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Abstract 
In the process of Canny edge detection, a large number of high complexity calculations such as Gaussian filtering, gradient 
calculation, non-maximum suppression, and double threshold judgment need to be performed on the image, which takes up a 
lot of operation time, which is a great challenge to the real-time requirements of the algorithm. In order to solve this problem, 
a fine-grained parallel Canny edge detection method is proposed, which is optimized from three aspects: task partition, vector 
memory access, and NDRange optimization, and CPU-GPU collaborative parallelism is realized. At the same time, the parallel 
Canny edge detection methods based on multi-core CPU and CUDA architecture are designed. The experimental results show 
that OpenCL accelerated Canny edge detection algorithm can achieve 20.68 times, 3.96 times, and 1.21 times speedup ratio 
compared with CPU serial algorithm, CPU multi-threaded parallel algorithm, and CUDA-based parallel algorithm, respectively. 
The effectiveness and performance portability of the proposed Canny edge detection parallel algorithm are verified, and it 
provides a reference for the research of fast calculation of image big data. 

Key words Canny algorithm · Edge detection · Graphics Processing Unit (GPU) · Open Computing Language (OpenCL) · Par-
allel algorithm 

 

1 Introduction 

With the development of computer science, image processing 
technology has achieved fruitful research results in recent 
years and has been widely used in industrial, military, medi-
cal, and other fields. As the most basic feature of the image, 
the edge feature of the image can greatly reduce the image 
information to be processed on the premise of retaining the 
shape information of the object [1]. The edge of a digital im-
age contains a variety of useful information, which can be 
used to detect and recognize images. Digital image edge de-
tection technology is widely used in image segmentation, 
motion detection, target tracking, face recognition, and other 
fields. Therefore, edge detection is one of the most important 
key technologies in the field of image processing [2]. 

At present, image edge detection algorithms mainly in-
clude edge detection algorithms based on wavelet transform, 
edge detection algorithms based on morphology, edge detec-
tion algorithms based on machine learning, and traditional 
edge detection algorithms [3]. The edge detection algorithm 
based on wavelet transform is used to transform the image 
with different scales. When the scale is small, the edge detail 
information is rich, and the positioning accuracy is high, but 
the anti-disturbance ability is poor. When the scale is large, 
the positioning accuracy is low and the anti-jamming ability 
is good, so it fuses the results of edge images of each scale, 
taking into account the positioning accuracy and anti-jam-
ming ability to a certain extent, but the algorithm complexity 



 

 

is high [4]. The edge detection algorithm based on morphol-
ogy uses the continuous movement of structural elements in 
the image to analyze and process the image and extracts dif-
ferent image features by selecting different structural ele-
ments for opening and closing and other operations. This al-
gorithm is easy to implement, and can effectively remove the 
salt and pepper noise, but its edge location accuracy is not 
good. Edge detection algorithm based on machine learning 
has become a new research direction in recent years. In par-
ticular, the deep features of the image are extracted automat-
ically by deep learning, and a good edge effect is obtained. 
Its disadvantage is that it requires a large number of samples 
of training and learning, and the computational complexity is 
high [5]. 

The traditional edge detection algorithms include the Rob-
erts operator, Prewitt operator, Sobel operator, and so on. 
These algorithms are simple and easy to implement, but their 
denoising ability is poor, crack edge recognition is incom-
plete, and pseudo edges are easy to occur. Compared with 
these algorithms, the Canny edge detection operator used in 
this paper has a strong denoising ability and high detection 
accuracy [6]. The Canny edge extraction method was first 
proposed by John F.Canny in 1986 [7]. The Canny edge de-
tection method is based on finding the local maximum of the 
gradient amplitude of the image. It uses the first derivative of 
the Gaussian filter to calculate the gradient amplitude. It uses 
the double-domain value method to detect the strong and 
weak edges respectively, and only when the strong and weak 
edges are connected, the weak edges where the strong edges 
are discontinuous will be included in the detection results. As 
a result, the influence of noise on the detection results can be 
reduced, and the detection results can achieve a better bal-
ance between noise and edge detection. However, the Canny 
operator also has obvious shortcomings. Due to the calcula-
tion flow of Gaussian filtering, gradient amplitude and direc-
tion calculation, non-maximum suppression, and double 
threshold processing, the algorithm has high complexity and 
slow operation speed, which is contrary to the fast and accu-
rate application principle in practical engineering, which 
greatly restricts the engineering practicability of the algo-
rithm. In order to improve the computing speed of the Canny 
operator, it is a good choice to use Graphics Processing Unit 
(GPU) to parallelize processing. GPU has multiple threads 
for fast computing of large data with low coupling and high 

parallelism. At the same time, the parallel computing of GPU 
is becoming more and more mature in recent years, and its 
friendly programming operation and people-friendly price 
also make it possible to use GPU parallel processing Canny 
operator [8, 9]. In order to use GPU parallel processing 
Canny operator, it is necessary to optimize and parallelize the 
processing process of the Canny operator, so as to meet the 
requirements of GPU parallel processing. Through the opti-
mization and transformation of the Canny operator, the pro-
cessing mode of running GPU+CPU reduces the edge detec-
tion time of a 1280 × 720 image to less than 10 ms, which 
greatly improves the execution efficiency of the algorithm 
and lays a foundation for practical industrial applications. 

For the problem that it is difficult to have both effective-
ness and performance portability, this paper re-evaluates and 
analyzes all the steps of Canny edge detection according to 
the architecture of GPU, so that the key hot steps run com-
pletely on GPU. Based on the architecture of Open Compu-
ting Language (OpenCL), the parallel implementation of the 
Canny edge detection algorithm (OCL_Canny) is completed. 
By analyzing the conventional inefficient memory access 
mode of single work-item and single pixel and the deficiency 
of low utilization of GPU memory, the method of vectorized 
memory access is proposed, which improves resource utili-
zation and computational efficiency. At the same time, the 
OCL_Canny parallel algorithm also has the advantages of 
real-time and performance portability. 

Therefore, the main contributions of this paper are as fol-
lows: (1) implement the Canny edge detection algorithm 
OCL_Canny through heterogeneous computing. (2) The 
OMP_Canny and CUDA_Canny parallel algorithms under 
the mainstream parallel computing framework of OpenMP 
and Compute Unified Device Architecture (CUDA) compare 
the time-consuming and accelerated performance with the 
OCL_Canny algorithm. (3) The performance of OCL_Canny 
on a heterogeneous GPU platform is evaluated, and the port-
ability of its performance is analyzed. 

The rest of the paper is arranged as follows. In Section 2, 
we review the research results of the Canny edge detection 
parallel algorithm, the existing implementation of FPGA and 
DSP computing architecture, the existing computing methods 
on graphics hardware, and the Canny algorithm on Hadoop 
cluster system. Section 3 summarizes the basic principles of 
OpenCL architecture and describes the Canny edge detection 



 

 

algorithm and the parallelism analysis of Canny operators. 
Section 4 describes the parallel computing process, design, 
and optimization solution of the Canny operator under 
OpenCL architecture. Section 5 discusses the design of 
OMP_Canny and CUDA_Canny parallel algorithms. Section 
6 gives the relevant experimental results and makes an em-
pirical evaluation of the performance of the OCL_Canny op-
erator. Section 7 is the conclusion. 

2 Background and introduction of related research 

At present, many researchers have researched the implemen-
tation of the Canny edge detection parallel algorithm. SHI 
Weizhong et al. [10] proposed an optimization algorithm of 
Canny edge detection based on FPGA, which is suitable for 
real-time processing in deep space optical autonomous navi-
gation. Jin et al. [11] chose ZC706 as the development plat-
form to accelerate the edge detection of Canny based on the 
SDSoC development environment and achieved a speedup of 
16.97 times. Keqiang et al. [12] developed a Canny operator 
on the TI DSP TMS320C6678 processor, which improves the 
speed of the operator. Xiangjiao et al. [13] implemented a 
parallel Canny algorithm based on Threading Building Block 
(TBB) tool and C++ language and achieved 3.673 times ac-
celeration ratio on a quad-core CPU. Yue et al. [14] realized 
the Canny edge detection algorithm on GPU using OpenGL, 
and the real-time performance of the algorithm was satisfied. 
Bin et al. [15] proposed a method to quickly implement the 
Canny operator based on GPU+CPU, with a speedup of up to 
5.39 times. Jin et al. [16] proposed a Canny edge detection 
algorithm under OpenCL architecture, which achieves 6.16 
times speedup without considering data transmission. Some 
scholars have studied the implementation of the Canny edge 
detection algorithm in Hadoop cluster architecture, which im-
proved the performance of batch processing images [17, 18]. 

Some scholars have proposed an improved Canny image 
edge detection method, which can effectively detect the im-
age edge in real time on FPGA [19, 20]. Lee et al. [21] im-
plemented a Canny edge detector suitable for advanced mo-
bile vision applications on FPGA under the slight sacrifice of 
detection effect, which saves the execution time of the system. 
Suwen et al. [22] proposed an improved Canny edge detec-
tion algorithm based on the FPGA platform, which improves 
the ability of weak edge detection. Shengxiao et al. [23] pro-
posed an improved algorithm for edge detection of the Canny 
operator based on the GPU platform, which obtains 64 times 

speedup. 
Fuqiang et al. [24] designed the line segment detector al-

gorithm with low error rate by using the Canny edge detec-
tion algorithm implemented on FPGA, which has the ad-
vantages of high reliability and high speed. Sivakumar et al. 
[25] proposed a new ROI region segmentation method for 
MRI images by implementing enhanced Canny operators on 
FPGA. Hongye [26] realized the fingerprint acquisition sys-
tem based on DSP by optimizing the Canny edge extraction 
operator, which makes the identification speed of the finger-
print wireless acquisition system faster. Rongbao et al. [27] 
designed a verticality recognition system based on 
DSP+FPGA using the improved Canny algorithm. The re-
sults show that the system has high detection speed, and high 
precision and meets real-time requirements. Hanjun et al. [28] 
combined the Gaussian mixture model with Canny edge de-
tection to extract the target contour, which shortens the com-
puting time on the CUDA platform and meets the real-time 
requirements of video analysis. Tengzhang et al. [29] pro-
posed a method based on the multi-feature Canny edge de-
tection algorithm and the joint probability data association 
algorithm for moving multi-ship detection and tracking by 
on-orbit satellite. This method can detect and track the target 
quickly and accurately on the embedded GPU development 
platform. 

To sum up, people mainly study the performance of the 
Canny algorithm from three aspects. The first is to accelerate 
the Canny operator in parallel under the architecture of FPGA, 
DSP, GPU, and Hadoop clusters. Although these research re-
sults have achieved a certain degree of performance improve-
ment, the speedup is not high, the computing time is not ideal. 
The second is to improve the performance of the improved 
Canny operator by improving the Canny operator in some as-
pects, such as optimizing the calculation process. The third is 
to apply the Canny operator to a variety of practical applica-
tions to achieve the acceleration of the application system un-
der the parallel computing architecture. However, on the one 
hand, the acceleration effect of these research results is not 
ideal. On the other hand, Canny edge detection often uses a 
single parallel technology to improve the algorithm, without 
comparison with other parallel computing models, it cannot 
get the best acceleration effect. Current computer systems 
generally contain a variety of processors, such as CPU, GPU, 
and other types of processors. How to make reasonable and 



 

 

full use of a variety of computing resources on heterogeneous 
computing platforms will become very important. 

In this paper, the storage of GPU is designed and used rea-
sonably by using OpenCL parallel acceleration technology to 
realize the high-speed computing of the Canny image edge 
detection algorithm. By taking the three memory access 
modes of image data access on GPU, namely, global memory, 
local memory, and constant memory, as a starting point, the 
parallel implementation of image Gaussian filtering and im-
age gradient in these three kinds of memory is analyzed and 
designed, so that the two operations can be realized more ef-
ficiently on GPU. In the process of research, GPU is used to 
realize image Gaussian filtering, image gradient, non-maxi-
mum value suppression of gradient image, and determining 
image edge points in parallel. To obtain the fast extraction of 
image edge as the goal, the calculation methods of image 
Gaussian filtering and image gradient are optimized and im-
proved. From the perspective of saving storage resources and 
being more in line with the parallel programming architecture 
of GPU, the computing is improved, such as improving the 
operation method of the image template and extended image 
to make it more suitable for the parallel implementation un-
der GPU. At the same time, the construction of pixel vector-
ization calculation under GPU is applied to the calculation of 
image Gaussian filtering and image gradient, which verifies 
the effectiveness of the vectorization parallel computing 
method of image Gaussian filtering and image gradient cal-
culation. 

3 Software model of the Canny algorithm 

3.1 Overview of OpenCL 

OpenCL is used for a parallel computing platform, which es-
tablishes the writing standard of parallel systems. OpenCL 
has a relatively wide range of applications, providing compu-
ting support for CPU, GPU, FPGA, and other devices, and 
has become a programming standard in the field of heteroge-
neous systems. OpenCL provides developers with a common 
programming interface and a development model for the un-
derlying hardware layout [30]. 

OpenCL heterogeneous parallel architecture consists of 
four parts: platform model, execution model, storage model, 
and programming model. The four models support each other 
when the OpenCL system is running, and each model has its 
own unique role. 

(1) Platform model 
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Fig.1  OpenCL platform model 

As shown in Figure 1, the OpenCL platform model con-
sists of a Host connected to one or more OpenCL compute 
devices, which is used to realize the data exchange between 
the host and the OpenCL devices. CPU, GPU, and other pro-
cessors that support OpenCL all belong to OpenCL devices. 
An OpenCL device can be divided into one or more Compute 
Units (CU), and each CU is composed of one or more Pro-
cessing Elements (PE) [31]. 

(2) Memory model 
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Fig.2  OpenCL memory model 

The memory in OpenCL architecture is divided into four 
different memory types. The location of each memory in the 
platform is shown in Figure 2. These four types of memory 
are global memory, constant memory, local memory, and pri-
vate memory [32]. 

 (3) Execution model 
The execution model is shown in Figure 3. The execution 

model of OpenCL consists of two parts, one is the host sys-
tem executing on the host machine, and the other is the kernel 
software executing on the OpenCL device. The OpenCL ar-
chitecture manages the execution of kernel software in 
OpenCL devices by using context in the main system [33]. 



 

 

When the send kernel command is submitted on the host, 
the system plans an N-dimensional index space NDRang. 
The operation of each point in this space is called a work, 
which OpenCL calls a work-item. All work-items in the in-
dex space have their own unique coordinates, which serve as 
the global ID for each work-item. When sending kernel exe-
cution commands, the work-item is divided into several areas 
of the same size and becomes a collection of work-items, 
which are called work-groups. The number of work-items 
contained in all work-groups is the same, and similar to the 
global ID of work-items, work-groups also have ID, called 
work-group ID. Work-items in each work-group have a 
unique ID in the work-group, called a local ID. Figure 3 gives 
a two-dimensional index space, the size of the index space is
Gx Gy , in which a coordinate system is established to rep-
resent the global ID ( , )gx gy  of each work-item. The index 
space in the graph is divided into multiple work-groups with
Sx Sy  work-items. OpenCL stipulates that Gx  must be di-
visible by Sx and Gy must also be divisible by Sy [34]. 
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Fig.3  OpenCL execution model 

(4) Programming model 
OpenCL achieves the goal of acceleration by executing 

tasks in parallel, which is divided into task parallelism and 
data parallelism. Task parallel mode means that all the work-
ing nodes in the workspace of OpenCL devices are relatively 
independent, and the system can accelerate by executing mul-
tiple kernels at the same time or adding local kernel tasks to 
the kernel. Data parallel methods are commonly used, and 
multiple data are calculated in parallel so that the computa-
tional efficiency is significantly improved. 

3.2 Algorithm theory 

3.2.1 Canny principle 

The Canny operator fully reflects the mathematical charac-
teristics of the optimal edge detector. It is the optimal approx-
imation operator for the signal-to-noise ratio and location 

ability and is widely used in image processing and pattern 
recognition problems. The Canny operator not only has a 
good edge detection performance but also is insensitive to 
noise, even in a noisy environment, it also has a good edge 
detection effect. Therefore, the Canny operator can be ap-
plied to edge detection in different environments. 

(1) Image preprocessing 

The images to be detected are usually disturbed by noise. 
The amplitude of the gradient near the noise pixel is large, 
and the edge detection operator is easy to mistakenly detect 
the noise pixel as the edge pixel. Therefore, it is necessary to 
remove the noise in the image. 

When the image is used for edge detection, the original 
data must be processed first. The input image is preprocessed 
by convolution filter with Gaussian filter to remove noise and 
reduce the influence of noise on gradient calculation, so as to 
better realize the effect of edge detection image segmentation. 
Therefore, image preprocessing requires convolution of the 
original image and Gaussian mask, and the processed image 
is more blurred than the original, which is conducive to image 
edge detection [35]. 

In the Canny operator, the smooth denoising of the image 
uses the first derivative of the 3 × 3 two-dimensional Gauss-
ian function, and the Gaussian function and image convolu-
tion are shown in equation (1). 
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

+
−
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
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                   (1) 

In equation (1), ( ),f x y is the original image, ( ), ,G x y  is 

the Gaussian function,   is the standard deviation of the 

two-dimensional Gaussian function, and ( ),H x y is the im-

age smoothed by the Gaussian filter. 
(2) Determine the amplitude and direction of the image 

gradient 

The amplitude of the pixel gradient of the image ( ),H x y

can be calculated by the first partial derivative. In calculating 
the gradient direction, two 3 × 3 Sobel operators are used as 
the first order approximation of the partial derivatives in the x

direction and y direction, as shown in Figure 4 [36]. 
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Fig.4  Sobel operator template 

 

Before determining the amplitude and direction of the im-
age gradient, equation (2) is used to solve the first order par-
tial derivative matrix of the x -axis and y -axis direction. 

( ) ( ) ( ) ( )
( ) ( ) ( )
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H x y H x y H x y

Q x y H x y H x y H x y

H x y H x y H x y

= + − + + + + +


− − − − − − − +


= − + + + + + +
 − − − − − − + −

  (2) 

The amplitude and direction of the gradient are calculated 
by the finite difference of the first order partial derivative. For 
the calculation results of the gradient amplitude, the non-
maximum value suppression method is adopted. After pro-
cessing, the gradient amplitude M and gradient direction at 

the pixel ( ),H x y of the image can be calculated by equation 

(3) and equation (4) respectively [37]. 
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                       (4) 

(3) Perform non-maximum value suppression on the gra-
dient amplitude image to determine the edge point 

Non-maximum value suppression is the key to find all the 
target edge points in the image. In order to determine the edge, 
it is necessary not only to get the global gradient but also to 
retain the maximum point of the local gradient and suppress 
the non-maximum value. In the 3 × 3 region, the edge can be 
divided into four directions: 0°, 45°, 90° and 135°. Similarly, 
the reverse direction of the gradient is also four directions 
(orthogonal to the edge direction). Therefore, in order to sup-
press the non-maximum value, all possible directions are 
quantized into four directions, as shown in Figure 5 [38]. 

 

Fig.5  Sector chart 

In this way, the direction angle is regulated to the following 
four directions: 

The vertical edge ― gradient direction is horizontal: 

( )    , 67.5 , 112.5 112.5 , 67.5x y   −−   

The 135° edge ― gradient direction is 45°: 

( )  )  ), 22.5 , 67.5 157.5 , 112.5x y   −−   

The horizontal edge ― gradient direction is vertical: 

( )  ) (  (  ( , 0 , 22.5 22.5 , 0 157.5 , 180 180 , 157.5x y       − − −  

The 45° edge ― gradient direction is 135°: 

( ) (   , 112.5 , 157.5 67.5 , 22.5x y    − −   

In the 3 × 3 region, for each pixel in the image, there are 
only four possible directions connected to the adjacent points: 
0°, 45°, 90°, and 135°, as shown in Figure 6 [39]. 
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Fig.6  Pixel neighborhood structure 

At the central pixel ( ),H x y of each neighborhood is com-

pared with two adjacent pixels along its corresponding gradi-

ent direction ( ),x y  . If the gradient value ( ),M x y  at the 

center point is the largest, then the corresponding ( ),f x y

grayscale value is retained, otherwise, ( ),f x y  grayscale 

value is set to 0. As a result, the non-maximum value sup-

pressed image ( ),f x y is obtained. 



 

 

(4) Using double threshold algorithm to detect and con-
nect edges of gradient images 

In order to reduce the pseudo edge points, the double 
threshold algorithm is used to distinguish and connect the 
edges. If the edge strength is greater than the high threshold, 
it must be the edge point. If the edge strength is less than the 
low threshold, it must not be the edge point. If the edge in-
tensity is greater than the low threshold and less than the high 
threshold, then see if there are any edge points in the adjacent 
pixels of this pixel that exceed the high threshold, if so, it is 
the edge point, if not, it is not the edge point [40]. 

Two thresholds, L
T and H

T , are selected with a ratio of 1:2 

or 1:3. For the image ( ),f x y processed by non-maximum 

value suppression processing, if the gradient value of the 

pixel is ( ),
H

M x y T≥ , then the pixel is marked as an edge 

pixel, namely, and the ( ),f x y grayscale value is set to 255. 

If the gradient value of the pixel is ( ),
L

M x y T„ , then the 

pixel is marked as a non-edge pixel, namely, and the ( ),f x y

grayscale value is set to 0. If the gradient value of the pixel is 

( ),
L H

T M x y T  , then the pixel is marked as "quasi-pixel", 

that is, and the ( ),f x y grayscale value is set to 1. After the 

double threshold marking is completed, search for "quasi-

pixel points" in the image, and select the positions of its 8 

neighborhood points to find out whether there is a point with 

gradient value ( ),
H

M i j T≥ . If it exists, mark the pixel as an 

edge point, otherwise mark the pixel as a non-edge pixel. 

3.2.2 Eliminate branches 

When using a template to traverse an image, the computation 
is out of bounds when traversing to the edge of the image. 
Therefore, the edge of the image to be processed is expanded 
before the calculation begins. The method of dealing with 
edge pixels in this paper is to make full use of the similarity 
of the image and take its own pixels to expand the original 
image. Suppose that the size of the original image is H H× , 
and the size of the image after edge expansion is H H × , as 
shown in Figure 7, the solid line region and the dotted line 
region, respectively. When the neighborhood size is n n×  , 

the edges of 2n   pixels are filled around the original image. 

After extended preprocessing, there is no need for branch 
processing, which ensures a high degree of unity of the im-

plementation process, and then improves the parallel poten-
tial of the algorithm. 

In this paper, the method of even expansion is used to ex-

pand the edge of the original image. First of all, the gray val-

ues of all the pixels of the original image are filled into the 

middle part of the expanded edge image in turn. Then, fill the 

left boundary data of the original image into the correspond-

ing left expansion area of the flared image, as pointed by the 

red arrow in Figure 7. Fill the right boundary data of the orig-

inal image into the corresponding right expansion area of the 

flanged image, as pointed by the green arrow in Figure 7. Fi-

nally, fill the upper boundary data of the expanded image into 

the corresponding upper expansion area (including corners) 

of the final edge image, as pointed by the black arrow in Fig-

ure 7, and fill the lower boundary data of the expanded image 

into the corresponding lower expansion area (including cor-

ners) of the final edge image, as pointed by the blue arrow in 

Figure 7. 
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Fig.7  Boundary processing 

3.3 Serial system analysis 

The 1024 × 1024 image size was used to test, the data bit 

depth was 8 bits, and the data format was BMP. When the 

CPU is Intel Core i7-8700K and the filter neighborhood size 

is 3 × 3, the time-consuming of each calculation step on the 

CPU is shown in Table 1. It can be seen from Table 1 that the 

most time-consuming step of the whole algorithm is the cal-

culation of Canny edge detection, which includes the Gauss-

ian filtering process for noisy images. The Canny edge detec-

tion step accounts for about 79.72% of the processing time of 



 

 

the whole Canny system. Therefore, the parallel acceleration 

in this paper will mainly focus on the Canny edge detection 

part. 
Table 1  Time-consuming of each module in the Canny algorithm 

Algorithm steps 
Time-consuming 

by CPU (ms) 

Occupancy 

time ratio (%) 

Read in source image data 2.23 1.20 

Extended source image 3.65 1.97 

Gaussian template calculation 10.24 5.53 

Initialize non-maximum value sup-

pressed image 
19.45 10.50 

Canny edge detection 147.69 79.72 

Output image edge extraction result 2.01 1.08 

Total 185.27 100.00 

In the calculation process of Canny edge detection, firstly, 

Gaussian filtering needs to take a filter window around the 

calculation point, and convolution calculation is carried out 

in this window. Then, the amplitude and direction of the im-

age gradient need to be determined by using the Sobel oper-

ator, and then the gradient amplitude image is suppressed by 

non-maximum value, thus the non-maximum value suppres-

sion image is obtained. Finally, the double threshold algo-

rithm is used to distinguish and connect the edges. Each pixel 

in the image data is processed in turn. When the image scale 

is large, the system will produce a large amount of computa-

tion. Therefore, reducing the computing time of Canny edge 

detection processing is one of the problems to be solved in 

this algorithm. 

Suppose, the image size is H H×  and the neighborhood 

size is n n× . Then 

Process 1: The time complexity of the process of initializ-

ing a non-maximum value suppression image is ( )2Ο H . 

Process 2: The time complexity of the step of expanding 

the edge of the image is ( ) ( )2Ο H Ο H n+ × . 

Process 3: The time complexity of the image Gaussian fil-

tering step is ( )2 2Ο H n . 

Process 4: The time complexity of the process of determin-

ing the amplitude and direction of the image gradient is

( )2 2Ο H n . 

Process 5: The time complexity of non-maximum value 

suppression of gradient amplitude image is ( )2Ο H . 

Process 6: The time complexity of the process of detecting 

and connecting edges of gradient images is ( )2Ο 9H . 

Therefore, the total time complexity of the Canny edge de-

tection algorithm is:

( ) ( ) ( ) ( )2 2 2 2
2Ο H n + 3Ο H Ο H n Ο 9H+ +×  . From 

the above analysis, it can be seen that process 3 ~ 6 is a func-

tional part of the Canny edge detection algorithm with rela-

tively high time complexity. Therefore, this paper should 

mainly focus on the parallel optimization of process 3 ~ 6, 

that is, the stage of Canny edge extraction. To sum up, the 

time complexity of the Canny edge detection algorithm is

( )2 2Ο H n . 

3.4 Algorithm parallel analysis 

The parallelism analysis of the hot step process 3―process 6 

in the Canny edge detection algorithm is carried out, and the 

time complexity of the algorithm is analyzed. 

(1) Process 3: From the point of view of the image Gauss-

ian filtering process, the n n× point multiplication is mainly 

carried out through the image pixel matrix and the Gaussian 

template matrix. The bottom layer of the algorithm processes 

a large amount of data, but the operation process is relatively 

simple. All pixels in the image can perform the same opera-

tion, there is no data dependence between each point of the 

target matrix, these operations can be performed in parallel, 

and the algorithm is a memory-intensive algorithm. In view 

of this, this paper realizes the optimization of the algorithm 

by improving the memory access efficiency and making ra-

tional use of GPU hardware resources. 

(2) Process 4: The calculation of the amplitude and direc-

tion of the image gradient is to convolution each pixel with 

the Sobel operator in the x direction and y direction respec-

tively, and then calculate the amplitude and direction of the 

gradient for the pixel. These computing processes are inde-

pendent of each other and can be calculated in parallel. 

(3) Process 5: Each central pixel is compared with two ad-

jacent pixels in the same gradient direction to suppress non-

maximum value pixels. The comparison process of each 



 

 

group is only related to the amplitude data of the current com-

parison pixels, but has nothing to do with other pixels. Each 

group of comparison processes can correspond to a work-

item, so that process 5 can be executed in parallel. 

(4) Process 6: The process of judging the edge points of 

pixels by using double thresholds does not affect each other 

and is independent of each other. It is beneficial to give full 

play to the performance advantages of GPU devices. 

To sum up, the hot steps of the Canny edge detection algo-

rithm, process 3―process 6, can be executed in parallel, 

which is suitable for implementation on GPU. Therefore, a 

work-item is created for each pixel so that the corresponding 

pixel can be processed accordingly. Because all work-items 

perform the same computing process at the same time, the 

time complexity of the Canny edge detection parallel algo-

rithm will be reduced to ( )2Ο n , which is a very small level 

of complexity. If all pixels are not processed in one kernel 

function, each work-item will perform the Canny edge detec-

tion kernel function at least 2
H tsum times, where tsum is the 

number of work-items. In this case, the time complexity of 

the Canny edge detection parallel algorithm will be

( )2 2Ο H n tsum . It is important to note that because of the 

large number of active work-items that can be maintained in 

GPU, tsum is always a large value. Therefore, there exists 

the time complexity of the Canny parallel algorithm

( ) ( )2 2 2 2Ο H n tsum Ο H n= . 

4 OpenCL implementation of Canny edge detection 

algorithm 

4.1 Parallel algorithm description 

In order to maximize the effective use of GPU hardware 

multi-work-item resources, the reconstruction algorithm 

must strictly follow the OpenCL multi-work-item framework 

processing concept. In the process of image Gaussian blur, 

amplitude and direction calculation of image gradient, non-

maximum value pixel suppression, and edge point judgment 

by GPU, the important foundation is that there is no correla-

tion between pixel-by-pixel calculation. That is, the pro-

cessing of each pixel is not related to each other. According 

to this characteristic, the Canny edge detection task can be 

divided into several different kernels using GPU, and the im-

age pixels can be processed and calculated in parallel by mul-

tiple work-items in the kernel. The specific Canny edge ex-

traction parallel algorithm is shown below. 
1: Algorithm1  Canny edge detection parallel 

algorithm on OpenCL 

2: Input: Noisy image matrix srcImageData with image 

size H H× ，array  0 : 1GaussTempla e nt n −  of 

the Gaussian convolution kernel, the array 
 0 : 1SobelTempla e nt n −   of the Sobel convolu-

tion kernel, each work-item is responsible for Gauss-
ian filtering and processing of Sobel convolution in 
two directions of BX BY× pixels. 

3: Output: Image matrix desImageData   with canny 

edge detection 

4: Begin 

5: CPU main function: 

6:    srcImageData   ←  input image with an image 
size H H×  

7:    srcImageDataEx  ← extended original image 

8:     0 : 1GaussTempla e nt n −  ←  calculate the 

Gaussian filter template 

9: GPU kernel function: 

10:    Initialize the global index ,gx gy of the work-item 

in the x and y directions, respectively 

11:    Initialize the local index ,lx ly of the work-item in 

the x and y directions, respectively 

12:    /* Gaussian filtering */ 

13:    for all work-groups in NDRange par-do 

14:       Load the input sub-image data that a work-

group need to access from the global memory into a 

15:       local memory of size SubImage_ds 

16:    end for 

17:    for all work-items in work-group par-do 

18:       for 0i = to BX do 

19:          for 0j = to BY do 

20:             for 0
x

f = to 1n− do 

21:                 for 0
y

f = to 1n− do 

22:                     *gaussPixel i j BX+   ← 



 

 

Each work-item in the work-group does the  

23:                    convolution operation result 

of the corresponding pixel and the Gaussian template 

24:                 end for 

25:             end for 

26:             Output  *gaussPixel i j BX+  

27:          end for 

28:       end for 

29:    end for 

30:    /* Amplitude and direction of image gradient */ 
31:    for all work-groups in NDRange par-do 

32:       Load the Gaussian filtering sub-image data 

that a work-group need to access from the global 

33:       memory into a local memory of size 

SubImage_ds 

34:    end for 

35:    for all work-items in work-group par-do 

36:       for 0i = to BX do 

37:          for 0j = to BY do 

38:             for 0
x

f = to 1n− do 

39:                 for 0
y

f = to 1n− do 

40:                     *convoluti n i j Xo B+   ← 

Each work-item in the work-group does the  

41:                    convolution operation result 

of the corresponding Gaussian filtering image pixel 

42:                    and the Sobel template 

43:                 end for 

44:             end for 

45:             Calculate the gradient amplitude and 

direction of pixels 

46:          end for 

47:       end for 

48:    end for 

49:   /* Determine non-maximum suppressed image */ 
50:    for all work-items in NDRange par-do 

51:       Judge whether the gradient amplitude of the 

neighborhood center pixel is the largest in the 

gradient direction 

52:    end for 

53: /*Determine the edge points of the gradient image*/ 
54:    for all work-items in NDRange par-do 

55:       Using double threshold to judge whether the 

pixel of the gradient image is an edge point or not 

56:    end for 

57: Transfer Canny edge detection results 

desImageData   from global memory to host 

memory 

58: End 

4.2 Calculation process 

The edge detection process of the OCL_Canny parallel 

algorithm is shown in Figure 8. 

GPU device side

CPU host side

Start Read source image
Extended 

source image

Get 

platform

Create contextual 

platforms and devices

Computational 

Gaussian filter template

Create program objects 

and transfer data

Create Gauss kernel and 

set kernel parameters

Launch 

Gauss 

filtering 

kernel

Work-item 0 

takes pixel 0 

to local 

memory

Work-item 1 

takes pixel 1 

to local 

memory

Work-item 

H*H-1 takes 

pixel H*H-1 

to local 

memory

 

Barrier(

) work-

item 

synchro

nization

Work-item 0 

performs the 

convolution of the 

neighborhood of 

pixel 0 with the 

Gaussian template

Work-item 1 

performs the 

convolution of the 

neighborhood of 

pixel 1 with the 

Gaussian template

Work-item H*H-1 

performs the 

convolution of the 

neighborhood of 

pixel H*H-1 with 

the Gaussian 

template

 

Y
N

End

Visualization of 

Canny image 

edge extraction 

results

Transfer 

edge 

detection 

results to 

host 

memory

Create image 

gradient kernel 

and set kernel 

parameters

Launch 

image 

gradien

t kernel

Initialize non-maximum 

suppressed image

Get computing 

equipment (GPU)

Create command 

queue

Read the kernel source 

code of the kernel file

Create non-

maximum suppressed 

image kernel and set 

kernel parameters

Launch non-

maximum 

suppressed 

image kernel

Create image edge 

detection kernel 

and set kernel 

parameters

Launch 

image edge 

detection 

kernel

Work-item 0 

takes Gauss 

filtering pixel 

0 to local 

memory

Work-item 1 

takes Gauss 

filtering pixel 

1 to local 

memory

Work-item 

H*H-1 takes 

Gauss 

filtering pixel 

H*H-1 to 

local memory

 

Barrier(

) work-

item 

synchro

nization

Work-item 0 

performs the 

convolution of the 

neighborhood of 

Gauss filtering 

pixel 0 with the 

Sobel template

Work-item 1 

performs the 

convolution of the 

neighborhood of 

Gauss filtering 

pixel 1 with the 

Sobel template

Work-item H*H-1 

performs the 

convolution of the 

neighborhood of 

Gauss filtering 

pixel H*H-1 with 

the Sobel template

 

Work-item 0 

performs non-

maximum 

suppression on 

pixel 0

Work-item 1 

performs non-

maximum 

suppression on 

pixel 1

Work-item 

H*H-1 

performs non-

maximum 

suppression on 

pixel H*H-1

 

Work-item 

0 judges 

edge points 

on pixel 0

Work-item 

1 judges 

edge points 

on pixel 1

Work-item 

H*H-1 

judges edge 

points on 

pixel H*H-1

 

 
Fig. 8  OCL_Canny algorithm flow 



 

The first step of the OCL_Canny parallel algorithm is to 

read the original image file to obtain image information and 

to expand the original image according to the size of the 

neighborhood window. Initialize the edge point image for 

subsequent calculation. Next, determine the platform for 

OpenCL execution, and then determine the device that 

performs the OpenCL calculation after determining the 

platform for execution. Create a context after determining the 

device. 

After creating the context, you need to create a command 

queue. The operations such as extending the original image 

data transmission, Gaussian template data transmission, ini-

tializing the edge point image, and executing the kernel be-

tween the host and OpenCL devices are all done by queuing 

up to the command queue, and then the command queue 

passes each command to the OpenCL hardware unit for exe-

cution. 

After that, the kernel code is compiled. First of all, the ker-

nel source code is obtained from the host side and the 

program object is created, then the OpenCL device compiles 

and constructs the program object using the kernel source 

code, and finally constructs the kernel object to complete the 

compilation of the kernel code. 

When the kernel function needs input parameters to pro-

vide calculation data, the corresponding application program 

interface function is called on the host side to complete the 

initialization of the input parameters. In addition, the work-

group and work-item parameters used for execution on the 

device also need to be set in advance. 

After the above operations are completed, the queuing 

operation is carried out, and the kernel function is sent to the 

corresponding command queue through the queuing 

command. The computing device interacts with the 

command queue and executes the corresponding kernel 

functions. The kernel functions of the OCL_Canny parallel 

algorithm include generating Gaussian filtered image kernel, 

generating gradient image kernel, generating edge point 

image kernel, and generating edge image kernel. 

The operation of the kernel function is mainly the calcula-

tion and update of the incoming parameter variable, and the 

next call is the update status of the variable, and the four ker-

nels are executed serially through CPU control. The execu-

tion process of the corresponding kernel function in this pa-

per is as follows: 

① Gaussian filtered image kernel. According to equation 

(1), the extended image data is convoluted with the Gaussian 

template data and the information is updated. 

② Gradient image kernel. According to equation (2) ~ (4), 

the Gaussian smoothing image data is convoluted with the 

Sobel template data, and the gradient amplitude and direction 

of the corresponding pixels are calculated. 

③ Edge point image kernel. The gradient image is sup-

pressed by non-maximum value, and the edge points of the 

image are preliminarily determined. 

④ Edge image kernel. The edge points of the image are 

finally determined and connected by the double threshold 

method. 

After the OpenCL device performs the calculation, it trans-

mits the results of Canny edge detection back to the host side 

and destroys the allocated resources. 

4.3 Acceleration strategy of the algorithm 

The Canny edge detection algorithm has obvious data com-

puting parallelism. The processing of Gaussian filtering, cal-

culating the gradient of the image, suppressing non-maxi-

mum value pixels, and judging edge points with double 

thresholds are only related to the position of the image pixels, 

and the calculation process of each pixel is exactly the same. 

The mapping between the pixel and the OpenCL core 

mainly lies in the one-to-one logical correspondence between 

the work-item and the pixel. Figure 9 shows the mapping re-

lationship between the NDRange workspace of the GPU and 

the image data matrix. The image frame H H× image data is 

arranged according to the one-dimensional linear organiza-

tion in the system and can be decomposed into several non-

overlapping sub-image blocks. Each sub-image block con-

tains some pixels of the image. The kernel function creates 



 

 

an NDRange workspace that identifies the index, as shown in 

the lower dotted frame in Figure 9. Through the mapping of 

OpenCL work-items to image pixels, each OpenCL work-

item uses a unique work-item index to calculate the data that 

needs to be processed to achieve maximum parallelism. 

Processing more data in a shorter time has always been one 

of the goals of high-performance computing. OCL_Canny 

parallel algorithm proposes a vectorization method to process 

multiple pixels at a time for each work-item. In the algorithm, 

the Gaussian filtering operation and the Sobel image gradient 

operation of four adjacent pixels in the sub-image block are 

scheduled on one work-item in turn. The calculation of the 

four output results is completed on the same work-item, and 

each cycle can complete the calculation of the output result 

of one pixel, thus completing the traversal of the four pixels. 

The coordinate transformation of the pixel is shown in equa-

tion (5). 

( ) ( )
( ) ( )

_ _ 0 , _ _ 1

_ _ 0 , _ _ 1

lx get local id ly get local id

gx get global id gy get global id

= =

= =
   (5) 

Among them, ,lx ly represents the local ID of the work-item 
in the ,x y direction respectively in the work-group. ,gx gy

represents the global ID of work-items in the ,x y direction 

respectively in the workspace. Through the four variables, 
the precise scheduling of OpenCL work-items can be com-
pleted. 
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Fig. 9  Corresponding relation of the work-item index and image pixel coordinate 

4.4 Algorithm optimization 

4.4.1 Data storage adjustment 

(1) Local memory optimization 

In the processing of the four tasks of the Canny operator, the 

calculation of the boundary points in the work-group needs 

to cross the boundary. In order to prevent the image from 

crossing the boundary, the original image is extended to an 

expanded image in this paper. Suppose the template size is

n n× and the original image size is H H× . When calculat-

ing the Gaussian filter, gradient amplitude, and direction, the 

size of the expanded image is ( ) ( )1 1H n H n+ −  + − . In this 

case, the basic data area size of non-maximum value suppres-

sion and double threshold judgment of gradient image is

H H×  , then the size of the extended data area is also

( ) ( )1 1H n H n+ −  + − . 

It takes about 400 ~ 600 clock cycles to access data from 

global memory in the GPU, while it takes only 1~16 clock 

cycles to access data directly from local memory. The access 

speed of local memory is much higher than that of global 

memory. In the OCL_Canny parallel algorithm with global 

memory, it is necessary to access the global memory

( )2 21 4H n n+ −     times. By fetching the extended data 

area data from the global memory to the local memory, and 

taking the local memory as the memory for accessing the data 

when the work-item is calculated, the number of visits to the 

global memory is reduced to ( )2
1 2 4H n n+ −    times. 

Therefore, the optimized OCL_Canny parallel algorithm can 

significantly reduce the number of times of accessing global 

memory and greatly improve the access efficiency of the 

GPU. 



 

 

(2) Constant memory optimization 

In the OCL_Canny parallel algorithm, image preprocessing 

and image gradient calculation are completed under convo-

lution computation. Since the convolution operation of the 

image needs to traverse the image pixels, when processing 

each pixel, it is necessary to read the corresponding pixels in 

the 2
n neighborhood to multiply and add with the Gaussian 

template and the Sobel template. It requires frequent access 

to memory and the calculation is very time-consuming. Con-

sidering that the constant memory has a cache mechanism 

when the access is hit, there is only one clock cycle delay. 

Therefore, in order to improve the access efficiency, the 

Gaussian template and the Sobel template are stored in the 

constant memory for all work-items to read. The constant 

memory has a 64 KB cache, and the storage space needed to 

store the Gaussian template and the Sobel template is

( )23 4n  B, which meets the maximum space requirements 

of the constant memory of 64 KB. 
(3) Data reusability 

From the processing flow of the Canny operator, we can see 

that each step of the algorithm is designed with a kernel, 

which is implemented with four kernels. Because there is a 

logical correlation between the kernel, that is, the results after 

the execution of the previous task need to be provided to the 

next task. Therefore, each kernel can store the calculation re-

sults in the global memory and wait for the next kernel to be 

read. By improving the data reusability, the data transmission 

times between CPU and GPU are reduced, thus the memory 

communication delay is hidden. 

4.4.2 NDRange optimization 

According to different GPU hardware, change the number of 
work-items in each work-group in the kernel function to 
achieve optimal performance. If the number of work-items is 
too small, it will cause most of the PEs to be idle, waste re-
sources, and low performance. If the number of work-items 
is too large, due to the limitation of hardware resources, it 
may not be possible to actually start enough active work-
items, which will cause too many work-items to be in a 
blocked state and also cause performance degradation. 

Therefore, in order to ensure the optimal performance of the 
OCL_Canny parallel algorithm on the GeForce GTX 1050 
graphics card, the operation time of the algorithm is meas-
ured under different work-group dimensions, and the specific 
test data are shown in Table 2. 
 

Table 2  Operation time of the OCL_Canny parallel algorithm 

Image size 
Parallel time corresponding to different work-group sizes (ms) 

4×4 8×8 16×16 24×24 32×32 

256×256 3.87 3.62 3.02 3.58 4.27 

512×512 6.75 5.09 4.28 5.01 5.39 

1024×1024 20.78 12.78 10.31 12.66 13.42 

 

It can be seen from the above experimental results that for 

GeForce GTX 1050 graphics cards, the maximum number of 

work-items per work-group is 1024. An error will be reported 

when running over this number. At the same time, 16 × 16 is 

also the best operating efficiency point. 

5 Other parallel schemes 

5.1 The OMP_Canny parallel algorithm 

The parallel processing of the Canny edge detection algo-
rithm is realized by using OpenMP parallel technology. With 
the addition of parallel task scheduling at the top level, this 
coarse-grained parallel processing method can realize Gauss-
ian filtering, calculating image gradient, suppression of non-
maximum value pixels, and parallel computing of edge points 
judged by double thresholds. This paper mainly adopts the 
static scheduling mode, and the specific parallel process: 
when m  CPU cores are allocated to process the image size

H H× , each core (or thread) will process ( )H H m× im-

age data. 

The parallel model of OpenMP is in the form of Fork-Join, 

and the area between Fork and Join is a parallel region. When 

the original thread encounters a parallel structure instruction, 

it creates a thread group and executes the next instruction in 

parallel, that is, the Fork action. When exiting the parallel 

structure, only the original thread continues to execute, and 

the other threads end, that is, the Join action. The 

OMP_Canny parallel algorithm executes the Fork action to 



 

 

open the parallel region at the starting position of the Gauss-

ian filtering operation, and executes the Join action to end the 

parallel region when the detection of all edge points of the 

image is completed, thus forming the following four parallel 

regions. 

(1) Parallel region of smooth image. First initialize the var-

iable, then convolution the neighborhood of the pixel with the 

Gaussian filter template, and finally, update the convolution 

value back to the corresponding position of the image. 

(2) The parallel region that determines the amplitude and 

direction of the image gradient. Firstly, the variables are ini-

tialized in x y、 direction, and then the neighborhood of the 

pixel after the Gaussian filter is convoluted with the Sobel 

filter template in x y、  direction, respectively. Finally, the 

gradient amplitude and gradient direction of the pixel are cal-

culated. 

(3) Determine the parallel region of the non-maximum 

value suppressed gradient image. According to the gradient 

direction of the pixel, the pixel is suppressed by non-maxi-

mum value, and the non-maximum value suppression image 

is obtained. 

(4) Determine the parallel region of image edge points. Us-

ing a double threshold algorithm to detect edge points and 

connect the edges of non-maximum value suppressed images. 

5.2 The CUDA_Canny parallel algorithm 

According to the parallelism analysis of the Canny algorithm, 
there are obvious data computational parallelism in image 
Gaussian filtering, calculating the amplitude and direction of 
image gradient, non-maximum value suppression gradient 
image generation, and image edge point detection. The map-
ping between the image and the execution thread mainly lies 
in the correspondence between the pixel and the CUDA 
thread. If the image size is H H× and the GPU has a stream-
ing multiprocessors, the image data of H H× size is inputted 
into the GPU memory. In the software architecture, each 
GPU streaming multiprocessor contains b thread blocks and 
each thread block contains c threads, so it can be calculated 
that each thread can complete the Gaussian filtering pro-

cessing of ( ) ( )H H a b c   pixels. The parallel processing 

of the gradient amplitude and gradient direction of each pixel 
is the same. In the experiment of CUDA_Canny parallel al-
gorithm implementation, the GPU used is GTX 1050 with 24 
streaming multiprocessors, each streaming multiprocessor 
contains 32 thread blocks, and each thread block has 1024 
threads. 

6 Data testing and result discussion 

6.1 Experimental conditions 

(1) The hardware platform is built. This experimental scheme 
uses two different environments with heterogeneous compu-
ting capabilities, and the specific hardware configuration in-
formation is shown in Table 3. 

 

Table 3  Performance parameters of GPU Computing platform 

Configu-

ration 

number 

CPU type 
CPU fre-

quency 

Memor

y/GB 
GPU type 

Video 

memory 

Number 

of CUDA 

cores 

Number 

of SM 

Number of 

blocks per 

SM 

Number of 

threads per 

block 

Configu-

ration 1 

Intel Core i7-

8700K (six 

cores) 

3.7 GHz 4 
Geforce GTX 

1050 

3 GB 

GDDR5 
768 24 32 1024 

Configu-

ration 2 

AMD Ryzen 5 

3600XT (six 

cores) 

3.8 GHz 4 
Radeon RX 

560 

4 GB 

GDDR5 
896 28 32 1024 

(2) The software platform is built. The operating system is Microsoft Window 10 64-bit, the GPU application program-

ming interface is CUDA 10.2, the OpenCL version is AMD 



 

 

APP SDK 3.0, and the development environment is Mi-

crosoft Visual Studio 2017. 

6.2 Image quality evaluation 

6.2.1 Visual effect comparison 

In order to verify the effectiveness of this method, five im-
ages are selected as test objects. The resolutions of the images 
"Star", "Cameraman", "Head CT", "Painting" and "Light-
house" are 256 × 256, 256 × 256, 512 × 512, 380 × 375, and 
512 × 512, respectively. Four serial/parallel Canny edge de-
tection algorithms are tested and the experimental results are 
shown in Figure 10. 

It can be seen from Figure 10 that the Star result image is 

completely connected, without disconnection, with good co-

herence and high definition. The cameraman outline of the 

Cameraman result image and the lines of the camera bracket 

are very smooth. In the Head CT result image, the outer con-

tours of the brain (the gray area in the image), the outer con-

tours of the spinal cord, and the outer contours of the head 

are very clear and very smooth, and there are almost no 

breakpoints. In the four figures of the Painting result image, 

the outline of each figure is closed and can be clearly ob-

served. The texture of the exterior wall, the fence, and the 

edges of the eaves are very clear in the Light-house result 

image. 

Star 

     

Camera-

man 

     

Head CT 

     

Painting 

     

Light-

house 

     

 (a) Original image 
(b) CPU_Canny edge 

detection result 

(c) OpenMP_Canny 

edge detection result 

(d) CUDA_Canny 

edge detection result 

(e) OpenCL_Canny 

edge detection result 

Fig. 10  Edge detection effect images of four different Canny algorithms 

 

It can be seen from Figure 10 that the effects of the serial 
Canny algorithm and optimized accelerated algorithm are ba-

sically the same, and the four edge detection operators can 



 

 

obtain image edges more accurately. The above experiments 

show that the OCL_Canny parallel algorithm is feasible. 

6.2.2 Comparison of evaluation parameters 

In order to evaluate the effect of image edge detection, the 
average gradient value of the image is selected as the evalu-
ation parameter. The Average Gradient (AG) is also called 
image sharpness, which is an indicator of the rate of gray 
change in image. The average gradient is defined as: 

( ) ( ) ( ), , 1,
x

D i j I i j I i j= − +                       (6) 

( ) ( ) ( ), , , 1
y

D i j I i j I i j= − +                       (7) 

                  

( ) ( )( )
1 1

2 2

0 0

1 1
, ,

2

M N

x y

i j

AG D i j D i j
M N

− −

= =

= +
              (8) 

Among them, ( ) ( ), , ,
x y

D i j D i j denotes the gradient of the 

image in the x direction and y direction respectively. ( ),I i j

is the gray value of the image ( ),i j , ( ),i j is the position in-

dex of the pixel in the image, and the image frame size of the 
image I is M N . The image average gradients of different 
Canny edge detection algorithms are shown in Table 4. 
 

 

 

 

 

Table 4  Average gradient of Canny edge detection algorithm in different images 

Processing 

method 
Star 

Camera-

man 
Head CT Painting 

Lighthouse 

No processing 2.79 7.16 5.54 0.88 13.08 

CPU_Canny 5.72 34.59 12.09 4.20 30.64 

OMP_Canny 5.73 34.59 12.09 4.20 30.64 

CUDA_Canny 5.73 34.59 12.11 4.20 30.95 

OCL_Canny 5.73 34.59 12.12 4.20 30.95 

It can be seen from Table 4 that the average gradient ob-

tained by the OCL_Canny parallel algorithm on the test im-

age set is the largest, indicating that the algorithm in this pa-

per is the best in preserving edge details. At the same time, 

the average gradient data of the test image under serial/paral-

lel Canny edge extraction are almost the same. It shows that 

the OCL_Canny parallel algorithm is correct and feasible. 

6.3 Analysis of experimental data 

6.3.1 Operation time comparison 

In order to verify the high performance of the proposed algo-
rithm, nine groups of images of different sizes are selected 
for experimental analysis. CPU_Canny algorithm, 
OMP_Canny algorithm, and CUDA_Canny algorithm meas-
ured the execution time in the configuration 1 environment, 
while the OCL_Canny algorithm measured execution time in 
the configuration 1 and configuration 2 environment, respec-
tively. After many times of execution, the average value of 
the system is taken as the execution time. The time-consum-
ing statistics are shown in Table 5. 

 

Table 5  Time-consuming com-

parison of Canny algorithms un-

der different architectures 

 
Image reso-

lution (px) 

CPU_Canny 

(ms) 

Parallel time (ms) 

 
OMP_Canny CUDA_Canny 

OCL_Canny 

(AMD) 

OCL_Canny 

(NVIDIA) 

 256×256 9.45 2.90 3.26 3.14 3.02 

 512×512 40.12 11.33 4.59 4.41 4.28 

 1280×720 103.26 27.46 11.02 10.24 9.87 

 1024×1024 147.69 35.58 12.49 10.68 10.31 

 1600×1200 309.26 67.67 21.11 19.42 18.34 

 2048×1536 548.43 112.85 31.83 29.05 28.74 

 3500×3500 2311.45 459.54 120.29 117.62 115.97 

 4828×4828 4024.03 762.13 207.96 204.61 199.80 

 7452×8024 10105.12 1867.84 516.74 513.15 488.64 



 

In order to more intuitively analyze the time characteristics 

of the Canny algorithm, it is shown in Figure 11. As can be 

seen from Figure 11, with the continuous increase of the size 

of nine groups of images, the time-consumption of the Canny 

algorithm under different computing architectures increases 

linearly. The time-consuming of the CPU_Canny serial algo-

rithm is gradually approaching to ( )2 2Ο H n  . The experi-

mental results are consistent with the theoretical analysis of 

time complexity. The time-consuming curve of the Canny al-

gorithm under OpenMP architecture shows a steady upward 

trend of a small slope. On the other hand, the time-consuming 

curve of the Canny algorithm under CUDA and OpenCL ar-

chitecture almost coincides with the horizontal axis in the 

graph, that is, the time-consuming change of the algorithm is 

very small with the increase of the amount of data processed. 

O
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m
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Image size  

Fig. 11  Time-consuming analysis of the Canny algorithm 

Literature [15] and Literature [16] reported the implemen-

tation results of the Canny algorithm under CUDA and 

OpenCL architecture respectively, and literature [11] re-

ported the implementation results of the Canny algorithm un-

der FPGA computing architecture. The data shown in these 

literatures are compared with the time-consuming of the al-

gorithms in this paper, as shown in Table 6. According to Ta-

ble 6, the time-consuming Canny serial algorithm imple-

mented in literature [15] and literature [11] on three groups 

of images is slightly higher than that of the CPU_Canny al-

gorithm in this paper. The time-consuming of the 

CUDA_Canny and OCL_Canny (NVIDIA) parallel algo-

rithm on three sets of images is significantly lower than that 

of the CUDA version of the Canny algorithm in the Literature 

[15]. The time-consuming of the OCL_Canny (NVIDIA) par-

allel algorithm on four sets of images is significantly lower 

than that of the OpenCL version of the Canny algorithm in 

Literature [16]. Therefore, OCL_Canny (NVIDIA) parallel 

algorithm has the advantage of time-consuming compared 

with other schemes. 

 

Table 6  Comparison 

of operation time in 

related literature 

Image reso-

lution (px) 

CPU algorithm (ms) CUDA algorithm (ms) 
Literature 

[11] 

OpenCL algorithm (ms) 

Literature 

[15] 

Literature 

[11] 

CPU_ 

Canny 

Literature 

[15] 

CUDA_ 

Canny 

Literature 

[16] 

OCL_Canny 

(NVIDIA) 

(NVIDIA)256×256 10.00 — 9.45 5.00 3.26 — — 3.02 

512×512 41.00 78.24 40.12 22.00 4.59 4.61 — 4.28 

1280×720 — — 103.26 — 11.02 — 19.04 9.87 

1024×1024 149.00 — 147.69 82.00 12.49 — — 10.31 

1600×1200 — — 309.26 — 21.11 — 39.46 18.34 

2048×1536 — — 548.43 — 31.83 — 58.03 28.74 

3500×3500 — — 2311.45 — 120.29 — 239.89 115.97 

6.3.2 Accelerated performance analysis 

(1) Speedup discussion 

In order to select a high-performance Canny parallel algo-
rithm, the speedup is used as the performance measure. 

Definition 1: speedup
OMP

S  is defined as the time-

consuming comparison between the CPU_Canny serial 

algorithm and the OMP_Canny parallel algorithm. The 

calculation equation of
OMP

S is 

_

_

Canny

Canny

CPU

OMP

OMP

T
S =

T
                              (9) 

Definition 2: speedup
CUDA

S  is defined as the time-



 

 

consuming comparison between the CPU_Canny serial 

algorithm and the CUDA_Canny parallel algorithm. The 

calculation equation of
CUDA

S is 

_

_

CannyC

Cann

PU

CUDA

CUDA y

T
S =

T
                            (10) 

Definition 3: speedup
OCL

S  is defined as the time-

consuming comparison between the CPU_Canny serial 

algorithm and the OCL_Canny parallel algorithm on the 

corresponding GPU platform. The calculation equation of

OCL
S is 

_

_

Canny

Canny

CPU

OCL

OCL

T
S =

T
                              (11) 

Definition 4: relative speedup
OMP -OCL

RS is defined as the 

time-consuming comparison between the OMP_Canny 

parallel algorithm and the NVIDIA GPU-based OCL_Canny 

parallel algorithm. The calculation equation of 
OMP -OCL

RS is 

_

_

CanOMP

OMP

ny

C

-OCL

nnyOCL a

T
RS =

T
                         (12) 

Definition 5: relative speedup
CUDA-OCL

RS is defined as the 

time-consuming comparison between the CUDA _ Canny 

parallel algorithm and the NVIDIA GPU-based OCL_Canny 

parallel algorithm. The calculation equation of
CUDA-OCL

RS is 

_

_

CUD Canny

Cann

A

CUDA-OCL

OCL y

T
RS =

T
                    (13) 

The speedup achieved by the OMP_Canny, CUDA_Canny, 

and OCL_Canny parallel algorithms on each group of test 

images is shown in Table 7. 

 

Table 7  Acceleration ef-

fect of the Canny algorithm 

on different platforms 

Image resolution 

(px) 

Speedup Relative speedup 

SOMP SCUDA SOCL (AMD) SOCL (NVIDIA) RSOMP-OCL RSCUDA-OCL 

256×256 3.26 2.90 3.01 3.13 0.96 1.08 

512×512 3.54 8.74 9.10 9.37 2.65 1.07 

1280×720 3.76 9.37 10.08 10.46 2.78 1.12 

1024×1024 4.15 11.82 13.83 14.32 3.45 1.21 

1600×1200 4.57 14.65 15.92 16.86 3.69 1.15 

2048×1536 4.86 17.23 18.88 19.08 3.93 1.11 

3500×3500 5.03 19.22 19.65 19.93 3.96 1.04 

4828×4828 5.28 19.35 19.67 20.14 3.81 1.04 

7452×8024 5.41 19.56 19.69 20.68 3.82 1.06 

Figure 12 shows the speedup change of the Canny parallel 

algorithm under different image data sizes. Under different 

parallel computing architectures, the Canny algorithm 

achieves a certain speedup. With the increase of image reso-

lution, 
OMP

S gradually becomes larger, indicating that the ac-

celeration effect of the OMP_Canny parallel algorithm is 

more obvious when dealing with large images. When the im-

age resolution is low, the acceleration effect of the 

CUDA_Canny and OCL_Canny parallel algorithms is not 

obvious. Because GPU computing needs to transfer compu-

ting data through a low-speed PCI-E bus, and the number of 

work-items started is not enough to hide the time overhead of 

data transfer and kernel function startup, that is, the perfor-

mance improvement brought by many-core computing can-

not offset the additional communication and function startup 

time overhead brought by heterogeneous architecture. With 

the increase of image resolution, the computation shifts from 

I/O-intensive to computing-intensive. When the image reso-

lution is less than 2048 × 1536, the speedup of the 

OCL_Canny parallel algorithm increases faster. However, 

when the image resolution exceeds 2048 × 1536, the slope of 

the (NVIDIA)
OCL

S curve gradually smooths and tends to be 

stable, and the OCL_Canny parallel algorithm achieves a 

speedup of 20.68 times. 
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Fig. 12  Performance acceleration of the Canny algorithm 

 

Table 8 shows the acceleration effect of CUDA_Canny and 

OCL_Canny parallel algorithms and related literature on 

three groups of images. As can be seen from the table, when 

dealing with small images, the acceleration effect of the data 

in Literature [15] is similar to that of the OCL_Canny parallel 

algorithm. With the expansion of the image frame, the growth 

rate of
CUDA

S  and ( )NVIDIA
OCL

S  is faster than that of 

Literature [15], indicating that the OCL_Canny parallel 

algorithm is more suitable for the fast processing of large 

images than Literature [15]. 
 

Table 8  Comparison of acceleration ratio of related literature 

Image resolution 

(px) 

Speedup 

Literature [15] SCUDA SOCL (NVIDIA) 

256×256 2.00 2.90 3.13 

512×512 1.86 8.74 9.37 

1024×1024 1.81 11.82 14.32 

Figure 13 visually shows the performance comparison 

among the three parallel algorithms OMP_Canny, 

CUDA_Canny, and OCL_Canny. As can be seen from Figure 

13, when the image is small, the OCL_Canny parallel algo-

rithm has no obvious performance advantage over the 

OMP_Canny parallel algorithm. The OCL_Canny parallel al-

gorithm needs data exchange between memory and video 

memory, which degrades the performance of the 

OCL_Canny parallel algorithm. However, when the image is 

larger, the number of work-items started is more, the propor-

tion of kernel function execution time is reduced, and the 

large value
OMP -OCL

RS reflects the strong data processing abil-

ity of the GPU. The acceleration ability of the CUDA_Canny 

and OCL_Canny parallel algorithms is basically the same 

and
CUDA-OCL

RS achieves a maximum acceleration advantage 

of 1.21 times. 
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Fig. 13  Performance comparison between different parallel Canny algorithms 

(2) Discussion on portability of the OCL_Canny parallel 
algorithm 

As can be seen from Figure 8, the OCL_Canny parallel algo-
rithm has a good acceleration effect on different GPU plat-

forms. At the same time, the values of (AMD)
OCL

S  and

(NVIDIA)
OCL

S are very similar in nine groups of images with 

different image sizes. It shows that the OCL_Canny parallel 
algorithm has good platform scalability and data scalability. 

6.3.3 System bottleneck analysis 

In the operation and execution of the OCL_Canny algorithm 
based on GPU acceleration, there are a large number of 
memory read and write operations in the processing steps of 
Gaussian filtering, image gradient calculation, image non-
maximum value suppression, and edge detection. According 

to the previous analysis, in the kernel operation of the 

Gaussian filter, the system needs to read
2 2

H n times and 

write
2

H times to the extended image. In calling the kernel 

operation to calculate the image gradient, it is necessary to 

read data 
2 2

H n  times for the extended image and write 

data
22 H times for the amplitude and direction of the image 

gradient. In calling the kernel operation of the non-maximum 

value suppression of the image, it is necessary to read data

22 H times for the amplitude and direction of the image 

gradient and write data
2

H times for the original image. In 

calling the kernel operation of edge detection, it is necessary 



 

 

to read data
2

H times for the amplitude of the image gradient 

and write data
2

H times for the original image. Therefore, in 

the operation and execution of the OCL_Canny algorithm, a 

total of 2 2 22 8H n H  +  memory data are needed to read 

and write. Suppose, the image resolution is 2048 × 1536, the 

size of the filter template is 3 × 3, and each pixel takes up 4 

B storage space. According to the calculation, the total 

amount of image data accessed by the OCL_Canny system is 

about 0.3 GB. The total amount of image data divided by the 

running time of the kernel 4.81 ms, which shows that the 

bandwidth of the OCL_Canny system is about 62.37 GB/s. 
At this point, the actual bandwidth of the system is close to 

the bandwidth 84 GB/s of GeForce GTX 1050. Therefore, the 

global memory bandwidth has become the main performance 

bottleneck of the OCL_Canny system. 

7 Conclusion 

With the rapid development of GPU, GPU is used more and 
more widely, and the advantage of GPU parallel computing 
is increasing day by day. At the same time, the requirements 
for the performance and optimization of parallel computing 
are getting higher and higher. Through the research on the 
parallel transplantation and optimization of the Canny edge 
detection algorithm, this paper puts forward the following 
three suggestions: (1) For large-scale computing-intensive 
tasks, the performance of the algorithm can be improved 
through the parallel computing of the GPU. At the same time, 
the overall performance can be improved through the coop-
eration of heterogeneous platforms GPU and CPU. (2) 
Memory access optimization plays an important role in im-
proving the performance of the overall algorithm. Therefore, 
the efficiency of memory access can be improved by means 
of vectorization, data localization, and fine tuning. (3) In or-
der to achieve efficient mapping between threads and the un-
derlying hardware, it is necessary to consider the characteris-
tics of hardware architecture and image processing algo-
rithms, and use several optimization strategies to achieve 
high-performance algorithms. The experimental results show 
that the OCL_Canny parallel algorithm achieves a perfor-
mance speedup of 3.13 times ~ 20.68 times under different 
image data sizes. It provides a theoretical basis for other im-
age processing algorithms and improves the engineering ap-
plication value of the image edge detection algorithm. In the 
next step, the bandwidth bottleneck problem in the image 
processing algorithm will be studied to further improve the 

performance of the algorithm. 
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