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Abstract
Purpose：AFP appears to be negative about 30% of overall hepatocellular carcinoma (HCC). Our study
aimed to develop a nomogram model to diagnose AFP negative HCC (AFPN-HCC).

Patients and methods: The training set and the external validation set consisted of 516 and 456 objects.
LASSO, univariate and multivariable logistic regression were performed to construct the model and then
transformed into a visualized nomogram. We further used the receiver operating characteristic (ROC)
curves, the calibration curve, decision curve analysis (DCA) and clinical impact curve (CIC) for validation.

Results:Four variables included age, PIVKA-II, platelet (PLT) counts and prothrombin time(PT) were
selected to establish the nomogram. The area under the curve (AUC) of the ROC to distinguish AFPN-HCC
patients was 0.937(95%CI, 0.892-0.938) in training set and 0.942(95%CI, 0.921-0.963) using the
validation set and indicated satisfactory discriminative ability of the model. The calibration plots showed
favorable consistency between the prediction of the nomogram and actual observations. DCA and CIC
showed that the nomogram was clinically useful.

Conclusions:Our model was effective for discrimination of AFPN-HCC from control subsets, and might be
helpful for the diagnosis for AFPN-HCC.

1 Introduction
Hepatocellular carcinoma (HCC) is the dominant histological type of liver cancer, and accounts for 75–
85% of all cases. According the global cancer statistics 2022, HCC is the sixth most common malignancy
and the third leading cause of cancer-related death in the world[1].Surgical resection is still the preferred
method for the treatment of HCC but is not suitable for HCC patients with advanced
stage[2].Unfortunately, due to the occult onset of HCC and the lack of specifically early markers, most
patients often diagnosed at an advanced stage, which associated with a high recurrence rate, metastasis
rate and a poor prognosis[3]. Accurate surveillance and differential diagnosis of HCC can significantly
improve patient survival.

As the prognosis of HCC depends largely on the stage at which the tumor is detected, early detection of
HCC is critical to improve the survival of affected patients. Professional society guidelines from the
American Association for the Study of Liver Diseases (AASLD) and European Association for the Study of
the Liver (EASL) both suggest a liver ultrasonography (US) for patients with high-risk to develop into HCC
as the first level of surveillance[4, 5].、However, the effectiveness of US mainly depends on the experience of
operators and it is difficult to distinguish tumors from liver cirrhosis nodules which closely correlated with
HCC[6]. In a meta-analysis detect that the sensitivity of ultrasound was only 47% (95% CI, 33–61%) for
detection of early-stage HCC[7].Magnetic resonance imaging (MRI), computed Tomography (CT), and
other cross-sectional imaging techniques have a higher accuracy, but they are too expensive for
widespread screening[8].
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Biomarker assessments are more objective, easily accessible, and noninvasive tools for HCC diagnosis.
Of all biomarkers, alpha-fetoprotein (AFP) is the most widely used serological indicator for HCC
worldwide[9]. However, about 30% of overall HCC patients cannot be observed with elevated serum AFP
and AFP can also elevate in other benign liver diseases such as chronic hepatitis B(CHB) and liver
cirrhosis(LC)[10].These facts spark controversy about the use of AFP and the AASLD no longer
recommend the use of AFP during HCC surveillance[11]. A delayed diagnosis of AFP-negative HCC (AFPN-
HCC) is frequently lead to delays in treatment and subsequently to a serious consequence.

The detection of circulating biomarkers associated with AFPN-HCC can improve diagnostic accuracy and
overcome the disadvantages of current diagnostic strategies[12]. Prothrombin induced by vitamin K
absence II (PIVKA-II), also known as Des-γ-carboxyprothrombin (DCP), is an abnormal prothrombin
molecule and has been used as a biological marker which is increased in HCC[13]. Evidence has been
presented that PIVKA-II can improve the positive rate of diagnosis for AFPN-HCC patients[14].However,
serum PIVKA-II levels are also increased without HCC because of a shortage of vitamin K or usage of
vitamin K antagonists[15]. This makes its clinical applications as a marker of HCC limited. Lens culinary
agglutinin-reactive fraction of fetoprotein (AFP-L3), is the glycosylated subfraction of AFP and is a more
specific indicator than total AFP for HCC[16]. However, previous studies have indicated that AFP-L3
presented low diagnostic sensitivity in cases where AFP is not markedly elevated[17, 18]. Moreover, the
strategy of combined multiple biomarkers has been shown to significantly enhance diagnostic
performance[19, 20]. GALAD is the most extensively studied which includes gender, age, AFP-L3%, AFP, and
DCP. In an international cohort of 6834 patients (2430 with HCC and 4404 with chronic liver disease),
GALAD achieved sensitivities ranging from 60–80% for early HCC detection[21]. But numerous studies
tended to omit or ignore the application on AFPN-HCC[22, 23]. Liu. et al developed a serum-based GAAP
which was based on gender, age, AFP and PIVKA-II for surveillance of HCC and the model had an AUC
value of 0.888 for discriminating AFPN-HCC from the entire control[24]. Although data are promising,
confirmation of the clinical effectiveness in larger studies is needed.

The purpose of this study was to develop a diagnostic model with combined multiple biomarkers or
serological examinations for AFPN-HCC via LASSO regression analysis, univariate logistic regression
analysis and multivariable logistic regression. Then, the diagnostic model was transformed into a
visualized nomogram and its discrimination, calibration and the net benefits were further validated.
External validation was made on validation sets. We hope that the diagnostic model could be applied for
the diagnosis of AFPN-HCC.

2 Methods

2.1 Study Population
All HCC patients confirmed by postoperative pathology from January 2019 to May 2022 were included in
this study. After screening according to inclusion and exclusion criteria, 294 AFPN-HCC patients from the
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First Affiliated Hospital of Fujian Medical University were selected as training set and 227 patients from
Fujian Provincial Hospital were enrolled as validation set for this retrospective study. Training set also
included a cohort of 159 healthy objects, 63 patients with CHB and 64 patients with LC as controls. The
validation set from Fujian Provincial Hospital consisted of 137 healthy controls objects ,47 CHB patients
and 45 patients with LC. A written informed consent was obtained from all subjects. All procedures
followed were in accordance with Helsinki declaration. The development of the study followed the criteria
of the TRIPOD statement[25]. The Ethics Committee of the First Affiliated Hospital of Fujian Medical
University reviewed and approved this study (2018[048]).

2.2 Inclusion Criteria and Exclusion Criteria
The HCC inclusion criteria were listed as follows: (1) postoperative pathological diagnosis of HCC; (2)
preoperative AFP negative (< 20 ng/mL); (3) first onset without any anticancer treatment before
hepatectomy; (4) complete preoperative clinical data.

The HCC exclusion criteria was listed as follows: (1) preoperative AFP positive (≥ 20 ng/mL); (2) received
anticancer treatment before hepatectomy; (3) recrudescent HCC; (4) miss data.

The healthy control group was defined as: (1) no family history of cancer and liver-related disease; (2)
routine tests including full blood count, electrolytes, liver and kidney function tests, coagulation function,
AFP, CEA, PIVKA and other laboratory results within normal range.

The CHB patients were selected according to the guidelines of prevention and treatment for chronic
hepatitis B[26, 27]. The LC patients were enrolled according to guidelines on the management of liver
cirrhosis[28, 29].

2.3 Laboratory Examination and Data Collection
Demographic data (age and gender) was obtained from the electronic medical records. Laboratory
examination data including complete blood routine, electrolytes, liver and kidney function, coagulation
function, AFP, CEA, PIVKA-II were obtained within one week before surgery from the Laboratory
Information System (LIS). The laboratory methods were detailed briefly below. The serum AFP and CEA
were measured by the electroche-miluminescence detection system (Roche, Basel, Switzerland); PIVKA-II
was measured by the chemiluminescent microparticle immunoassay (Abbott Laboratories, IL, USA). The
blood routine was performed using an ADVIA 2120 automatic blood analyzer (Siemens, Erlangen,
Germany). The biochemical indexes were detected via the Cobas-8000 automatic biochemical analyzer
(Roche Diagnostics, Basel, Switzerland). Automated coagulation tests were performed using CS5100
coagulometric auto analyzers (Sysmex, Kobe, Japan).

2.4 Statistical Analysis
All statistical analysis were performed by SPSS 26.0 (IBM Corporation, 2020, USA) and R (version 4.2.0, R
Foundation for Statistical Computing, Vienna, Austria. URL https://www. R-project.org/). Continuously
distributed variables were reported as mean ± standard deviation (SD) for data with normal distribution,
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or median and interquartile range for nonnormally distributed data. Categorical covariates were
expressed as percentage. LASSO regression analysis and univariate logistic regression were used to
identify individual factors of AFPN-HCC. Then the significant variables with significance P < 0.05 were
selected for multivariate analyses. A visualized nomogram was conducted based on the results of the
multivariate model. The predictive performance of the algorithm models was measured by the receiver
operating characteristic (ROC) curves analysis. DeLong's test was used to compared the validity between
the AUCs of each model. A calibration curve was generated for evaluating the calibration. Decision curve
analysis (DCA) and clinical impact curves (CIC) was conducted to determine the clinical benefit of the
model. Summary of the study design was presented in Fig. 1.

3 Results

3.1 Characteristics of patients
A total of 521 patients(mean age, 59.2 ± 11 years; male to female ratio, 4.1:1) were enrolled in the present
study. Demographics, baseline patient characteristics, main laboratory data of AFPN-HCC patients for
both training (294 patients) and validation sets (227 patients) were shown in Table 1. There was no
significant difference between training set and validation set for demographic and clinical laboratory
characteristics.
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Table 1
Demographic and Clinical Laboratory Characteristics of the Training and Validation set

    Training set Validation set P value

Number of cases   294 227  

Gender, Male/female n (%) 250/44 196/31 0.568

Age, years Mean (SD) 59.3 (11.2) 59.1 (11.0) 0.819

AFP, ng/mL Median [Q1; Q3] 5.14 (4.68) 4.84 (4.16) 0.449

CA199, ng/mL Median [Q1; Q3] 14.8 [8.36;25.8] 14.5 [8.46;23.0] 0.087

CEA, ng/mL Median [Q1; Q3] 2.60 [1.73;3.72] 2.57 [1.77;3.66] 0.381

PIVKA-II, mAU/mL Median [Q1; Q3] 100 [38.0;634] 146 [44.5;1137] 0.142

Basophil counts, 109/L Median [Q1; Q3] 0.03 [0.02;0.04] 0.03 [0.02;0.04] 0.933

Eosinophils counts, 109/L Median [Q1; Q3] 0.11 [0.07;0.17] 0.11 [0.06;0.18] 0.61

Lymphocyte counts, 109/L Mean (SD) 1.72 (0.98) 1.69 (0.62) 0.675

Monocyte counts, 109/L Mean (SD) 0.42 (0.21) 0.41 (0.20) 0.612

Neutrophil counts, 109/L Mean (SD) 3.99 (3.66) 3.84 (2.58) 0.59

WBC counts, 109/L Mean (SD) 6.06 (2.25) 6.17 (2.53) 0.599

PLT counts, 109/L Mean (SD) 180 (70.4) 181 (71.9) 0.81

RBC counts, 1012/L Median [Q1; Q3] 4.58 [4.22;4.90] 4.56 [4.18;4.89] 0.232

HCT, L/L Median [Q1; Q3] 0.42 [0.39;0.46] 0.42 [0.40;0.45] 0.759

HGB, g/L Median [Q1; Q3] 144 [131;153] 142 [133;151] 0.369

MCH, pg Median [Q1; Q3] 31.3 [30.3;32.4] 31.2 [30.0;32.3] 0.286

Abbreviations:

AFP, -fetoprotein; CEA, carcinoembryonic antigen; CA199, carbohydrate antigen199; PIVKA-II, protein
induced by Vitamin K absence or antagonist-II; PLT, platelet; WBC, white blood cell ; RBC, red blood
cell; HCT, red blood cell specific volume; HGB, hemoglobin; MCV, mean corpuscular volume; MCH,
mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, red blood
cell distribution width; ALB, albumin; ALP, alkaline phosphatase; ALT, alanine aminotransferase; ApoB,
apolipoprotein B; ApoA1, apolipoprotein A1;CA, calcium; AST, aspartate aminotransferase; CK, creatine
kinase; CL, chlorine; CREA, creatinine,; DBIL, direct bilirubin; GGT, -glutamyl transpeptidase; GLO,
globin; GLU, glucose; HDLC, high-density lipoprotein cholesterol; IBIL, indirect bilirubin; K kalium; LDH,
lactate dehydrogenase; LDLC, low-density lipoprotein cholesterol; MG, magnesium; NA, natrium; P,
phosphorus; TBIL, total bilirubin; TCHO, total cholesterol; TG, total triglycerides; TP, total protein; UA,
uric acid; UREA, urea nitrogen; APTT, activated partial thromboplastin time; Fg, fibrinogen; PT,
prothrombin time; INR, international normalized ratio; TT, thrombin time
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    Training set Validation set P value

MCHC, g/L Median [Q1; Q3] 337 [330;345] 335 [328;342] 0.215

MCV, fL Median [Q1; Q3] 92.9 [90.4;95.8] 92.8 [89.6;96.1] 0.688

RDW, % Median [Q1; Q3] 13.4 [12.6;14.2] 13.2 [12.5;14.1] 0.226

ALB, g/L Median [Q1; Q3] 42.8 [38.5;46.0] 41.8 [38.0;44.8] 0.153

ALP, U/L Mean (SD) 92.7 (54.0) 101 (76.5) 0.135

ALT, U/L Median [Q1; Q3] 27.0 [19.0;40.5] 27.0 [19.2;41.8] 0.184

AST, U/L Median [Q1; Q3] 28.0 [21.5;36.0] 28.0 [21.0;40.5] 0.247

CA, mmol/L Median [Q1; Q3] 2.32 [2.25;2.40] 2.25 [2.17;2.33] 0.334

CK, U/L Median [Q1; Q3] 89.0 [61.5;112] 83.0 [66.0;114] 0.658

CKMB, U/L Median [Q1; Q3] 14.0 [11.0;18.0] 14.0 [11.0;19.0] 0.689

CL, mmol/L Mean (SD) 103 (8.88) 101 (14.2) 0.151

CREA, umol/L Median [Q1; Q3] 70.1 [59.0;80.0] 69.0 [60.8;79.0] 0.779

DBIL, umol/L Median [Q1; Q3] 4.90 [3.80;6.65] 4.80 [3.70;6.55] 0.611

GGT, U/L Median [Q1; Q3] 44.0 [26.5;85.0] 41.0 [27.0;71.5] 0.518

GLO, g/L Median [Q1; Q3] 27.8 [25.0;30.5] 27.4 [24.8;30.6] 0.593

GLU, mmol/L Median [Q1; Q3] 5.12 [4.56;6.13] 5.13 [4.58;6.37] 0.642

IBIL, umol/L Median [Q1; Q3] 7.70 [5.30;10.8] 7.70 [5.35;11.1] 0.881

K, mmol/L Median [Q1; Q3] 4.10 [3.90;4.40] 4.09 [3.90;4.30] 0.279

LDH, U/L Median [Q1; Q3] 190 [166;216] 189 [166;216] 0.882

MG, mmol/L Median [Q1; Q3] 0.88 [0.83;0.94] 0.87 [0.82;0.92] 0.175

Abbreviations:

AFP, -fetoprotein; CEA, carcinoembryonic antigen; CA199, carbohydrate antigen199; PIVKA-II, protein
induced by Vitamin K absence or antagonist-II; PLT, platelet; WBC, white blood cell ; RBC, red blood
cell; HCT, red blood cell specific volume; HGB, hemoglobin; MCV, mean corpuscular volume; MCH,
mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, red blood
cell distribution width; ALB, albumin; ALP, alkaline phosphatase; ALT, alanine aminotransferase; ApoB,
apolipoprotein B; ApoA1, apolipoprotein A1;CA, calcium; AST, aspartate aminotransferase; CK, creatine
kinase; CL, chlorine; CREA, creatinine,; DBIL, direct bilirubin; GGT, -glutamyl transpeptidase; GLO,
globin; GLU, glucose; HDLC, high-density lipoprotein cholesterol; IBIL, indirect bilirubin; K kalium; LDH,
lactate dehydrogenase; LDLC, low-density lipoprotein cholesterol; MG, magnesium; NA, natrium; P,
phosphorus; TBIL, total bilirubin; TCHO, total cholesterol; TG, total triglycerides; TP, total protein; UA,
uric acid; UREA, urea nitrogen; APTT, activated partial thromboplastin time; Fg, fibrinogen; PT,
prothrombin time; INR, international normalized ratio; TT, thrombin time
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    Training set Validation set P value

NA, mmol/L Median [Q1; Q3] 141 [140;142] 141 [139;142] 0.722

P, mmol/L Median [Q1; Q3] 1.04 [0.94;1.16] 1.0·7 [0.97;1.19] 0.103

TBIL, umol/L Median [Q1; Q3] 12.7 [9.40;17.6] 12.2 [9.40;17.1] 0.788

TP, g/L Median [Q1; Q3] 70.8 [64.7;74.4] 70.0 [64.8;74.4] 0.554

UA, umol/L Mean (SD) 342 (97.8) 336 (97.1) 0.491

UREA, mmol/L Median [Q1; Q3] 5.10 [4.40;6.11] 5.20 [4.50;6.40] 0.273

APTT, s Median [Q1; Q3] 28.6 [25.8;35.0] 27.4 [25.5;33.6] 0.052

Fg, g/L Median [Q1; Q3] 2.79 [2.30;3.37] 2.70 [2.26;3.33] 0.373

PT, s Median [Q1; Q3] 12.0 [11.2;13.2] 12.0 [11.1;13.0] 0.242

INR Median [Q1; Q3] 1.03 [0.97;1.10] 1.03 [0.97;1.08] 0.478

TT, s Median [Q1; Q3] 17.3 [16.4;18.0] 17.2 [16.3;18.1] 0.616

Abbreviations:

AFP, -fetoprotein; CEA, carcinoembryonic antigen; CA199, carbohydrate antigen199; PIVKA-II, protein
induced by Vitamin K absence or antagonist-II; PLT, platelet; WBC, white blood cell ; RBC, red blood
cell; HCT, red blood cell specific volume; HGB, hemoglobin; MCV, mean corpuscular volume; MCH,
mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, red blood
cell distribution width; ALB, albumin; ALP, alkaline phosphatase; ALT, alanine aminotransferase; ApoB,
apolipoprotein B; ApoA1, apolipoprotein A1;CA, calcium; AST, aspartate aminotransferase; CK, creatine
kinase; CL, chlorine; CREA, creatinine,; DBIL, direct bilirubin; GGT, -glutamyl transpeptidase; GLO,
globin; GLU, glucose; HDLC, high-density lipoprotein cholesterol; IBIL, indirect bilirubin; K kalium; LDH,
lactate dehydrogenase; LDLC, low-density lipoprotein cholesterol; MG, magnesium; NA, natrium; P,
phosphorus; TBIL, total bilirubin; TCHO, total cholesterol; TG, total triglycerides; TP, total protein; UA,
uric acid; UREA, urea nitrogen; APTT, activated partial thromboplastin time; Fg, fibrinogen; PT,
prothrombin time; INR, international normalized ratio; TT, thrombin time

3.2 Identify Independent Variables Significantly Associated
with AFPN-HCC
To identify the impact of individual factors associated with AFPN-HCC, univariate analysis was
performed in training set. The results showed that 17 variables including age, gender, CEA, PIVKA-II,
monocyte counts, neutrophil counts, PLT counts, WBC counts, MCHC, RDW, ALP, CK, CREA, GLU, APTT, Fg,
PT with statistical significance (P < 0.05) were brought into the next analysis (Table 2). Summary
statistics for all independent variables were presented in Supplementary Table 1. Given the large number
of variables, LASSO regression was used for dimensionality reduction analysis to further screen AFPN-
HCC-related factors from the univariate analysis result. Figure 2A showed the path of all candidate
variable coefficients included in the model according to the level of logarithmic transformation λ, and as
the optimal penalization coefficient λ increased, the number of independent coefficients tended toward
zero. Identification of the λ in the LASSO model used tenfold cross-validation and minimum criterion. The
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confidence interval (CI) under each λ was shown in Fig. 3D. The non-zero coefficients were considered to
have strong prognostic potential in the LASSO penalized regression model. As a result, a total of 17
significant factors from the result of the univariate regression were used for the LASSO regression, and 8
key variables including age, gender, PIVKA-II, monocyte counts, PLT counts, ALP, PT, MCHC were left
(Table 3). All 12 variables were compared between the HCC, LC, CHB and HC groups. (Fig. 2).

Table 2
Significant Variables of Univariate Logistic Regression Analysis(n = 17)

Variables β OR 95%CI P-value

Lower Upper

Age 0.085 1.088 1.07 1.107 < 0.001

Gender -0.843 0.430 0.286 0.648 < 0.001

CEA 0.147 1.158 1.059 1.267 0.001

PIVKA-II 0.002 1.002 1.001 1.003 < 0.001

Monocyte counts 2.576 13.147 4.318 40.028 < 0.001

Neutrophil counts 0.189 1.209 1.084 1.347 0.001

PLT counts -0.003 0.978 0.964 0.991 0.001

WBC counts 0.114 0.997 0.994 0.999 0.002

MCHC -0.015 1.121 1.032 1.217 0.007

RDW 0.022 0.888 0.795 0.991 0.034

ALP 0.008 1.008 1.004 1.013 < 0.001

CK -0.003 0.997 0.995 1.000 0.030

CREA 0.013 1.013 1.004 1.023 0.006

GLU 0.223 1.249 1.122 1.391 < 0.001

APTT -0.053 0.948 0.921 0.976 < 0.001

Fg 0.320 1.377 1.135 1.671 0.001

PT -0.369 0.691 0.608 0.786 < 0.001

Note: Data were presented as the odds ratio with the confidence interval

Abbreviations: OR, odds ratio; CI, confidence interval. CEA, carcinoembryonic antigen; PIVKA-II, protein
induced by Vitamin K absence or antagonist-II; PLT, platelet; WBC, white blood cell ; MCHC, mean
corpuscular hemoglobin concentration; RDW, red blood cell distribution width; ALP, alkaline
phosphatase; CK, creatine kinase; CREA, creatinine; GLU, glucose; APTT, activated partial
thromboplastin time; Fg, fibrinogen; PT, prothrombin time
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Table 3
The Result of LASSO Regression Analysis(n = 8)

Variables LASSO regression coefficient

Gender 4.08E-02

Age 1.29E-02

PIVKA-II 3.23E-06

Monocyte counts 1.82E-01

PLT counts -3.68E-04

ALP 2.59E-04

PT -5.03E-02

MCHC -6.59E-11

2.2 Developing and Visualized a Multivariate Logistic
Regression Model
A total of 8 variables were included in the multivariate logistic regression analysis to evaluate
combination effects of multiple factors. To facilitate clinical usefulness and practicality, the PIVKA-II was
transformed into four levels(1, 2, 3, 4)according to quartile. At last, four significant predictors (age, PLT
counts, PT, PIVKA-II) were included in the final model. The OR, 95% CI, and its statistical significance for
each variable were presented in Table 4. Univariate logistic regression analysis showed that age (OR = 
1.082, P < 0.001), PIVKA-II (OR = 6.318, P = < 0.001), PLT (OR=-0.006, P = 0.01), PT (OR=-0.588, P = 0.003)
could construct a diagnosis model of AFPN-HCC.

Table 4
Significant Variables of Multivariate Logistic Regression

Analysis(n = 4)
Variables β OR 95%CI P-value

Lower Upper

Age 0.079 1.082 1.057 1.108 < 0.001

PIVKA-II 1.843 6.318 4.644 8.595 < 0.001

PT -0.588 0.555 0.458 0.673 < 0.001

PLT counts -0.006 0.994 0.991 0.998 0.001

We then established a nomogram for AFPN-HCC diagnosis including these four independent factors
based on the multivariate logistic regression analysis (Figure.4D). Use of the nomogram is simple. First
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the points corresponding to each variable were marked, and then the sum of the points was calculated as
the total points, at last we can get the predicted probability value corresponded the total point.

2.3 Validation prediction models
The AUC of ROC curve to distinguish HCC patients from controls in training set was 0.937(95% CI, 0.917–
0.956) and in the validation set was 0.942(95% CI, 0.9096–0.964) (Fig. 4A,4E). In addition, with a cutoff
point maximizing the sum of sensitivity and specificity, the model achieved sensitivity values of 0.902
and 0.921, and corresponding specificity values of 0.854, 0.882 in training and validation set respectively.
The control population comprised of three parts: CHB patients, LC patients, and healthy controls. In order
to further confirm the discriminatory power of the model, ROC curve was performed to compare AFPN-
HCC with each of the three other groups in training (Fig. 4B-D) and validation sets (Fig. 4F-H). In training
set, the model had an AUC of 0.958(95% CI, 0.941–0.975), 0.885(95% CI, 0.845–0.927), and 0.936(95%
CI, 0.909–0.964) for distinguish HCC from the HC subsets, the CHB subset, and the LC subset. In
validation set, the AUC was 0.956(95% CI, 0.937–0.975), 0.941(95% CI, 0.918–0.963), and 0.911(95% CI,
0.863–0.957).

To evaluate the agreement between predicted probability and the fraction of true observed outcome, the
calibration curve was plotted. The calibration curve (Fig. 5A,5B) demonstrated that there was a good
agreement between the actual observations and predicted probabilities of AFPN-HCC, and the nomogram
model appeared to be well-calibrated in training set (mean absolute error = 0.016) and validation set
(mean absolute error = 0.010).

To assess the clinical practicality and usefulness of our model, the DCA and CIC was conducted. DCA
was conducted to determine the clinical utility of the model by quantifying the net benefits at different
threshold probabilities. With the extension of the model curve, the net benefit increases, the results
showed that the model yielded net benefits both in training set (Fig. 5C) and validation set (Fig. 5D). CIC
of the model in the training set (Fig. 5E) and validation set (Fig. 5F) showed that the predicted number of
high-risk patients was always greater than with outcomes of HCC when the risk threshold was in the
range of 0–0.3, and the cost–benefit ratios would be acceptable in the same range.

2.4 Comparison of the diagnostic efficacy of PIVKA-II and
GAAP model
In order to investigate the different indicators’ accuracies, ROC curves were drawn and the AUC
comparison was performed using DeLong's test (Fig. 6, Table 5). As demonstrated previously, the level of
PIVKA-II in the HCC group was significantly higher than that in other subsets (P < 0.001, Fig. 2C). The AUC
value of PIVKA-II alone to diagnose HCC in the training set was 0.851, which was lower than our model(P 
< 0.001). The GAAP model provided an AUC value of 0.892 and it was lower than the AUC of our model(P 
= 0.012).
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Table 5
Comparison between the model and PIVKA-II and GAAP model

  Model/

Biomarker

AUC (95% CI) P value Cut-Off Sensitivity Specificity

Trainset set Model 0.937(0.892–0.938) — 0.591 0.902 0.854

PIVKA-II 0.884(0.857–0.911) < 0.001 0.518 0.846 0.837

GAAP 0.763(0.682–0.844) < 0.001 0.424 0.864 0.830

Validation set Model 0.942(0.921–0.963) — 0.510 0.917 0.886

PIVKA-II 0.882(0.852–0.913) < 0.001 0.525 0.851 0.838

GAAP 0.882(0.851–0.9135) < 0.001 0.450 0.829 0.794

Discussion
In this study, we constructed a nomogram prediction model including age, PIVKA-II, PLT and PT through
LASSO, univariate and multivariate logistic regression analysis. An additional series of analysis was
performed for model validation using training set and external validation set. It’s well known that the AUC
represents the diagnostic efficacy: AUC values of 0.5–0.7 indicate that the diagnostic value is limited,
AUC values between 0.7 and 0.9 indicate a perfect diagnostic value, and AUC values greater than 0.9
indicate high accuracy. To further verify the diagnostic power of the model, we compared the
discrimination of different control population (HC, CHB and LC). Thus, our data indicated that the model
was deemed fit. Overall, the model presents excellent value in diagnose AFPN- HCC patients from healthy
controls and benign liver disease (CHB, LC).

In this study, we included age in the final result and the trend matched the clinical and epidemiological
observations that increased age are regarded as an independent HCC risk factor[30].HCC patients often
have chronic hepatitis and liver cirrhosis background, so the liver function and liver reserve have been
altered and damaged. Among the four key factors, PT and PLT are part of the biomarker referred to liver
function. PT is a very important index reflecting liver synthesis function, reserve function and increased
PT depends on the decreased synthesis of liver-derived coagulation factors[31, 32]. The nomogram shows
that high level of PT represents a low point. One possible reason may be that the CHB hospitalized
patients always occur with severe liver dysfunction which may leads to a high level of PT (Fig. 2G).
Another reason may be due to that the data of HCC patients were collected before surgery with well-
preserved hepatic function, so the PT tests were mostly within normal ranges. Numerous predictive
models based on PLT counts have been built to identify HCC risk and the result showed that low numbers
of platelets were associated with increased risk of HCC[33].Due to the liver cirrhosis background which
could ultimately lead to portal hypertension and hypersplenism, HCC patients showed a subsequent lower
platelet count than healthy individuals (Fig. 2E).
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For a long time, there has been considerable effort devoted to searching for new biomarkers for diagnosis
of HCC. In clinical practice, AFP is the most commonly used serum marker to screen for and diagnose
HCC, but AFP-based methods are unsuitable for patients with AFPN-HCC. Several studies have discovered
novel potential biomarkers such as PIVKA-II, AFP-L3, Golgi protein 73 (GP73), squamous cell carcinoma
antigen (SCCA), centromere protein F autoantibody (anti-CENPF), glypican 3 and a number of DNA
biomarkers, RNA biomarkers, protein biomarkers, but the clinical applications await future large-scale
validation studies[34–39]. Among these, PIVKA-II has been detected to be elevated in HCC patients and has
high sensitivity and specificity for differentiating HCC from patients with cirrhosis or chronic hepatitis[40].
Previous studies have indicated that the AUC of PIVKA-II for diagnosing HCC ranged from 0.701 to 0.854,
sensitivity ranged from 0.51 to 0.77 and specificity from 0.678 to 0.912[41, 42]. In our study, the AUC for
using PIVKA-II alone was 0.884 (95%CI, 0.857–0.911) with sensitivity of 0.46 and specificity of 0.837
using training set data, which was consistent with the previous studies. However, warfarin usage
increased alongside the worldwide ageing population, the value of PIVKA-II in HCC diagnostic will
gradually decrease. A number of lines of evidence have indicated that PIVKA-II had no sufficient
sensitivity as single markers for routine use in HCC surveillance[43, 44].

Currently, the combination of multiple indicators has been investigated as candidate HCC biomarker.
However, most of these models often missed the application value on AFPN-HCC which was composed
of AFP and other biomarkers. For the detection of early stage HCC, the GALAD models has shown a
specificity of 81.6%-93.3% and sensitivity of 80.2%‐85.6% in different populations.20 In addition, there
was a consistent view that the combination of biomarkers is superior to the use of a single biomarker.
The GAAP model had a 0.888 AUC in distinguish AFPN-HCC from chronic hepatitis liver disease and
performed similarly to that of the GALAD score.[24] But in this study, the control groups concluded CLD
only and required a multicenter large-scale validation to verify the results. In our study, we compared with
GAAP model using training and validation set, and the results showed that the AUC of GAAP model was
0.763(95%CI,0.682–0.844) and 0.882((95%CI, 0.851–0.9135) which was lower than our model.
Additionally, among the comparison of the diagnostic efficacy of PIVKA-II and the GAAP model, our
model showed the best combined sensitivity and specificity.

Another advantage of our model is easy to compute without the use of complicated formula, after
visualization as a nomogram. The nomogram provided easy-to-understand clinical tools which higher
total points had a greater probability of being diagnosed as AFPN-HCC. For example, a 65-years-old (79
points), his laboratory examination result found that PIVKA-II is 455mAU/ml (assignment is 4, 100
points), PLT is 185×109/L (67 points), PT is 11.8s (78 points), then a total point value of 324points is
given, which corresponds to a 0.989 probability being diagnostic as HCC.

There remain insufficiencies in this research. Firstly, we concede that our study was only a retrospective
analysis, but this analysis will serve as a basis for a prospective trial. Then, further larger multi-centric
studies are still required to ensure generalizability.
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In conclusion, we assessed age, gender and 50 commonly used laboratory index and identified a
combination of biomarkers that may be of use in the diagnosis of AFPN-HCC. The model partially filled
the diagnostic blind area of AFPN-HCC and showed potential for further improving detection rates for
AFPN- HCC.
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Figures

Figure 1

Procedure of study flowchart
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Figure 2

Selected candidate indicators in HCC and non-HCC groups

For gender(A), Chi-square tests were performed. For age(B), monocyte counts(D) , PLT counts(E) and
ALP(F), the multiple pairwise comparisons were made using Tukey's Method. For PIVKA-II(C), PT(G) and
MCHC(H), Kruskal–Wallis tests were used for comparisons among groups. ***P <0.001, **P <0.01, *P
<0.05, ns P>0.05, ns, no significance.

Abbreviations: HCC, hepatocellular carcinoma; LC, liver cirrhosis; HC, healthy controls; CHB, chronic
hepatitis B; PIVKA-II, protein induced by Vitamin K absence or antagonist-II; PLT, platelet; ALP, alkaline
phosphatase; PT, prothrombin time; MCHC, mean corpuscular hemoglobin concentration
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Figure 3

Developing and visualized of diagnosis model of AFPN-HCC

(A)Tuning parameter (λ) selection in the LASSO model used 10-fold cross-validation via minimum
criteria. Dotted vertical lines were drawn at the optimal values using the minimum criteria and the 1
standard error of the minimum criteria. (B) LASSO coefficient profiles of the 17 factors. A coefficient
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profile plot was generated against the log (Lambda) sequence. Vertical line represents the values selected
where optimal lambda resulted in 8 nonzero coefficients. (C) The nomogram of the model. The red dot
represents the patient’s characteristics on each variable axis and they are projected to the top line to get
the corresponded point. Each summation point corresponds to a predicted probability value in the
horizontal line on the bottom of the nomogram.

Figure 4

The ROC of the nomogram

The ROCs represent the performance of established nomogram model for discriminating AFPN-HCC from
whole controls, HC, CHB and HC in training set. (A-D) and validation set(E-H). The AUC of each ROC has
been marked in the figure. The number under the curve represents cut-off (Specificity, Sensitivity).

Abbreviations：AFPN-HCC, AFP-negative- hepatocellular carcinoma; HC, healthy control; LC, liver cirrhosis;
CHB, chronic hepatitis B; AUC, area under the curve.
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Figure 5

Calibration plot, DCA and CIC in training sets(A) and validation sets(B).

The dotted line represents a perfect prediction by an ideal model, and the solid black line shows the
performance of the model. DCA in training set (C)and validation set(D). The x-axis represents the
threshold probability and the y-axis shows the net benefit. The dark horizontal line means one extreme



Page 24/24

situation that all samples are negative and not treated, with a net benefit of zero. The gray-dotted line
indicates the other extreme situation that all patients suffered AFPN-HCC. Clinical impact curve (CIC) in
training set training set(D) and validation set(E). The number of high-risk patients and the number of
high‐risk patients with event were plotted by different threshold probability in a population.

Figure 6

The ROC of the model, PIVKA-II and GAAP model  in training sets(A) and validation sets(B).
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