1 Tedroff, K., Hägglund, G. & Miller, F. Long-term effects of selective dorsal rhizotomy in children with cerebral palsy: a systematic review. Developmental medicine and child neurology62, 554-562, doi:10.1111/dmcn.14320 (2020).
2 Gros, C., Ouaknine, G., Vlahovitch, B. & Frèrebeau, P. [Selective posterior radicotomy in the neurosurgical treatment of pyramidal hypertension]. Neuro-Chirurgie13, 505-518 (1967).
3 Fasano, V., Broggi, G., Barolat-Romana, G. & Sguazzi, A. Surgical treatment of spasticity in cerebral palsy. Child's brain4, 289-305, doi:10.1159/000119785 (1978).
4 Peacock, W. & Arens, L. Selective posterior rhizotomy for the relief of spasticity in cerebral palsy. South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde62, 119-124 (1982).
5 Park, T. & Johnston, J. Surgical techniques of selective dorsal rhizotomy for spastic cerebral palsy. Technical note. Neurosurgical focus21, e7 (2006).
6 Mittal, S., Farmer, J., Poulin, C. & Silver, K. Reliability of intraoperative electrophysiological monitoring in selective posterior rhizotomy. Journal of neurosurgery95, 67-75, doi:10.3171/jns.2001.95.1.0067 (2001).
7 Bales, J. et al. Infra-Conus Single-Level Laminectomy for Selective Dorsal Rhizotomy: Technical Advance. Pediatric neurosurgery51, 284-291, doi:10.1159/000448046 (2016).
8 Zhan, Q. et al. Feasibility and effectiveness of a newly modified protocol-guided selective dorsal rhizotomy via single-level approach to treat spastic hemiplegia in pediatric cases with cerebral palsy. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery35, 2171-2178, doi:10.1007/s00381-019-04194-0 (2019).
9 Xiao, B. et al. The role of intra-operative neuroelectrophysiological monitoring in single-level approach selective dorsal rhizotomy. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery36, 1925-1933, doi:10.1007/s00381-019-04408-5 (2020).
10 Zhan, Q. et al. Whether the newly modified rhizotomy protocol is applicable to guide single-level approach SDR to treat spastic quadriplegia and diplegia in pediatric patients with cerebral palsy? Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery36, 1935-1943, doi:10.1007/s00381-019-04368-w (2020).
11 Ravi, D., Kumar, N. & Singhi, P. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review. Physiotherapy103, 245-258, doi:10.1016/j.physio.2016.08.004 (2017).
12 Park, B. et al. Effects of soft tissue surgery on transverse kinematics in patients with cerebral palsy. BMC musculoskeletal disorders20, 566, doi:10.1186/s12891-019-2955-8 (2019).
13 Terjesen, T. To what extent can soft-tissue releases improve hip displacement in cerebral palsy? Acta orthopaedica88, 695-700, doi:10.1080/17453674.2017.1365471 (2017).
14 Schmid, S., Romkes, J., Taylor, W., Lorenzetti, S. & Brunner, R. Orthotic correction of lower limb function during gait does not immediately influence spinal kinematics in spastic hemiplegic cerebral palsy. Gait & posture49, 457-462, doi:10.1016/j.gaitpost.2016.08.013 (2016).
15 Pataky, T. One-dimensional statistical parametric mapping in Python. Computer methods in biomechanics and biomedical engineering15, 295-301, doi:10.1080/10255842.2010.527837 (2012).
16 Schwartz, M. & Rozumalski, A. The Gait Deviation Index: a new comprehensive index of gait pathology. Gait & posture28, 351-357, doi:10.1016/j.gaitpost.2008.05.001 (2008).
17 Buizer, A. et al. Effect of selective dorsal rhizotomy on daily care and comfort in non-walking children and adolescents with severe spasticity. European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society21, 350-357, doi:10.1016/j.ejpn.2016.09.006 (2017).
18 Enslin, J., Langerak, N. & Fieggen, A. The Evolution of Selective Dorsal Rhizotomy for the Management of Spasticity. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics16, 3-8, doi:10.1007/s13311-018-00690-4 (2019).
19 Zhou, J., Zhang, K., Cahill-Rowley, K., Lowe, E. & Rose, J. The Pediatric Temporal-spatial Deviation Index: quantifying gait impairment for children with cerebral palsy. Developmental medicine and child neurology61, 1423-1431, doi:10.1111/dmcn.14271 (2019).
20 Ito, T. et al. Association between Gait Deviation Index and Physical Function in Children with Bilateral Spastic Cerebral Palsy: A Cross-Sectional Study. Journal of clinical medicine9, doi:10.3390/jcm9010028 (2019).
21 Wilson, N., Signal, N., Naude, Y., Taylor, D. & Stott, N. Gait Deviation Index Correlates With Daily Step Activity in Children With Cerebral Palsy. Archives of physical medicine and rehabilitation96, 1924-1927, doi:10.1016/j.apmr.2015.05.024 (2015).
22 Massaad, A., Assi, A., Skalli, W. & Ghanem, I. Repeatability and validation of gait deviation index in children: typically developing and cerebral palsy. Gait & posture39, 354-358, doi:10.1016/j.gaitpost.2013.08.001 (2014).
23 Malt, M., Aarli, Å., Bogen, B. & Fevang, J. Correlation between the Gait Deviation Index and gross motor function (GMFCS level) in children with cerebral palsy. Journal of children's orthopaedics10, 261-266, doi:10.1007/s11832-016-0738-4 (2016).
24 Cimolin, V., Galli, M., Vimercati, S. & Albertini, G. Use of the Gait Deviation Index for the assessment of gastrocnemius fascia lengthening in children with Cerebral Palsy. Research in developmental disabilities32, 377-381, doi:10.1016/j.ridd.2010.10.017 (2011).
25 Lee, S. et al. Rectus femoris transfer in cerebral palsy patients with stiff knee gait. Gait & posture40, 76-81, doi:10.1016/j.gaitpost.2014.02.013 (2014).
26 Park, H. et al. Distal Femoral Shortening Osteotomy for Severe Knee Flexion Contracture and Crouch Gait in Cerebral Palsy. Journal of clinical medicine8, doi:10.3390/jcm8091354 (2019).
27 Riad, J., Modlesky, C., Gutierrez-Farewik, E. & Broström, E. Are muscle volume differences related to concentric muscle work during walking in spastic hemiplegic cerebral palsy? Clinical orthopaedics and related research470, 1278-1285, doi:10.1007/s11999-011-2093-6 (2012).
28 Dekopov, A. et al. [Long-term outcomes of SDR in various groups of cerebral palsy (CP) patients]. Zhurnal voprosy neirokhirurgii imeni N. N. Burdenko79, 29-37, doi:10.17116/neiro201579629-37 (2015).
29 Lee, D. et al. Innovative strength training-induced neuroplasticity and increased muscle size and strength in children with spastic cerebral palsy: an experimenter-blind case study--three-month follow-up. NeuroRehabilitation35, 131-136, doi:10.3233/nre-131036 (2014).
30 Wittenberg, G. Neural plasticity and treatment across the lifespan for motor deficits in cerebral palsy. Developmental medicine and child neurology, 130-133, doi:10.1111/j.1469-8749.2009.03425.x (2009).