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Abstract
Robotic arms are currently in the spotlight of the industry of future, but their efficiency faces huge
challenges. The efficient grasping of the robotic arm, replacing human work, requires visual support. In
this paper, we first propose to augment end-to-end deep learning gasping with a object detection model in
order to improve the efficiency of grasp pose prediction. The accurate positon of the object is difficult to
obtain in the depth image due to the absent of the label in point cloud in an open environment. In our
work, the detection information is fused with the depth image to obtain accurate 3D mask of the point
cloud, guiding the classical GraspNet to generate more accurate grippers. The detection-driven 3D mask
method allows also to design a priority scheme increasing the adaptability of grasping scenarios. The
proposed grasping method is validated on multiple benchmark datasets achieving state-of-the-art
performances.

1 Introduction
Grasping prediction refers to the prediction of robot's movements and postures when grasping objects,
which aims to enable the robot to grasp objects more accurately and efficiently. It is highly relevant in a
variety of fields such as automated logistics, smart homes, healthcare, ser- vices, and defense
applications [1, 2, 3], where efficient grasp prediction is needed to improve the robot's ability to complete
transport tasks. Indeed, some results have been achieved in computer vision for grasp prediction. In an
early work, Miller et al. [4] have used heuristic rules to generate and evaluate three-fingered grasps,
modelling objects as a set of shape primitives for grasp prediction based on simple shapes such as
spheres, cones and cylin- ders. Yun Jiang et al. [5] have used a rectangular represen- tation approach for
learning target grasps on RGB-D images [6]. Other methods focus on using edges and contours to
determine shapes and force closures to grasp 2D planar objects. Piater [7] uses K-means clustering to
estimate 2D grasping directions for simple objects, in particular squares, triangles and circular 2D 'blocks'
[5]. In real-world grasping, however, these shape-based methods are inaccurate to classify the objects into
com- plete 3D shapes, even less to define the grasping prim-itives. In recent years, grasp detection
methods based on 6D pose estimation [8–14] have been proposed for gras-ping regression. Other
methods aim at obtaining grasp data directly from the sensors of the robot arm without estimating the
object's pose [15, 16, 17]. Regression-based 6D pose estimation requires a large amount of high-quality
training data and a complex training pro-cess. Similarly, the acquisition, calibration and labelling of
robotic arm sensor data is a very complex process and therefore not widely available. The basic idea is to
deal with grasp perception similarly to object detection in computer vision. Although these methods
generalize well to the acquisition of knowledge of new objects, they have not yet proven to be efficient
and reliable eno-ugh [15]. Furthermore, it is not possible to effectively recognize the best grasping pose
for all objects in a multi-object scene.

To avoid these problems and to balance object pose estimation and grasp effectiveness, we propose a
detec-tion-driven 3D masking method in order to enhance gras-ping efficiency. In summary, we make
following contri-butions:
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1) We propose to generate the grasp pose problem as a multi-model perception problem. Taking the RGB
and depth image as the input for the robot arms system. The object detection method is adopted for fast
target locali-zation.

2) Contribute a benchmark dataset. Our dataset cont-ains 890 RGB-D images with hundreds of scenes.
Whi-ch is able to evaluate the effectiveness of the method.

3) We use the target detection YOLO deep learning method for fast target localization and assessment of
grasp ease. Using target position and priority informa-tion are then used for accurate grasp prediction.
Instead of the regression-based pose estimation method in the second step, we use the GraspNet network
in order to predict and score grasps based on the masked point cloud. This detection-driven 3D mask
method is validat-ed on multiple benchmark datasets.

The proposed method reduces the computational effort of 3D point cloud segmentation and matching,
and im-proves computational efficiency and prediction accu-racy. Furthermore, the proposed priority
grasping met-hod enhances scene adaptation.

2 Related Works

2.1 Object detection
Object detection consists of identifying and locating objects in a visual scene. By detecting and
recognizing objects in images or videos, the robot can determine the object position, the category of the
object well as esti-mating the grasping pose from the detection informa-tion [18, 19, 20, 21]. Examples
related to grasping are PoseCNN [8], Faster R-CNN Inception-V2 [22] and partial depth estimation [23] all
of which have achieved good results and are widely applied. The YOLO family [24, 25] is one of the most
efficient real-time object detectors. Considering that YOLOv7 version has the highest accuracy, i.e. 56.8%
AP, and the size of the parameters is 36.9 M. The processing time is 161 FPS for the 640×640 image, it is
suitable for the real time control of the robot. It will be considered in our work in order to improve the
efficiency of the grasping prediction.

2.2 Grasp prediction
There have been many approaches for solving the gra- sping problem. Morrison et al. [26] proposed a
genera- tive grasping convolutional neural network (GG-CNN) to predict the grasp quality and pose of
each pixel. This method is a real-time, object-independent grasp synth- esis method that can be used for
closed-loop grasping. AnyGrasp, the visual grasp perception system generat- es spatially dense and
temporally smooth grasp poses [27]. Mahler et al. [28] performed grasp evaluation usin-g a convolutional
neural network (GQ-CNN) model wit-h parallel plate graspers in single-target scenes. In Dex-Net 3.0, the
authors added support for suction-based end-effectors, obtaining higher accuracy in grasp evalu-ation
than before [29]. In Dex-Net 4.0, it was proved that objects can be selectively grasped by the arm's suction
cups or grippers [16]. Our work is based on GraspNet (an end-to-end dense grasping pose estima-tion
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network) [30, 31] for effective grasping, which is composed of an approach network, an operation
network and a tolerance network. The input to GraspNet is the complete point cloud and the output is the
top dense grasping predictions. The disadvantage is that the best grasp pose cannot be estimated for all
objects in a multi-object scene. Therefore, we use the detection-driven 3D masking method based on
GraspNet to en-hance the effectiveness of the grasp by estimating the best grasp pose for all targets in a
multi-object scene. The representation of grasping pose is shown in Fig. 1.

2.3 Grasp prediction metrics
In order to demonstrate the efficiency of the method, the correct prediction of grasping must satisfy [5]
the following constraints:

1. The gripper is above the object close to the center of the object.

2. No collision.

3. The predicted gripper width W is greater than the object to fit the holder.

Quality estimates of grasping poses are often based on point metrics; rectangular metrics [2, 5]; force
closure analysis [30, 31, 32, 33]; Grasp success rate (GSRs) [34] or the geometry of a section cup model
through height map space [35] etc. To better assess our detection-driven 3D masking grasp method, here
we use improved point metric. As schematically shown in Figure 1. We predict a gripper [30, 31], which
includes the approach vector V, the approach distance D from the gripper to the origin of the gripper, the
in-plane rotation around the approach axis R and the gripper width W. 

Comparing the gripper center point to the grasping point distance from the predicted object surface, we
consider it as a correct grasping prediction if it is within a certain threshold. It is worth noting that the
Jiang Y indicated point metric consists of comparing the center of the rectangle to the ground-truth
distance, and is not always reliable, as the prediction does not take the orientation into account. In
contrast, our predicted grasping pose includes the direction, so there is no such problem in our approach.

Table 1. The experimental environment configuration and camera type, parameters are described, where
the factor depth is the scale of depth converted to meters, Fx Fy Cx Cy are the camera focal length and
the optical center internal parameters.
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 Item Value or name

Training environment 5 cartes GPU Tesla T4 (16Go)

Ubuntu 20.04, CUDA 11.3, Pytorch 1.10, python 3.6

Test and evaluation environment Ubuntu 20.04, CUDA 11.3, Pytorch 1.10, python 3.7

Camera RealSense Depth Camera D435i

Factor depth 1000

Fx Fy 321.0473327636719

Cx 323.1285400390625

Cy 174.82257080078125

Table 2. Experimental parameters. 

Item Value

Number of training sets 450

Grasping predicted images(unseen) 200

Grasping predicted images(novel) 120

Epoch 300

Initial learning rate 0.01

Final one cycle learning rate 0.1

Batch size 16
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Table 3
Evaluation results of the correct pose prediction rate for different grasp priorities. Where

Others Round Right represents the order of grasping, i.e. Others, Round-sided objects,
Right-sided objects. The rest of the grasp sequences work in a similar way.

Grasping sequence Novel Composite

T1(%) T2(%) Average(%) T1(%) T2(%) Average(%)

Others Round Right 90.88 75.81 83.35 93.77 86.85 90.31

Others Right Round 92.98 79.62 86.30 95.63 89.88 92.76

Round Others Right 81.43 70.42 75.93 92.69 86.41 89.55

Round Right Others 79.75 72.75 76.25 94.22 89.16 91.69

Right Others Round 90.10 83.13 86.62 97.17 93.29 95.23

Right Round Others 86.33 81.61 83.97 96.84 93.01 94.93

3 Proposed Approach
This section is dedicated to the proposed method, including the acquisition and labelling of the dataset
the systematic structure of the detection-driven 3D m-asking method and the experimental setup.

3.1 Dataset
We have taken 450 RGB images of 3D printed objects in multi-object scenes for Transfer Learning [36].
Vari-ous shapes of objects such as orange rectangles, blue trapezoids, large blue cylinders, yellow cones,
pink co-lumns, irregular objects, etc. have been used. The train-

ing dataset consists of 12 different objects, 10 targets per scene. Moreover, 440 images divided into 3
categ-ories with 10 objects per scene were tested on the ima-ges. Of these, 200 are similar scenes and
120 are com-pletely new scenes. Another 120 images (composite dataset) consisting of training objects
and unknown targets were used for the ablation study. In the prior training stage, each image is labelled
with:

1 The object class;

2 The bounding value of the mask;

3 The grasp priority is defined.

The object classes are simply defined as right-sided ob-
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jects, round-sided objects and others. The grasping priority is defined as the order of grasping objects.
The depth image aligned to the RGB image is added at the grasp prediction stage and used to generate
the full po-int cloud. The RGB-D images for all datasets are from the camera RealSense D435i.

3.2 Architecture
Grasp prediction consists of two stages. The first stage is to use YOLOv7 as a priori algorithm to detect
the target to be grasped. The second stage sequentially per- forms grasp prediction on the cropped point
cloud based on the priority of the grasped object. Here, we introduce priority grasping predictions for more
effi-cient grasping. Initially, the priority information of the grasped object is pre-defined in the first stage
accord-ing to the object ease of grasping. For example, the grasping order is defined as round-edged
objects first, followed by right-edged objects and finally irregular objects. Then priority is calculated based
on all object classes and grasping ease scores obtained by YOLOv7 recognition in the image working
area. Lastly, grasping prediction is performed based on the grasping priority of the target.

To illustrate the detection-driven 3D mask approach described in this paper, Fig. 2 gives a diagram of the
system structure using YOLOv7 and GraspNet. The in- puts are RGB images and predefined object
grasping difficulty values. After processing the inputs through YOLOv7, the outputs obtained in the first
stage are normalized object classes, bounding boxes, object mas- ks and priority scores. The inputs of
the second stage are the RGB-D images and the outputs of the first stage. The point cloud obtained by
RGB-D is first cropped into classified grasping regions using a priori informa- tion output by the first stage
network.

The grasps are then sequentially predicted by Grasp- Net following the estimated priority and the
correspon- ding object masks. All feasible grasp poses are estimat- ed avoiding invalid grasp predictions.
The grasp repre- sentation is the same as the GraspNet output.

3.3 Experimental setup
The camera Realsense D435i is used in the experiments  
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Table 4
The prediction correct results of the grasping of different

categories of objects, and their average values. The grasping order
in experiment is right-sided, others, round-sided. The dataset of
scene seen is selected 110 images. Unseen and Novel scenes

select all. T1 T2 are different thresholds.
Object Seen Unseen Novel

T1 T2 T1 T2 T1 T2

Right 99.84 88.70 98.83 90.95 89.16 88.13

Others 99.47 83.04 98.40 81.63 93.30 83.08

Round 98.16 79.66 96.64 77.68 87.85 78.17

Average 99.15 83.80 97.96 83.42 90.10 83.13

which can acquire RGB-D images in real time at resol- utions of 640×360 and frame rates of 30 fps. Table
1 shows the details of the experimental environment. Training is performed using the server Tesla T4
Ubuntu 20.04.5 LTS. Python 3.6, Pytorch 1.10 and CUDA 11.3 are used to train the model of object
recognition. Test- ing and evaluation used Python 3.7, Pytorch 1.10, CU-DA 11.3. The camera parameters
show the camera dep-th scaling and camera intrinsic parameters. The depth scaling is 1000. Table 2
shows the training parameters. The training dataset is composed of 450 images, but a better model can
be obtained using a Transfer Learning method.

The model trained with these parameters is used to obtain efficient grasping poses. As shown in Fig. 3
(1–10), objects with different priorities are in turn succ- essfully predicted with the exact appropriate
grasping pose.

4 Results
This section introduces the predicted results and the ablation study.

4.1 Prediction results
The experiments have compared the correct prediction rate of the grasping with different priorities. From
Table 3, we can notice that the test set performs dif-ferent results when grasping targets with different
priority order. Novel and Composite represent different datasets, with Novel being the dataset with
completely unknown objects and scenes for the training model, while scenes in Composite are
composites of known objects and completely unknown targets. The values T1 and T2 are the different
thresholds in the point metric assessment method. Let the distance from the center of the grip point to
the grasp point on the object surface be D. Let the minimum value in the length and width
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Table 5
Comparison of methods.

Methods Graspnet with
YOLO

Graspnet without
YOLO

Predict the grasping pose of all objects in the scene √ ×

Object location √ ×

Priority grasping √ ×

Object classification (distinguish categories of
objects)

√ ×

Binary image segmentation (without classification) × √

of the object bounding box be M. Then, T1 is equal to the difference between D and one-third M. T2 is
equal to the difference between D and a quarter of M.

The results obtained from different scenarios of the dataset show that the best priority grasping order is
right, others, round. Later ablation studies were also performed on this grasping priority order. The results
of one priority grasping prediction are given in Fig. 3. The results show that the sequence of object
grasping is exactly the order of target priority. Even with similar classes of objects in different scenes the
results are the same. This demonstrates the consistency of the detec-tion-driven 3D mask priority
grasping method.

To illustrate the efficiency of the method described in this paper, an example of the grasping results is
given in Fig. 4. The results give the same number of grippers as the targets. It can be seen from the
results that the method described in this paper predicts the best grasping poses for all objects, whether in
simple scenes with no occlusion or stacked objects, or in complex scenes with occlusions or stacked
objects. The classical grasping method without YOLOv7 cannot predict the best grasping poses for all
objects. This shows the ef-fectttiveness of the method described in the paper.

Table 4 gives the average correct prediction rate of objects for each category. The results are based on
the grasping priority order: right, others, round. As we can see, the results show that right-sided objects are
the best at correct pose prediction and the easiest to grasp while round-sided objects are not as easy to
grasp, illu- strating the necessity of the priority grasping method.

4.2 Ablation studies
To assess the efficiency of YOLOv7 as priori algorithm for the detection-driven 3D masking method, we
conducted ablation studies. Here, we present the results of grasping poses with and without the prior
algorithm YOLOv7 in Fig. 5. The results show dense predicti-

ons of the grasping poses with the 50 highest scoring grippers. In order to demonstrate the efficiency of
our method, the top 1 gripper with the highest grasp target score is also given in Fig. 5 (4). As it is clearly
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Gras-pNet without YOLOv7 cannot predict the grasping poses for all objects, while our method can
accurately predict the best grasps for all objects. Then we compa-red the different methods and the
results are reported in Table 5. Our method not only predicts the best grasp pose for all objects in the
scene, but also locates object positions, identifies categories of objects, and priori-tises grasps.

5 Conclusion
In this paper, we first propose to integrate object detec-tion as priori for detecting the object to be grasped
and for obtaining the mask of the grasp target, the grasp working zone, and the priority information.
Then, effi-cient grasping prediction is performed based on the target grasping priority and grasping area.

We also propose to use the priority grasping method to grasp different categories of objects sequentially
and efficiently, making it possible for the robotic arm to grasp intelligently and selectively. It also enables
all objects in a multi-object scene to be grasped effecti-vely. The experiments demonstrate the
effectiveness of priority grasping and the efficiency of the detection-driven 3D mask method.
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Figures

Figure 1

Grasp pose. i.e. predicting the gripping posture of the EPSON robot arm on the right.
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Figure 2

Overview of the detection-driven 3D mask method for efficient grasping.

Figure 3

Example of priority grasping.
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Figure 4

Example of proposed YOLO-based masking and classical GraspNet without YOLO Complex.
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Figure 5

Comparison of proposed YOLO-based masking and GraspNet without YOLO.


