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Abstract: With the continuous prevalence of wireless sensor network (WSN) applications in the recent days, 
localization of sensor nodes became an important aspect in research in terms of its accuracy, communication overhead 
and computational complexity. Localization plays an important role in location sensitive applications like object 
tracking, nuclear attacks, biological attacks, fire detection, traffic monitoring systems, intruder detections, and finding 
survivors in post-disasters, etc. The objective of localization is to identify the coordinates of target nodes using 
information provided by anchor nodes. Precision improvement of the sensor node positions is a key issue for an 
effective data transmission between sensor nodes and save the node’s energy as well as enhance the network lifetime. 
In this article, a cost-effective localization algorithm with minimal number of anchor nodes is proposed that uses 
nature inspired optimization techniques to enhance the localization accuracy compared to the state-of-the-art 
localization algorithms. The performance metrics considered for simulations and comparison with the existing 
algorithms include average localization accuracy, communication range, and the number of anchor nodes. The 
simulation results prove that the proposed gaussian-newton localization through multilateration algorithm (GNLMA) 
enhances the mean localization accuracy to 92.8% and the range measurement error is limited to 1.22meters. 
Depending on the communication range of sensor nodes, the average localization accuracy is achieved up to 94.4% 
using the proposed GNLMA. 
 
Keywords: Wireless sensor networks, localization, localization accuracy, anchor node, range based localization. 
 
1. INTRODUCTION  

WSN is a key technology in smart city applications and the node’s location is useful information. Installing 
GPS module at each SN to know its location is not cost-effective and sensor networks deployed in harsh 
environment cannot access GPS information. Therefore, “Nodes localization” is an important aspect to 
know the accurate location of sensor nodes in the WSN. The objective of localization is to assign the 
location coordinates to each SN in the sensing area using the known locations of few SNs called ANs. The 
performance of any localization techniques is considered in terms of computational complexity, 
communication overhead, localization accuracy, and energy consumption. Node mobility in WSNs poses 
challenge to the localization accuracy and the static localization algorithms fail to provide accurate locations 
of SNs. The ANs in WSNs are equipped with GPS chips but it has disadvantages in indoor applications and 
networks deployed in hard to reach areas. Therefore, localization algorithms that are independent of GPS 
information are essential in computing the locations of sensor nodes [1]. 
 
In the localization process, the selection of ANs play an important role and their optimal selection can 
minimize the uncertainties and enhance the localization accuracy by 10% [2]. The selection and deployment 
locations of ANs also play a crucial role in WSN localization to minimize interference and enhance 
information routing [3]. In a mission critical applications of WSNs, faster area exploration is achieved using 
mobile ANs who move in the sensing field in a coordinated fashion to help TNs in finding their locations. 
The area exploration schemes using the combination of cost-utility based frontier and max-gain schemes 
mitigate the delay and maximizes the accuracy in localization [4]. To minimize the energy consumption 



and enhance the location accuracy, the network region is divided into multiple sub-regions. In the first 
stage, the mobile ANs determine the TN region and at next stage, the location of TN is computed in the 
given region using trilateration [5]. 
 
Localization techniques in WSNs are broadly classified into self-localization and target localization as 
shown in figure 1. The aim of self-localization algorithms is to localize a sensing node by itself using signals 
that it receives from neighboring SNs. Target localization techniques aim to compute the position of a 
sensing node.  
 

 
Figure 1: Classification of Localization techniques in WSNs 

 
Depending on the kind of information needed for localization, self-localization algorithms are divided in 
types called “range-free” and “range-based”.  Range-free algorithms use the connectivity information of 
SNs to localize the TNs whereas range-based algorithms use distance measurements calculated based on 
ToA [6], AoA [7], TDoA [8], or RSSI [9] of the received signal at SN. The first three techniques give higher 
localization accuracy at the cost of hardware and they are not suitable for large-scale WSNs. RSSI based 
localization demands for good calibration to enhance the location accuracy of mobile nodes in WSNs. GPA 
provides high calibration for RSSI measurements in DTN based localization. The optimal energy 
consumptions at SNs is equally important while finding their location coordinates. Channel-aware 
localization techniques can minimize the communication overhead and maximize the localization accuracy 
under imperfect channel conditions [10]. Range-free localization algorithms use the location information 
of ANs to estimate the location coordinates of TNs. The popular techniques under this category include 
DV-hop algorithm [11], centroid method [12], APIT [13-14], and MCB [15]. These techniques provide 
moderate accuracy at lower cost and power consumption. On the other side, these methods depend on 
environmental conditions in the network space and the spatial distribution of ANs.  
 
The main contributions in this article include the more accuracy in measuring the distance between TNs 
and ANs even at low density of SNs. Computational cost-effective fitness function is defined and applied 
in the proposed localization algorithm. The co-planarity properties of ANs are used to minimize the location 
errors caused by the ANs which are in same plane. The localized TNs in the initial round of localization 
process are designated as assistant ANs in order to enhance the positioning coverage in the WSNs. The 
performance of the proposed algorithm is analyzed in terms of average localization error by considering 
the metrics as node density, anchor density, communication range, noisy measurements, and non-convex 
network areas. Intensive simulations are conducted to prove the efficiency of the proposed algorithm in 
terms average localization error, convergence rate, and localization success ratio. The comparative analysis 
has conducted under the same localization task and network deployment conditions. The rest of the article 
is organized as follows: section 2 briefs the nascent literature on localization techniques and methods in 
WSNs, section 3 describes the proposed methodology, section 4 discuss the simulation results and 



comparisons with the existing algorithms, and section 5 presents the conclusions and future scope of the 
proposed algorithm. 
 

2. LITERATURE REVIEW  

The nature inspired heuristic and metaheuristic optimization algorithms are very popular in the recent days 
for localization of SNs in WSNs to achieve optimal coverage, power consumption [16-18]. PSO is one of 
the popular meta-heuristic optimization techniques to localize the SNs in WSNs. It gives faster convergence 
rate and higher localization accuracy with efficient energy utilization [19]. CSA further increases the 
convergence rate and minimizes the communication overhead, energy consumption, localization error, and 
computational complexity compared to PSO algorithm. But, these algorithms are defined with a 
predetermined number of iterations to achieve the optimal solution. Even if the optimal solution is achieved 
at early number of iterations, still it causes energy loss because of predefined number of iterations. “Early 
stopping” method overcomes this drawback to enhance the localization efficiency and mitigates the average 
localization error. With suitable selection of ANs and a modified version of COA improves the accuracy of 
SNs location [20]. DECPSOHDV-Hop algorithm aims at ubiquitous positioning accuracy of TNs up to 
90% using dynamic optimization method. Algorithms like BOA and its variants enhance the robustness, 
speed of localization process. The combination of heuristic algorithms such as GA, WOA improves the 
localization accuracy by 14.2% compared to individual algorithms [21]. The modified versions of BOA 
simplify the local and global search strategies thereby minimizing the computation time and mean 
localization error. Incorporating quantum evolution and annealing strategies into BOA enhances the global 
and local search capabilities in order to converge to a best optimized value. Trilateral localization used in 
BA improves the convergence speed and accuracy of localization by 90.35%, 75.26% compared to other 
heuristic algorithms in 2D and 3D WSNs. The global search capabilities of heuristic algorithms can reduce 
the localization error in 3D WSNs [22]. 
 
Diagonal-PSO and diagonal-centroid methods are ANs based localization algorithms where the AN traverse 
in a diagonal path in the given network terrain and broadcast its location coordinates. Out of these two 
algorithms, the PSO based heuristic approach provides more location accuracy and with minimal energy 
consumption. Fitness function is optimized using PSO to calculate the locations of TNs. Quantum GA 
optimizes the location coordinates of SNs in WSNs with minimum delays and energy consumptions. The 
location computations of TNs based on the degree of collinearity and GWO algorithm can reduce the 
number of iterations and energy consumptions. The combination of GWO-FA algorithms addresses the 
anisotropic properties of SNs in finding the location coordinates using a single AN and multiple virtual 
ANs [23]. An improved version of WOA has clustering intelligence to optimize the node localization 
process and enhance the positioning accuracy compared to RSSI based methods and other swarm 
intelligence algorithms.  
 
AI based localization enhances the efficiency of WCL algorithm in order to achieve the higher localization 
accuracy. SSA is a bioinspired algorithm that performs better than other nature inspired localization 
algorithms such as PSO, BOA, FA, and GWO in terms of scalability, computing time, and mean localization 
error. Bio-inspired meta-heuristic algorithms like COA can mitigate the time taken for localizing the target 
node and the average localization error to 0.5m – 0.8 m. Non-linear optimization scheme called “intelligent 
water drops” computes range values based on RSSI. It provides global optimization by minimizing the 
mean squared range error between neighboring anchor nodes and increases localization accuracy compared 
to GA, PSO, and ACO [24].  
 



2.1 Hop based Localization  

Assigning different communication powers to the nodes in WSN establishes the accurate relation between 
physical distance and the hop count values. Using mobile anchor nodes, the given target node can compute 
its position by considering the mean distance per hop and this method mitigates the localization error. DV-
hop localization algorithm based on weighted centroid in 2D WSNs provides accurate hop distance to find 
the optimal path. The shadowing effects of RF signal propagation in urban environment causes errors in 
RSSI measurements and it needs to be addressed. In hop count based localization, each TN calculates 
average distance to three nearest ANs which are one hop away from itself. This gives the more accurate 
relation between true distance and the distance per hop. 
 
In ToA based localization, each SN computes azimuth angle, distance from its neighborhood and form a 
fuzzy set to compute its own coordinates. This fuzzy based localization improves localization accuracy by 
33.9% compared to non-fuzzy based algorithms [25]. Average distance per hop can be considered to 
compute location coordinates of SNs using DV-hop algorithm in order to minimize localization errors up 
to 30% compared to conventional DV-hop algorithm [26]. With the given number of ANs, DEEC-GGD 
algorithm gives a lower localization error compared to weighted centroid, DV-hop, weighted hyperbolic, 
compensation coefficient algorithms [27-28]. Geographic routing is relied on a weighted centroid 
localization in which the positions of unknown nodes are computed using fuzzy techniques to minimize the 
localization error [29-30]. In order to enhance the location accuracy of DV-hop localization algorithm, an 
optimal subset of ANs are generated using binary PSO. Node positioning of UNs using this optimal set 
instead of all the ANs can minimize the computational efforts and maximize the localization accuracy [31]. 
RSSI based localization is one of the popular methods and it provides accurate location values using 
multiple scans. It demands for good calibration to enhance the location accuracy of mobile nodes in WSNs. 
Grey prediction scheme provides high calibration for RSSI measurements in DTN based localization. 
Weight assignment for the signals received at TN from the various ANs can minimize the influence of error 
in range measurements compared to the selection of all ANs with in the communication range. Application 
of a modified version of COA can further enhance the localization accuracy. With the given number of 
ANs, DEEC-GGD algorithm gives a lower localization error compared to weighted centroid, DV-hop, 
weighted hyperbolic, compensation coefficient algorithms [32]. 
 

3. METHODOLOGY   

Selection of more favorable ANs and optimal number of ANs lead to the higher localization accuracy and 
minimize the energy consumption. In the existing optimization algorithms, once a set of optimal 
localization SNs are identified, the TNs in the entire network start using the same set. This causes inefficient 
use of ANs and leads to large errors in localization. Also, these algorithms can minimize the location 
deviation errors of individual TNs at the cost of higher number of iterations which will cause a huge energy 
consumption at SNs. Weight assignment for the signals received at TN from the various ANs can minimize 
the influence of error in range measurements compared to the selection of all ANs with in the 
communication range. In view of enhancing the localization accuracy by minimizing the localization error, 
we have introduced RSSI values based AN selection strategy. The ANs are SNs installed with GPS 
modules. The following assumptions are made for defining the proposed method and analyzing the results. 
Assumptions 
1. All the SNs are homogeneous in terms of hardware and communication range. 
2. The communication range of ANs and TNs are equal. 
3. The wireless channel in the network is anisotropic. 
4. The noise and irregularities are modeled. 



5. All the processes and computations are performed at the TNs in order to improve energy efficiency.  
When the TNs are within the communication range of ANs, they compute their own locations based on the 
RSSI values received from ANs. In order to localize the TNs, they need at least three RSSI values from 
different ANs. If the SN receives RSSI values from all the ANs, then it selects the best three values to 
compute its geographical location. The accurate position coordinates of TNs is achieved through the 
minimization of fitness function values as mentioned in equation 1.  
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),( mm yxF in equation 1 is the MSE between TN and ANs those are within the communication range of 

TN whose coordinates to be calculated.  mnd is the true distance between TN and AN whose coordinates 

are ),( mm yx and ),( nn yx respectively.  

1
mnd is the estimated distance between TN and AN whose coordinates are ),( mm yx and ),( nn yx

respectively. The estimated distance is modelled as shown in equation 2. 

mnmnmn edd +=1                                                                                   (2) 

where mne is the ranging error between TN and SN whose coordinates are ),( mm yx and ),( nn yx

respectively. The localization based on the fitness function presented in equation 1 involves distance 
measurements. RSSI values based distance measurements are efficient and simple to implement in WSNs. 
If there exists LOS path between AN and TN, then the free-space path loss model is used to measure the 
RSSI values as shown in equation 3. 
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where TG and RG are the gains of antennas at AN and TN respectively.  

TP represents transmitting power at the AN. 

‘ d ’ is the distance between AN and TN, ‘ ’represents the wavelength. 

In the absence of LOS path between AN and TN, the log-normal path loss model is used as shown in 
equation 4 which considers the multipath and shadowing effects of signal propagation in the wireless 
channel.  

XdPL
d

d
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10,                                            (4) 

where )( 0dPL represents the signal path loss at reference distance 0d , ‘ a ’ is the path loss exponent that 
lies between 2 and 4 depends on environmental conditions. 

X represents the gaussian noise with zero mean and standard deviation, ‘ ’. 

‘ 2 ’ is proportional to the true distance mnd between thm TN and thn  AN as shown in equation 5. 

222  = mnd                                                         (5) 



where  represents the distance error factor. 

In practical scenarios, larger distances between SNs in the network causes the maximum ranging and 
localization errors. To minimize the range measurement errors and enhance localization accuracy, an 
optimal AN selection strategy is proposed based on RSSI values. The proposed algorithm has mainly three 
steps: identification & classification of TNs, optimal ANs selection based on the class of each TN, and 
accurate location estimation to minimize the localization error. 
 

3.1 Identification & Classification of TNs  

At each TN, measure the RSSI values of the signals received from the ANs within its communication range 
using equations 3 and 4 for LOS and non-LOS paths respectively. Compute the difference between 
minimum and maximum RSSI values of the received signals as RSSIdiff. The RSSIdiff value is compared with 
a threshold value (Dth) to classify the given TN as either boundary node or a non-boundary node as shown 
in equation 6. If the RSSIdiff value is greater than the value Dth, then the corresponding TN is declared as a 
boundary node, otherwise it is a non-boundary sensing node.  

 ∀, TNK =      boundary sensing node              RSSIdiff ≥ Dth   
                                  non-boundary sensing node       otherwise                                                                (6) 

                 

where )(35.0 kRSSID MAXth =                                                                          (7) 

More likely, the value of RSSI is smaller if the distance between TN and AN is larger and vice versa. The 
value 0.35 is selected as scaling factor in equation 7 for defining the optimum threshold value.  
 

3.2 Optimal ANs selection 

The measured RSSI values of the received signals from ANs are dependent on noise due to spatial and 
temporal changes of the radio environment. At each TN, the received signal RSSI values from farther ANs 
causes more localization error. The main objective of this step is to create favorable ways to enhance the 
localization accuracy by mitigating the signal noise levels from the selected ANs. To achieve this objective, 
an optimal ANs selection strategy needs to be followed based on the given TN is a boundary node or a non-
boundary node. For a boundary TN, sort out the received signal RSSI values and choose three ANs with 
higher RSSI values. If the TN is a non-boundary sensing node, choose all the ANs within its communication 
area. After conducting rigorous experiments, the proportional factor is defined as 0.8 for the boundary node 
to mitigate the effect of ranging errors due to farther ANs on localization accuracy. 
 

3.3 Accurate location estimation  

In order to enhance the localization accuracy further, the distances measured between each TN and the 
selected ANs are assigned with weights which are inversely proportional to the measured distances. In this 
proposed method, minimum three ANs are considered for optimal contributions in distance calculations. 
Different weights are assigned to different ANs and these weights are normalized using the equation 8. 
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Where nW is the weight factor at nth selected AN, 1
mnd is the distance measured between mth TN and nth AN. 

ANN is the number of selected ANs. From the equation 8, it is evident that the contributions of ANs are 

smaller when they are away from the TN.  
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Finally, the proposed algorithm computes the location coordinates using the optimal value of the fitness 
function defined using the equation 9. In order to achieve minimum mean square error of localization, the 
value of the fitness function should be minimum. The complete steps that are followed in the proposed 
GNLMA algorithm are shown in the form of flowchart in figure 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Flow chart of the proposed GNLMA algorithm 

deploy the TNs and ANs in the 2D-network terrain 

ANs measure their coordinates & broadcast at regular intervals 

Start 

for each TNk, measure RSSI from ANs 

identify each TNk & classify it based on RSSI 

select ANs as per class of TNk  

number of selected ANs ≥ 3 

measure the distance between TNk and each selected AN 

assign weights to ANs based on their distances to TNk 

define the fitness function 

find the minimum value of fitness function 

locate the TNk with minimum fitness value 

k = k+1 

k > T 

End 
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4. RESULTS AND DISCUSSIONS 

This section presents the simulated results of the proposed GNMLA and the simulations were conducted in 
MATLAB 2022B tool. The number of SNs are varied from 100 to 500 and they are deployed in the 
geographical areas of 100100m2 to 500500m2 with random placement and the four static ANs are 
deployed at the corners of the network terrain. The network deployment settings and the SN parameters are 
presented in table 1. The performance metrics that are considered to analyze the performance of the 
proposed method is the average localization accuracy and mean localization error with increasing number 
of number of ANs and communication range. Under the ideal conditions of localization, the true location 
and the estimated locations are same as shown in Figure 3a. The proposed GNLMA localization method 
estimates the location of TNs which is very close to their true locations as shown in figure 3b to figure 3g. 
The simulated results (each value is averaged for thirty simulations) are also compared with the existing 
state-of-the-art localization algorithms [33-36]. 
 
Table 1: Simulation Parameters of the proposed GNMLA protocol 

Parameter Values 

Network terrain dimensions 100m100m, 500m500m 
Number of sensor nodes 100 to 500 
Initial energy (E0) 0.5J 
Number of Anchor Nodes 4 
Node density 0.02m2 and 0.03m2 
Maximum communication range, R 50m 
Free-space energy (Efs) 50nj/bit 
Energy required to run the circuity(Eelec) 0.0013pj/bit/m4 
Energy consumed by the amplifier for bit transmissions (Eamp) 10pj/bit/m2 
Data Packet size 4000-bits 
Maximum number of iterations  100 
Number of simulations per reading 30 

 

The average or mean localization error is computed using equation 10 as,  

The mean localization error
N
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where ( ), mm yx  are the actual coordinates of the TN and ),( nn yx are the estimated coordinates of the TN. 

‘N’ is the total number of SNs in the network. 



 

Figure 3a: Ideal case of sensor nodes location estimations in a 100 100 meter2 network terrain 

 

Figure 3b: Localization of 100 sensor nodes in a 100 100 meter2 network terrain using the GNMLA method 



 

Figure 3c: Localization of 200 sensor nodes in a 100 100 meter2 network terrain using the GNMLA method 

 

Figure 3d: Localization of 300 sensor nodes in a 100 100 meter2 network terrain using the GNMLA method 



 

Figure 3e: Localization of 400 sensor nodes in a 100 100 meter2 network terrain using the GNMLA method 

 

Figure 3f: Localization of 500 sensor nodes in a 100 100 meter2 network terrain using the GNMLA method 



 

Figure 3g: Localization of 500 sensor nodes in a 500 500 meter2 network terrain using the GNMLA method 

 

Figure 4: Average Localization Accuracy versus Total number of Anchor Nodes  

In figure 4, the average localization accuracy of the proposed GNLMA algorithm is compared with the 
other meta-heuristic optimization based localization algorithms. It shows that that the DCK-GWO [37] 
algorithm is performing better than the other meta-heuristic optimization algorithms. It works based on the 
degree of K-value collinearity with improved GWO. This algorithm gives better localization accuracy only 
when the AN ratio is above 20% and also the communication range should be at least 35m. Therefore, it 
leads to higher GPS hardware costs and higher number of computations in the network. The DECPSOHDV-



Hop algorithm [38-39] provides stability and localization accuracy of 84.62% at the AN ratio of 50 and 
communication radius of 50m. WOA based localizations [40-41] are performing poor in terms of 
localization accuracy compared to the other algorithms. However, the proposed GNLMA algorithm is 
providing 86.72% of localization accuracy even with four ANs and it is further increases linearly with 
increasing number of ANs. In this way, the proposed algorithm is minimizing the hardware cost and 
computational cost in the network. The reason for achieving higher localization accuracy using the proposed 
algorithm is that the selection of more favorable and optimal number of ANs lead to the higher localization 
accuracy and minimize the energy consumption. Also, the TNs are not dependent on a particular set of ANs 
instead the location measurements are performed in a distributed manner and it leads to minimal number 
of iterations. The localization accuracy using the proposed GNLMA algorithm is enhanced by 12.56%, 
22.36%, and 20.83% compared to DCK-GWO, IWOA, DECPSODV-Hop algorithms respectively as 
shown in Table 2. 

Table 2: Average Localization Accuracy (in %) vs Number of ANs 

Number of ANs 

Protocol 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 Average 

DCK-GWO 58.42 62.61 66.72 68.18 72.92 73.56 76.54 83.28 88.12 90.04 92.17 92.05 92.85 93.02 93.08 80.24 

IWOA 52.84 55.42 60.94 63.85 64.96 66.75 66.96 70.19 74.61 75.42 76.92 81.45 82.02 82.08 82.14 70.44 

DECPSODV-Hop 62.96 63.12 63.82 64.25 66.67 68.19 70.69 71.05 71.52 72.09 75.15 78.6 82.64 84.15 84.62 71.97 
GNLMA 
(Proposed) 

86.72 86.92 87.45 87.56 89.91 90.01 90.56 92.14 94.55 95.78 96.42 97.21 98.64 98.92 99.18 92.80 

 

Figure 5: Mean Localization Error versus Total number of Anchor Nodes  

For ease of comparison, the maximum number of iterations and population size are kept constant for ECS-
NL, QABA, IDE-NSL-AWSN, and the proposed GNLMA algorithms. The average value of 30 consecutive 
simulations is considered for performance comparison. Bio-inspired meta-heuristic algorithms like COA 
can mitigate the time taken for localizing the target node and the average localization error up to 0.5m. The 



localization error in ECS-NL algorithm [42] is limited to 0.5m to 2m and the errors are decreased with 
increasing node density, but the minimum number of ANs needed are 10. This will increase the need of 
GPS modules and cost of the network. IDE-NSL-AWSN was proposed to enhance the distance estimation 
that depends on SN selection in an obstacle-aware WSNs. But, it needs at least 15m and 75m as 
communication range in small-scale and large-scale environments for each SN in order to have at least one 
connection and the average localization error is limited to 2.54m [43]. Incorporating quantum evolution 
and annealing strategies into BA enhances the global and local search capabilities in order to converge to a 
best optimized value. Trilateral localization used in BA improves the convergence speed and accuracy of 
localization by 90.35%, 75.26% compared to other heuristic algorithms in 2D and 3D WSNs. QABA 
algorithm gives higher localization accuracy when the minimum communication range is 30m and the 
average error is limited to 1.25m [44]. Overall, the localization error is minimum with the proposed 
GNLMA algorithm compared to the other algorithms considered in figure 5 especially when the number of 
ANs are less than 10. This feature is attractive to build cost-effective localization algorithms for WSNs. 
From table 3, the localization error using the existing localization algorithms is mitigated to minimum levels 
only after the number of ANs are increased to 10 whereas the need of ANs is limited to four using the 
proposed algorithm to reach the same error values. There is 117.21%, 81.48%, 166.49% improvement in 
localization measurements using the proposed GNLMA algorithms compared to ECS-NL, QABA, IDE-
NSL-AWSN algorithms respectively.  
 
Table 3: Mean Localization Error (in meter) vs Number of ANs 

Number of ANs 

Protocol 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 Average 

ECS-NL 6.45 5.82 5.64 5.2 4.25 3.06 2.01 1.42 1.28 1.2 0.72 0.68 0.62 0.81 0.64 2.65 

QABA 4.82 4.79 4.32 3.89 3.57 3.25 2.06 1.92 1.72 0.58 0.42 0.48 0.44 0.47 0.43 2.21 

IDE-NSL-AWSN 6.64 6.02 5.85 5.02 4.59 4.14 3.86 2.84 2.12 1.86 1.84 1.02 0.98 0.98 0.96 3.25 
GNLMA 
(Proposed) 

2.27 2.24 2.15 2.07 1.96 1.82 1.35 1.12 0.96 0.72 0.46 0.42 0.28 0.26 0.25 1.22 

 



Figure 6: Mean Localization Error versus Communication range  

The communication range of SNs affects the localization accuracy through the suitable ANs selection. The 
localization accuracy improves with the communication range as more number of ANs are participated in 
localization. In figure 6, as the communication range increases, the localization accuracy increases using 
the proposed GNLMA algorithm and it has linear relation. But, with the meta-heuristic and hop-based 
algorithms the average localization accuracy is less and also linear relation does not hold good between 
communication range and localization accuracy. From the table 4, the localization accuracy is improved by 
6.55% and 10.24% in the mean localization accuracy of the proposed GNLMA algorithm compared to 
DCK-GWO and DECPSODV-Hop algorithms respectively.  

Table 4: Communication range vs Mean Localization accuracy (in %)  

Protocol 
Communication range in meters 

10 15 20 25 30 35 40 45 50 Average 

DCK-GWO 84.57 86.01 86.52 85.14 84.42 90.67 90.53 90.62 92.14 87.85 
DECPSODV-Hop 82.42 83.54 85.62 86.64 87.43 84.91 83.69 81.52 81.64 84.16 
GNLMA (Proposed) 88.67 89.92 91.45 94.58 95.61 96.39 96.82 97.52 98.68 94.40 

 

The modified versions of BOA simplify the local and global search strategies thereby minimizing the 
computation time and mean localization error [45]. Considering different communication powers to the 
nodes in WSN establishes the accurate relation between physical distance and the hop count values. Using 
mobile ANs, the given TN can compute its position by considering the mean distance per hop and this 
method mitigates the localization error [46].  

5. CONCLUSIONS AND FUTURESCOPE 

The proposed GNLMA algorithm addresses localization and optimal coverage problems in WSNs in a cost-
effective manner with reduced computational cost compared to other meta-heuristic as well as range-based 
localization algorithms. The low complexity fitness function is defined and applied in the proposed 
localization algorithm. This algorithm reduces the number iterations in achieving the global optimal 
solution even at the lower values of communication range, AN ratio, and node density. The simulation 
results prove that the proposed GNLMA algorithm enhances the mean localization accuracy to 92.8% and 
the range measurement error is limited to 1.22meters. Depending on the communication range of sensor 
nodes, the average localization accuracy is achieved up to 94.4% using the proposed GNLMA. From the 
overall results, even though the localization performance of all the algorithms are increasing with increasing 
number of ANs, the minimum number of ANs are reduced to four in the proposed algorithm without 
compromising for localization accuracy. The presence of higher ANs and SNs density lead to further 
enhancement of the location estimation precision. As a future work of this, the reposed algorithm is 
implemented in the hardware of SNs during the real-time deployment of WSNs. 

GLOSSARY  

 

2D                two dimensional 
3D                three dimensional 
ACO            ant colony optimization 
AN               anchor node 
AoA             angle of arrival 
APIT            approximate point in triangulation test 
BA               bat algorithm 
BOA            butterfly optimization algorithm 



BFO             bacterial foraging optimization 
COA            cuckoo optimization algorithm 
CSA            cuckoo search algorithm 
DCK           degree of K-value collinearity 
DECPSOHDV differential evolution chaotic PSO Hybrid DV  
DEEC          distributed energy efficient clustering 
DTN            dynamic triangulation algorithm 
DV              distance vector 
ECS-NL      enhanced CSA for node localization 
FA               firefly algorithm 
FPA             flower pollination algorithm 
GA               genetic algorithm 
GGD            gaussian gradient distance 
GNLMA      gaussian newton localization through multilateration algorithm 
GPA             grey prediction algorithm 
GPS             global positioning system 
GTP             gorilla troop optimizer 
GWO           grey wolf optimization 
IDE-NSL-AWSN   improving distance estimation based on node selection in obstacle-aware WSNs 
IWO            invasive weed optimization 
IWOA         improved whale optimization algorithm 
LOS             line of sight 
MCB           Monte Carlo Localization Boxed algorithm  
ML              maximum-likelihood 
MSE            mean square error 
PIR              pyroelectric infrared 
PLD             parametric loop division 
PSO             particle swarm optimization 
QABA       quantum annealing bat algorithm 
RF                radio frequency 
RSSI            received signal strength indicator 
SN               sensor node 
SSA             salp swarm algorithm  
TDoA          time difference of arrival 
TN               target node 
ToA            time of arrival 
UN              unknown node 
WOA          whale optimization algorithm 
WSN           wireless sensor network 
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