CPU_Canny algorithm,
OMP_Canny algorithm, and CUDA_Canny algorithm meas-
ured the execution time in the configuration 1 environment,
while the OCL_Canny algorithm measured execution time in
the configuration 1 and configuration 2 environment, respec-
tively. After many times of execution, the average value of
the system is taken as the execution time. The time-consum-
ing statistics are shown in Table 5.

Table 5 Time-consuming com-

parison of Canny algorithms un-

der different architectures

Image reso-

lution (px)

CPU_Canny

(ms)

Parallel time (ms)

OMP_Canny CUDA_Canny

OCL_Canny

(AMD)

OCL_Canny

(NVIDIA)

 256×256 9.45 2.90 3.26 3.14 3.02

 512×512 40.12 11.33 4.59 4.41 4.28

 1280×720 103.26 27.46 11.02 10.24 9.87

 1024×1024 147.69 35.58 12.49 10.68 10.31

 1600×1200 309.26 67.67 21.11 19.42 18.34

 2048×1536 548.43 112.85 31.83 29.05 28.74

 3500×3500 2311.45 459.54 120.29 117.62 115.97

 4828×4828 4024.03 762.13 207.96 204.61 199.80

 7452×8024 10105.12 1867.84 516.74 513.15 488.64

In order to more intuitively analyze the time characteristics

of the Canny algorithm, it is shown in Figure 11. As can be

seen from Figure 11, with the continuous increase of the size

of nine groups of images, the time-consumption of the Canny

algorithm under different computing architectures increases

linearly. The time-consuming of the CPU_Canny serial algo-

rithm is gradually approaching to ()2 2Ο H n . The experi-

mental results are consistent with the theoretical analysis of

time complexity. The time-consuming curve of the Canny al-

gorithm under OpenMP architecture shows a steady upward

trend of a small slope. On the other hand, the time-consuming

curve of the Canny algorithm under CUDA and OpenCL ar-

chitecture almost coincides with the horizontal axis in the

graph, that is, the time-consuming change of the algorithm is

very small with the increase of the amount of data processed.

O
p

e
ra

ti
o

n
 t

im
e（

m
s)

Image size

Fig. 11 Time-consuming analysis of the Canny algorithm

Literature [15] and Literature [16] reported the implemen-

tation results of the Canny algorithm under CUDA and

OpenCL architecture respectively, and literature [11] re-

ported the implementation results of the Canny algorithm un-

der FPGA computing architecture. The data shown in these

literatures are compared with the time-consuming of the al-

gorithms in this paper, as shown in Table 6. According to Ta-

ble 6, the time-consuming Canny serial algorithm imple-

mented in literature [15] and literature [11] on three groups

of images is slightly higher than that of the CPU_Canny al-

gorithm in this paper. The time-consuming of the

CUDA_Canny and OCL_Canny (NVIDIA) parallel algo-

rithm on three sets of images is significantly lower than that

of the CUDA version of the Canny algorithm in the Literature

[15]. The time-consuming of the OCL_Canny (NVIDIA) par-

allel algorithm on four sets of images is significantly lower

than that of the OpenCL version of the Canny algorithm in

Literature [16]. Therefore, OCL_Canny (NVIDIA) parallel

algorithm has the advantage of time-consuming compared

with other schemes.

Table 6 Comparison

of operation time in

related literature

Image reso-

lution (px)

CPU algorithm (ms) CUDA algorithm (ms)
Literature

[11]

OpenCL algorithm (ms)

Literature

[15]

Literature

[11]

CPU_

Canny

Literature

[15]

CUDA_

Canny

Literature

[16]

OCL_Canny

(NVIDIA)

(NVIDIA)256×256 10.00 — 9.45 5.00 3.26 — — 3.02

512×512 41.00 78.24 40.12 22.00 4.59 4.61 — 4.28

1280×720 — — 103.26 — 11.02 — 19.04 9.87

1024×1024 149.00 — 147.69 82.00 12.49 — — 10.31

1600×1200 — — 309.26 — 21.11 — 39.46 18.34

2048×1536 — — 548.43 — 31.83 — 58.03 28.74

3500×3500 — — 2311.45 — 120.29 — 239.89 115.97

6.3.2 Accelerated performance analysis

(1) Speedup discussion

In order to select a high-performance Canny parallel algo-
rithm, the speedup is used as the performance measure.

Definition 1: speedup
OMP

S is defined as the time-

consuming comparison between the CPU_Canny serial

algorithm and the OMP_Canny parallel algorithm. The

calculation equation of
OMP

S is

_

_

Canny

Canny

CPU

OMP

OMP

T
S =

T
 (9)

Definition 2: speedup
CUDA

S is defined as the time-

consuming comparison between the CPU_Canny serial

algorithm and the CUDA_Canny parallel algorithm. The

calculation equation of
CUDA

S is

_

_

CannyC

Cann

PU

CUDA

CUDA y

T
S =

T
 (10)

Definition 3: speedup
OCL

S is defined as the time-

consuming comparison between the CPU_Canny serial

algorithm and the OCL_Canny parallel algorithm on the

corresponding GPU platform. The calculation equation of

OCL
S is

_

_

Canny

Canny

CPU

OCL

OCL

T
S =

T
 (11)

Definition 4: relative speedup
OMP -OCL

RS is defined as the

time-consuming comparison between the OMP_Canny

parallel algorithm and the NVIDIA GPU-based OCL_Canny

parallel algorithm. The calculation equation of
OMP -OCL

RS is

_

_

CanOMP

OMP

ny

C

-OCL

nnyOCL a

T
RS =

T
 (12)

Definition 5: relative speedup
CUDA-OCL

RS is defined as the

time-consuming comparison between the CUDA _ Canny

parallel algorithm and the NVIDIA GPU-based OCL_Canny

parallel algorithm. The calculation equation of
CUDA-OCL

RS is

_

_

CUD Canny

Cann

A

CUDA-OCL

OCL y

T
RS =

T
 (13)

The speedup achieved by the OMP_Canny, CUDA_Canny,

and OCL_Canny parallel algorithms on each group of test

images is shown in Table 7.

Table 7 Acceleration ef-

fect of the Canny algorithm

on different platforms

Image resolution

(px)

Speedup Relative speedup

SOMP SCUDA SOCL (AMD) SOCL (NVIDIA) RSOMP-OCL RSCUDA-OCL

256×256 3.26 2.90 3.01 3.13 0.96 1.08

512×512 3.54 8.74 9.10 9.37 2.65 1.07

1280×720 3.76 9.37 10.08 10.46 2.78 1.12

1024×1024 4.15 11.82 13.83 14.32 3.45 1.21

1600×1200 4.57 14.65 15.92 16.86 3.69 1.15

2048×1536 4.86 17.23 18.88 19.08 3.93 1.11

3500×3500 5.03 19.22 19.65 19.93 3.96 1.04

4828×4828 5.28 19.35 19.67 20.14 3.81 1.04

7452×8024 5.41 19.56 19.69 20.68 3.82 1.06

Figure 12 shows the speedup change of the Canny parallel

algorithm under different image data sizes. Under different

parallel computing architectures, the Canny algorithm

achieves a certain speedup. With the increase of image reso-

lution,
OMP

S gradually becomes larger, indicating that the ac-

celeration effect of the OMP_Canny parallel algorithm is

more obvious when dealing with large images. When the im-

age resolution is low, the acceleration effect of the

CUDA_Canny and OCL_Canny parallel algorithms is not

obvious. Because GPU computing needs to transfer compu-

ting data through a low-speed PCI-E bus, and the number of

work-items started is not enough to hide the time overhead of

data transfer and kernel function startup, that is, the perfor-

mance improvement brought by many-core computing can-

not offset the additional communication and function startup

time overhead brought by heterogeneous architecture. With

the increase of image resolution, the computation shifts from

I/O-intensive to computing-intensive. When the image reso-

lution is less than 2048 × 1536, the speedup of the

OCL_Canny parallel algorithm increases faster. However,

when the image resolution exceeds 2048 × 1536, the slope of

the (NVIDIA)
OCL

S curve gradually smooths and tends to be

stable, and the OCL_Canny parallel algorithm achieves a

speedup of 20.68 times.

S
p

e
e
d

u
p

Image size

Fig. 12 Performance acceleration of the Canny algorithm

Table 8 shows the acceleration effect of CUDA_Canny and

OCL_Canny parallel algorithms and related literature on

three groups of images. As can be seen from the table, when

dealing with small images, the acceleration effect of the data

in Literature [15] is similar to that of the OCL_Canny parallel

algorithm. With the expansion of the image frame, the growth

rate of
CUDA

S and ()NVIDIA
OCL

S is faster than that of

Literature [15], indicating that the OCL_Canny parallel

algorithm is more suitable for the fast processing of large

images than Literature [15].

Table 8 Comparison of acceleration ratio of related literature

Image resolution

(px)

Speedup

Literature [15] SCUDA SOCL (NVIDIA)

256×256 2.00 2.90 3.13

512×512 1.86 8.74 9.37

1024×1024 1.81 11.82 14.32

Figure 13 visually shows the performance comparison

among the three parallel algorithms OMP_Canny,

CUDA_Canny, and OCL_Canny. As can be seen from Figure

13, when the image is small, the OCL_Canny parallel algo-

rithm has no obvious performance advantage over the

OMP_Canny parallel algorithm. The OCL_Canny parallel al-

gorithm needs data exchange between memory and video

memory, which degrades the performance of the

OCL_Canny parallel algorithm. However, when the image is

larger, the number of work-items started is more, the propor-

tion of kernel function execution time is reduced, and the

large value
OMP -OCL

RS reflects the strong data processing abil-

ity of the GPU. The acceleration ability of the CUDA_Canny

and OCL_Canny parallel algorithms is basically the same

and
CUDA-OCL

RS achieves a maximum acceleration advantage

of 1.21 times.

R
el

a
ti

v
e

sp
ee

d
u

p

Image size

Fig. 13 Performance comparison between different parallel Canny algorithms

(2) Discussion on portability of the OCL_Canny parallel
algorithm

As can be seen from Figure 8, the OCL_Canny parallel algo-
rithm has a good acceleration effect on different GPU plat-

forms. At the same time, the values of (AMD)
OCL

S and

(NVIDIA)
OCL

S are very similar in nine groups of images with

different image sizes. It shows that the OCL_Canny parallel
algorithm has good platform scalability and data scalability.

6.3.3 System bottleneck analysis

In the operation and execution of the OCL_Canny algorithm
based on GPU acceleration, there are a large number of
memory read and write operations in the processing steps of
Gaussian filtering, image gradient calculation, image non-
maximum value suppression, and edge detection. According

to the previous analysis, in the kernel operation of the

Gaussian filter, the system needs to read
2 2

H n times and

write
2

H times to the extended image. In calling the kernel

operation to calculate the image gradient, it is necessary to

read data
2 2

H n times for the extended image and write

data
22 H times for the amplitude and direction of the image

gradient. In calling the kernel operation of the non-maximum

value suppression of the image, it is necessary to read data

22 H times for the amplitude and direction of the image

gradient and write data
2

H times for the original image. In

calling the kernel operation of edge detection, it is necessary

to read data
2

H times for the amplitude of the image gradient

and write data
2

H times for the original image. Therefore, in

the operation and execution of the OCL_Canny algorithm, a

total of 2 2 22 8H n H  +  memory data are needed to read

and write. Suppose, the image resolution is 2048 × 1536, the

size of the filter template is 3 × 3, and each pixel takes up 4

B storage space. According to the calculation, the total

amount of image data accessed by the OCL_Canny system is

about 0.3 GB. The total amount of image data divided by the

running time of the kernel 4.81 ms, which shows that the

bandwidth of the OCL_Canny system is about 62.37 GB/s.
At this point, the actual bandwidth of the system is close to

the bandwidth 84 GB/s of GeForce GTX 1050. Therefore, the

global memory bandwidth has become the main performance

bottleneck of the OCL_Canny system.

7 Conclusion

With the rapid development of GPU, GPU is used more and
more widely, and the advantage of GPU parallel computing
is increasing day by day. At the same time, the requirements
for the performance and optimization of parallel computing
are getting higher and higher. Through the research on the
parallel transplantation and optimization of the Canny edge
detection algorithm, this paper puts forward the following
three suggestions: (1) For large-scale computing-intensive
tasks, the performance of the algorithm can be improved
through the parallel computing of the GPU. At the same time,
the overall performance can be improved through the coop-
eration of heterogeneous platforms GPU and CPU. (2)
Memory access optimization plays an important role in im-
proving the performance of the overall algorithm. Therefore,
the efficiency of memory access can be improved by means
of vectorization, data localization, and fine tuning. (3) In or-
der to achieve efficient mapping between threads and the un-
derlying hardware, it is necessary to consider the characteris-
tics of hardware architecture and image processing algo-
rithms, and use several optimization strategies to achieve
high-performance algorithms. The experimental results show
that the OCL_Canny parallel algorithm achieves a perfor-
mance speedup of 3.13 times ~ 20.68 times under different
image data sizes. It provides a theoretical basis for other im-
age processing algorithms and improves the engineering ap-
plication value of the image edge detection algorithm. In the
next step, the bandwidth bottleneck problem in the image
processing algorithm will be studied to further improve the

performance of the algorithm.

Author contributions YS: Writing-review & editing,

Software, Investigation, Visualization. CL: Conceptualiza-

tion, Writing-review & editing, Funding acquisition, Super-

vision. QZ: Methodology, Formal analysis, Software, Inves-

tigation, Writing-review & editing. HX: Writing-original

draft, Writing & editing, Software, Investigation.

Funding This work was supported by the National Natural
Science Foundation of China (Nos. 61572444, 61250007),
the Key Scientific Research Projects of Henan Province Col-
leges and Universities of China (No. 22A520049), and the
Natural Science Foundation of Shandong Province (No.
ZR2022MD039).

Data availability The datasets generated or analyzed dur-
ing this study are available from the corresponding author on
reasonable request.

Declarations

Conflict of interest The authors declare that they have no
conflicts of interest to report regarding the present study.

References

1. Taslimi, S., Faraji, R., Aghasi, A., et al.: Adaptive edge detection

technique implemented on FPGA. Iranian Journal of Science

and Technology-Transactions of Electrical Engineering. 44(4),

1571–1582 (2020)

2. Morar, A., Moldoveanu, F., Asavei, V., et al.: Multi-GPGPU

based medical image processing in hip replacement. Control

Eng Appl Inf. 14(3), 25–34 (2012)

3. Dhivya, R., Prakash, R.,: Edge detection of satellite image using

fuzzy logic. Cluster Comput. 22(5), 11891–11898 (2019)

4. Al Badawi, A., Veeravalli, B., Lin, J., et al.: Multi-GPU design

and performance evaluation of homomorphic encryption on

GPU clusters. IEEE T Parall Distr. 32(2), 379–391 (2021)

5. Wisultschew, C., Perez, A., Otero, A., et al.: Characterizing deep

neural networks on edge computing systems for object classifi-

cation in 3D point clouds. IEEE Sens J. 22(17), 17075–17089

(2022)

6. Liu, X.X., Mao, M.J., Bi, X.Y., et al.: Exploring applications of

STT-RAM in GPU architectures. IEEE T Circuits-I. 68(1), 238–

249 (2021)

7. Canny, J.: A computational approach to edge detection. IEEE T

Pattern Anal. 8(6), 679–698 (1986)

8. Wachowicz, A., Pytlik, J., Malysiak-Mrozek, B., et al.: Edge

computing in IoT-enabled honeybee monitoring for the detec-

tion of varroa destructor. INT J Ap Mat Com-Pol. 32(3), 355–

369 (2022)

9. Risso, M., Burrello, A., Conti, F., et al.: Lightweight neural ar-

chitecture search for temporal convolutional networks at the

edge. IEEE T Comput. 72(3), 744–758 (2023)

10. Weizhong, S., Weiwei, C., Yanming, F., et al.: FPGA-based real-

time edge detection and its implementation for deep-space im-

ages. electronic science and technology. 33(5), 45–49 (2020)

11. Jin, W., Jun, Z., Cong, L., et al.: Implementation of SDSo C ac-

celeration algorithm for edge detection algorithm in machine vi-

sion. Computer Engineering and Applications. 55(12), 208–214

(2019)

12. Keqiang, X., Guangming, L., Renren, L., et al.: Implemention

and optimization of Canny operator on DSP. Modern Electron-

ics Technique. 37(6), 8–11 (2014)

13. Xiangjiao，L., Guangliang，L., Xuewu，Z., et al.: The parallel

canny algorithm based on TBB. Journal of Nanyang Institute of

Technology. 6(3), 47–50 (2014)

14. Yue, Z., Xiaohong, W., Xiaohai, He.: Real-time image edge de-

tection based on GPU. Electronic Measurement Technology.

31(2), 140–142 (2009)

15. Bin, T., Wen, L.: Fast Canny algorithm based on GPU+CPU.
Chinese Journal of Liquid Crystals and Displays. 31(7), 714–

720 (2016)

16. Jin, W., Ying, L., Zhen-tao, L., et al.: GPU implementation of

machine vision algorithm based on OpenCL. Computer Engi-

neering and Design. 40(2), 346–351 (2019)

17. Iqbal, B., Iqbal, W., Khan, N., et al.: Canny edge detection and

Hough transform for high resolution video streams using Ha-

doop and Spark. Cluster Comput. 23(1), 397–408 (2020)

18. Cao, J.F., Chen, L.C., Wang, M., et al.: Implementing a parallel

image edge detection algorithm based on the Otsu-Canny oper-

ator on the Hadoop platform. Comput Intel Neurosc. (03), 1–13

(2018)

19. Xiaoli, H., Li, D., Jie, J.: Real-time image edge detection of the

improved Canny algorithm. Journal of Inner Mongolia Univer-

sity of Science and Technology. 34(3), 262–266 (2015)

20. Sangeetha, D., Deepa, P.: FPGA implementation of cost-effec-

tive robust Canny edge detection algorithm. J Real-Time Image

Pr. 16(4), 957–970 (2019)

21. Lee, J., Tang, H., Park, J.: Energy efficient Canny edge detector

for advanced mobile vision applications. IEEE T Circ Syst Vid.

28(4), 1037–1046 (2018)

22. Suwen, Z., Zhixing, C., Yixin, S.U.: Improved Canny edge de-

tection algorithm and implementation in FPGA. Infrared Tech-

nology. 32(2), 93–96 (2010)

23. Shengxiao, N., Sheng, W., Jingjing, Y.: A Fast image segmenta-

tion algorithm fully based on edge information. Journal of Com-

puter-Aided Design and Computer Graphics. 24(11), 1410–

1419 (2012)

24. Fuqiang, Z., Cao, Y., Wang, X.M.: Fast and resource-efficient

hardware implementation of modified line segment detector.

IEEE T Circ Syst Vid. 28(11), 3262–3273 (2018)

25. Sivakumar, V., Janakiraman, N.: A novel method for segmenting

brain tumor using modified watershed algorithm in MRI image

with FPGA. Biosystems. 198(S1), 1–13 (2020)

26. Hongye, Z.: Optimization identification and simulation about

household registration management personal fingerprint image.
Heilongjiang Science. 11(12), 1–3 (2020)

27. Rongbao, C., Tianze, F., Honghu, Jiang.: Identification method

of welding perpendicularity for components based on

DSP+FPGA. Computer Measurement and Control. 25(6), 207–

210, 214 (2017)

28. Hanjun, Jin., Zeng, T.: Contour extraction of moving objects in

video sequences based on GPU. Electronic Measurement Tech-

nology. 39(11), 85–88 (2016)

29. Tengzhang, J., Yuxin, H., Peng, L., et al.: A method of multi-

ship target detection and tracking by on-orbit satellite. Journal

of University of Chinese Academy of Sciences. 37(3), 368–378

(2020)

30. Gadowski, S., Tomiczak, K., Komsta, L.: High dynamic range

in video densitometry-a comparative study to classic video

scanning on Gentiana extracts. JPC-J Planar Chromat. 36(1), 3–

8 (2023)

31. Alvarez-Farre, X., Gorobets, A., Trias, F.X.: A hierarchical par-

allel implementation for heterogeneous computing. Application

to algebra-based CFD simulations on hybrid supercomputers.

Comput Fluids. 214(10), 1–10 (2021)

32. Banas, K., Kruzel, F., Bielanski, J.: Optimal kernel design for

finite-element numerical integration on GPUs. Comput Sci Eng.

22(6), 61–74 (2020)

33. Tran, T.H., Sun, K.C., Simon, S.: A GPU-accelerated light-field

super-resolution framework based on mixed noise model and

weighted regularization. J Real-Time Image Pr. 19(5), 893–910

(2022)

34. Simmross-Wattenberg, F., Rodríguez-Cayetano, M., Royuela-

del-Val, J., et al.: OpenCLIPER: An OpenCL-based C++ frame-

work for overhead-reduced medical image processing and re-

construction on heterogeneous devices. IEEE J Biomed Health.

23(4), 1702–1709 (2019)

35. Xiao, H., Fan, Y.M., Ge, F., et al.: Algorithm-hardware co-de-

sign of real-time edge detection for deep-space autonomous op-

tical navigation. IEICE T Inf Syst. E103D(10), 2047–2058

(2020)

36. Zimu, X., Ki-Young, S., M.Gupta, Madan.: Development of a

CNN edge detection model of noised X-ray images for en-

hanced performance of non-destructive testing. Measurement.

174(10), 1–17 (2021)

37. Lee, D.H.E., Chen, P.Y., Yang, F.H., et al.: High-efficient low-

cost VLSI implementation for Canny edge detection. J Inf Sci

Eng. 36(3), 535–546 (2020)

38. Lakshmi, S.J., Deepa, P.: Blind image deblurring using GLCM

and negans obtuse mono proximate distance. Imaging Sci J.

70(01), 19–29 (2023)

39. Chen, J.Y., Xi, Z.H., Wei, C., et al.: Multiple object tracking us-

ing edge multi-channel gradient model with ORB feature. IEEE

Access. 9(2), 2294–2309 (2021)

40. Zhang, X., Lu, W., Ding, Y.W., et al.: A mixed method for fea-

ture extraction based on resonance filtering. intelligent automa-

tion and soft computing. 35(03), 3141–3154 (2022)

Yupu Song received her M.D. degree in

software engineering from Beijing Uni-

versity of Technology, China in 2002.

She is currently an associate professor in

the Department of Computer, Shangqiu

Polytechnic. Her main research interests

include data analysis and parallel compu-

ting.

Cailin Li received the Ph.D. degree in

photogrammetry and remote sensing

from the School of Remote Sensing and

Information Engineering, Wuhan Uni-

versity, China, in 2011. He is currently an

associate professor in the School of Civil

and Architectural Engineering, Shandong University of Tech-

nology, China. His main research interests include digital pho-

togrammetry and computer vision and digital image processing.

Qinglei Zhou received the Ph.D. de-

gree in software and theory from Xi'an

Jiaotong University, China, in 2002. He

is currently a professor and doctoral su-

pervisor in the School of Computer and

Artificial Intelligence, Zhengzhou Uni-

versity, China. His main research interests include parallel al-

gorithm, image processing, and parallel computing.

Han Xiao received the Ph.D. degree in

photogrammetry and remote sensing

from the School of Remote Sensing and

Information Engineering, Wuhan Uni-

versity, China, in 2011. From 2011 to

2014, he was a Postdoctoral Researcher

with School of Information Engineering,

Zhengzhou University, China. Since

2012, he has been a professor level 3 with the School of Infor-

mation Science and Technology, Zhengzhou Normal University,

China. His main research interests include research and design

of massively parallel algorithms, research on parallel pro-
cessing of remote sensing big data, photogrammetry and
remote sensing, and parallel computing.

