1.Mathur S, Umakanth AV, Tonapi VA, Sharma R, Sharma MK: Sweet sorghum as biofuel feedstock: recent advances and available resources. Biotechnol Biofuels 2017, 10:146.
2.Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A et al: The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457(7229):551–556.
3.van der Weijde T, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RG, Trindade LM: The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 2013, 4:107.
4.Bhatia R, Gallagher JA, Gomez LD, Bosch M: Genetic engineering of grass cell wall polysaccharides for biorefining. Plant Biotechnol J 2017, 15(9):1071–1092.
5.Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM: Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci U S A 1993, 90(23):11212–11216.
6.Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J et al: Agrobacterium-mediated sorghum transformation. Plant Mol Biol 2000, 44(6):789–798.
7.Ahmed RI, Ding A, Xie M, Kong Y: Progress in Optimization of Agrobacterium-Mediated Transformation in Sorghum (Sorghum bicolor). Int J Mol Sci 2018, 19(10).
8.Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W, Sigmund AL, Zastrow-Hayes G, Miller M, Liu D et al: Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnol J 2018, 16(7):1388–1395.
9.Nelson-Vasilchik K, Hague J, Mookkan M, Zhang ZJ, Kausch A: Transformation of Recalcitrant Sorghum Varieties Facilitated by Baby Boom and Wuschel2. Curr Protoc Plant Biol 2018, 3(4):e20076.
10.Girijashankar V, Swathisree V: Genetic transformation of Sorghum bicolor. Physiol Mol Biol Plants 2009, 15(4):287–302.
11.Jeoung JM, Krishnaveni S, Muthukrishnan S, Trick HN, Liang GH: Optimization of sorghum transformation parameters using genes for green fluorescent protein and beta-glucuronidase as visual markers. Hereditas 2002, 137(1):20–28.
12.Burris KP, Dlugosz EM, Collins AG, Stewart CN, Jr., Lenaghan SC: Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Plant Cell Rep 2016, 35(3):693–704.
13.Lin CS, Hsu CT, Yang LH, Lee LY, Fu JY, Cheng QW, Wu FH, Hsiao HC, Zhang Y, Zhang R et al: Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 2018, 16(7):1295–1310.
14.Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D et al: A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 2011, 7(1):30.
15.Rehman L, Su X, Guo H, Qi X, Cheng H: Protoplast transformation as a potential platform for exploring gene function in Verticillium dahliae. BMC Biotechnol 2016, 16(1):57.
16.Gonzalez TL, Liang Y, Nguyen BN, Staskawicz BJ, Loque D, Hammond MC: Tight regulation of plant immune responses by combining promoter and suicide exon elements. Nucleic Acids Res 2015, 43(14):7152–7161.
17.Liang Y, Richardson S, Yan J, Benites VT, Cheng-Yue C, Tran T, Mortimer J, Mukhopadhyay A, Keasling JD, Scheller HV et al: Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants. ACS Synth Biol 2017, 6(5):806–816.
18.Liang Y, Eudes A, Yogiswara S, Jing B, Benites VT, Yamanaka R, Cheng-Yue C, Baidoo EE, Mortimer JC, Scheller HV et al: A screening method to identify efficient sgRNAs in Arabidopsis, used in conjunction with cell-specific lignin reduction. Biotechnol Biofuels 2019, 12:130.
19.Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y et al: A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot Plants. Molecular plant 2015, 8(8):1274–1284.
20.Sparkes IA, Runions J, Kearns A, Hawes C: Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 2006, 1(4):2019–2025.
21.Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP: Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 2013.
22.Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP et al: Advancing Crop Transformation in the Era of Genome Editing. Plant Cell 2016, 28(7):1510–1520.
23.Barampuram S, Zhang ZJ: Recent advances in plant transformation. Methods Mol Biol 2011, 701:1–35.
24.Gelvin SB: Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 2003, 67(1):16–37, table of contents.
25.Wu E, Zhao ZY: Agrobacterium-Mediated Sorghum Transformation. Methods Mol Biol 2017, 1669:355–364.
26.Hiei Y, Ishida Y, Komari T: Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front Plant Sci 2014, 5:628.
27.Bhaskar PB, Venkateshwaran M, Wu L, Ane JM, Jiang J: Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS One 2009, 4(6):e5812.
28.Circelli P, Donini M, Villani ME, Benvenuto E, Marusic C: Efficient Agrobacterium-based transient expression system for the production of biopharmaceuticals in plants. Bioeng Bugs 2010, 1(3):221–224.
29.Figueiredo JF, Romer P, Lahaye T, Graham JH, White FF, Jones JB: Agrobacterium-mediated transient expression in citrus leaves: a rapid tool for gene expression and functional gene assay. Plant Cell Rep 2011, 30(7):1339–1345.
30.Kim MJ, Baek K, Park CM: Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Rep 2009, 28(8):1159–1167.
31.Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J: Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol Adv 2015, 33(6 Pt 2):1024–1042.
32.Li JF, Nebenfuhr A: FAST technique for Agrobacterium-mediated transient gene expression in seedlings of Arabidopsis and other plant species. Cold Spring Harb Protoc 2010, 2010(5):pdb prot5428.
33.Zheng L, Liu G, Meng X, Li Y, Wang Y: A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees. Biochem Genet 2012, 50(9–10):761–769.
34.Schweizer P, Pokorny J, Schulze-Lefert P, Dudler R: Technical advance. Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J 2000, 24(6):895–903.
35.Andrieu A, Breitler JC, Sire C, Meynard D, Gantet P, Guiderdoni E: An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves. Rice (N Y) 2012, 5(1):23.
36.Kant R, Dasgupta I: Gene silencing approaches through virus-based vectors: speeding up functional genomics in monocots. Plant Mol Biol 2019.
37.Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, Chang R, Aditham AJ, Chio L, Cho MJ et al: High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol 2019.
38.Somssich M: A Short History of the CaMV 35S Promoter. PeerJ PrePr 2018, 6(e27096v2):1–16.
39.Khatodia S, Bhatotia K, Passricha N, Khurana SM, Tuteja N: The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops. Front Plant Sci 2016, 7:506.
40.Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE: Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 2014, 32(12):1262–1267.
41.Gao Z, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH: Efficient genetic transformation of Sorghum using a visual screening marker. Genome 2005, 48(2):321–333.