Abdelnasser, S. S. I.; Ahmed, I. E. Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Australian j. basic appl. sci., v. 1, p. 4738, 2007.
Adeleke, B. S.; Akinyele, B. J.; Olaniyi, O.O.; Agboola, Y. A. Effect of fermentation on chemical composition of cassava peels. Asian j. plant sci. res., v. 7, no. 1, p. 31-37, 2017.
Bakare, M. K.; Adewale, I. O.; Ajayi, A. O.; Okoh, A. I.; Shonukan, O. O. Regulatory mutations affecting the synthesis of cellulase in Pseudomonas fluorescens. Afri. J. biotechnol., v. 4, no. 8, p. 838-843, 2005.
Bras, J. L. A.; Cartmell, A.; Carvalho, A. L. M. et al. “Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis,” Proceedings of the National Academy of Sciences of the United States of America, v.108, no.13, p. 5237-5242, 2011. DOI: 10.1073/pnas.1015006108
Brock, T. D.; Madigan, M. T. Biology of microorganisms. 6th edition. Prentice Hall International Inc. Englewood Cliffs, U.S.A. p. 835, 1991.
Cherry, J. R.; Fidantsef, A. L. Directed evolution of industrial enzymes: an update. Curr. opinion biotechnol.,. v. 14, no. 1, 438-443, 2003. DOI: 10.1016/s0958-1669(03)00099-5.
Deswal, D.; Khasa, Y. P.; Kuhad, R. C. “Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation,” Biores. technol., v. 102, no.10, p. 6065-6072, 2011. DOI: 10.1016/j.biortech.2011.03.032
Doi, R. H. Cellulase of mesophilic microbes: cellulosome and non-cellulosome producers. Ann. NY. Acad. sci., v. 1125, p. 267–279, 2008. DOI: 10.1196/annals.1419.002
Femi-Ola, T. O. Regulatory mutations affecting the synthesis of cellulase in Bacillus pumilus. J. pure appl. Microbiol., v. 2, no. 1, p. 181-186, 2008.
Islam, F.; Roy, N. Screening, purification and characterization of cellulase from cellulase from cellulase producing bacteria in molasses. BMC Research Notes, v. 11, no. 445, p. 2-6, 2018. DOI.org/10.1186/s13104-018-3558-4.
Kayikci, Ö.; Nielsen, J. Glucose repression in Saccharomyces cerevisiae. FEMS yeast res., v. 15, no. 6, p. 1-6, 2015. DOI: 10.1093/femsyr/fov068.
Kim, S.; Kwon, D-H.; Park, J‑B.; Ha, S‑J. Alleviation of catabolite repression in Kluyveromyces marxianus: the thermotolerant SBK1 mutant simultaneously coferments glucose and xylose. Biotechnol. biofuels, v. 12, no. 90, p. 1-9, 2019. https://doi.org/10.1186/s13068-019-1431-x
Kotchoni, O. S.; Shonukan, O. O.; Gachomo, W. E. “Bacillus pumilus BpCRI 6, a promising candidate for cellulase production under conditions of catabolite repression,” Afri. j. Biotechnol., vol.2, no.6, p.140-146, 2003.
Lo, Y.C.; Saratale, G.D.; Chen, W. M.; Bai, M. D.; Chang, J. S. “Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production,” Enzyme and Microbial Technology, v. 44, no. 6-7, p.417-425, 2009. DOI.org/10.1016/j.enzmictec.2009.03.002
Lowry, O. H.; Rosebrough, J. N.; Farr, L. A.; Randali, J. R. Protein measurement with the Folin-Phenol reagents. J. biol. Chem., v. 193, no.1, p. 265-275. 1951.
Lynd, L. R.; Weimer, P. J.; Vanzyl, W. H. Pretorius IS. Microbial cellulose utilization: Fundamentals and Biotechnology. Microbiology and Biology Review, v. 66, no. 5, p. 506-577, 2002. DOI: 10.1128/mmbr.66.3.506-577.2002.
Marjamaa, K.; Toth, K.; Bromann, P. A.; Szakacs, G.; Kruus, K. “Novel Penicillium cellulases for total hydrolysis of lignocellulosic,” Enzyme and Microbial Technology, v. 52, no. 6-7, p. 358-369, 2013. DOI.org/10.1016/j.enzmictec.2013.03.003.
Narasimha, G.; Radha, S.; Himakiran, B. I. R.; Sridevi, I. A.; Prasad, N. B. L. Development of mutant fungal strains of Aspergillus niger for enhanced production of acid protease in submerged and solid-state fermentation. European Journal of Experimental Biology, v. 2, no. 5, p. 1517-1528, 2012.
Olaniyi, O. O.; Akinyele, B. J.; Ibitoye, O. F. Mutagenesis of Klebsiella edwardsii for mannanase synthesis. Innovative Romanian Food Biotechnology, v. 15, no.1, p. 40-45, 2014.
Olaniyi, O. O.; Ibitoye, O. F.; Familoni, T. V.; Bankefa, E. O. UV Mutagenesis of Aspergillus flavus for enhanced mannanase synthesis and catabolite activation studies. Res. j. microbiol., v. 10, no. 11, p. 542-550, 2015. DOI: 10.3923/jm.2015.542.55.
Park, E.; Lee, S. S.; Kim, B.; Cho, B.; Cho, S.; Cho, K. J.; Ha, J. K.; Seo, K. Isolation of endo-1,4-β-D-glucanase producing Bacillus subtilis sp. from fermented foods and enhanced enzyme production by developing the mutant strain. Indian j. anim. res., v. 51, no. 4, p. 785-790, 2017. DOI: 10.18805/ijar.v0iOF.7253.
Perez, J.; Munoz-Dorado, J.; de la Rubia, T.; Martinez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. j. Microbiol., v. 5, no. 1, p. 53-63, 2002. DOI: 10.1007/s10123-002-0062-3.
Romeo, T. Bacterial bioflms. Berlin: Springer. p. 258-263, 2008. ISBN 978-3-540-75418-3
Sadhu, S.; Ghosh, P. K.; Aditya, G.; Maiti, T. K. Optimization and strain improvement by mutation for enhanced cellulase production By Bacillus sp. (MTCC10046) isolated from cow dung. Journal of King Saud University-Science, v. 26, no. 1, p. 323-332, 2014. DOI.org/10.1016/j.jksus.2014.06.001.
Saha, P.; Chakrabarti, T. Emticicia oligotrophicagen. nov., sp. nov., a new member of the family ‘flexibacteraceae’ Phylum Bacteroidetes. International Journal of Systemic and Evolutionary Microbiology. v. 56, no. 1, p. 991-995, 2006.
Sangkharak, K.; Vangsirikul, P.; Janthachat, S. Strain improvement and optimization for enhanced production of cellulase in Cellulomonas sp. TSU-03. Afri. j. microbiol. Res., v. 6, no. 5, p. 1079-1084, 2012. DOI: 10.5897/AJMR11.1550.
Shanmugapriya, K.; Saravana, P. S.; Krishnapriya, M. M.; Mythili, A.; Joseph, S. Isolation, screening and partial purification of cellulose from cellulose producing bacteria. International Journal of Advances in Biotechnology Research. v. 3, no. 1, p. 509-514, 2012.
Waeonukul, R.; Kyu, K. L.; Sakka, K.; Ratanakhanokchai, K. “Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions,” J. Biosci. Bioeng., v.107, no.6, p. 610-614, 2009.
Wilson, D. B. “Microbial diversity of cellulose hydrolysis,” Curr. Opinion Microbiol., v. 14, no. 3, p. 259-263, 2011. DOI.org/10.1016/j.mib.2011.04.004.
Zang, Y. P.; Lynd, L. R. Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J. bacterial., p. 99-106, 2005. DOI: 10.1128/JB.187.1.99-106.2005.