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Abstract

Molecule generative models based on deep learning have attracted significant

attention in de novo drug design. However, most current generative approaches

are either only ligand-based or only structure-based, which do not leverage the

complementary knowledge from ligands and the structure of binding target. In

this work, we proposed a new ligand and structure combined molecular generative

model, LS-MolGen, that integrates representation learning, transfer learning, and

reinforcement learning. Focus knowledge from transfer learning and special

explore strategy in reinforcement learning enables LS-MolGen to generate novel

and active molecules efficiently. The results of evaluation using EGFR and case

study of inhibitor design for SARS-CoV-2 Mpro showed that LS-MolGen

outperformed other state-of-the-art ligand-based or structure-based generative

models and was capable of de novo designing promising compounds with novel

scaffold and high binding affinity. Thus, we recommend that this proof-of-concept

ligand-and-structure-based generative model will provide a promising new tool for

target-specific molecular generation and drug design.

Keywords: molecule generation; transfer learning; reinforcement learning;

ligand-and-structure-based drug design

Introduction
The main goal of de novo drug design for a specific target is to identify novel active

molecules that can simultaneously satisfy certain desirable properties, such as the

generated molecules should have similar or better binding affinity and be chemically

diverse to already known ligands [1]. In recent years, various artificial intelligence

(AI)-based molecular generative models have been proposed to address such needs

since their potential for chemical space exploration [2, 3, 4, 5, 6, 7, 8, 9]. Most

of these generative approaches are either ligand-based [5, 10, 11, 12, 13, 14, 15] or

structure-based [16, 17, 18, 19, 20, 21]. For example, for ligand-based methods, VAE

[11] used a variational autoencoder to convert discrete representations of molecules

to a multidimensional continuous representation, and generates new molecules for

efficient exploration and optimization through open-ended spaces of known ligands.

latentGAN [12] generates target-biased compounds through combining an autoen-

coder and a generative adversarial neural network. AAE [10] combined the idea of

mailto:hongl3liang@sjtu.edu.cn
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VAE with that of adversarial training as found in GAN and was applied to the

molecule generation task. In contrast, for structure-based methods, REINVENT

[2] provided a running mode for goal-directed molecular generation by integrating

a reinforcement learning. Pocket2Mol [21] proposed a 3D generative model with

an auto-regressive sampling scheme that generates molecules given a designated 3D

protein binding site. MolDQN [19] leverages domain knowledge of chemistry and re-

inforcement learning to optimize molecule without pre-training on any dataset and

only with a target protein structure. Several methods also combined the knowl-

edge from both ligands and the target structure, such as SBMolGen [22] integrates

an RNN generative model with a Monte Carlo tree search (MCTS), and docking

simulations. OptiMol [18] combines the graph to Selfies VAE, a docking program,

and the clamped version of Conditioning by Adaptive Sampling (CbAS) to achieve

binding affinity optimization.

In general, the ligand-based approach requires sufficient known ligands, whose

bioactivity has been proved in cellular, animal, or even clinical experiments as ref-

erence to generate new molecules with optimal properties as shown in Figure 1a.

The structure-based method tends to generate molecules by capturing and opti-

mizing the physical interaction of ligands with the structure of the target protein

as Figure 1b depicted. However, the ligand-based method could be biased towards

the reference ligands in the training set and the generated molecules resemble them

with low structural diversity (collapse to the yellow region in illustration of (Figure

1a), and the structure-based method may be hard to efficiently converge to chemical

space with sufficiently high bioactivity, particularly when examined by cellular or

animal experiments [23]. As a more inclusive strategy, ligand-and-structure-based

method (Figure 1c) leverages the complementary information of known ligands and

target protein structure, generating novel compounds that chemically cover the

known bioactive compounds, and even with improved binding affinity.

In this study, we constructed a benchmarking dataset from the latest version

of ChEMBL and proposed a ligand-and-structure dual-driven deep reinforcement

learning method (LS-MolGen) for target-specific molecular generation. By making

use of the complementary knowledge of known bioactive ligands and the structure

of the specific target, and integrating docking score and a diversity filter in the

inception of the reinforcement learning, LS-MolGen exhibited comparable perfor-

mance to various state-of-the-art molecule generative models as demonstrated by

the testing on the EGFR and Mpro. The results show that the generated molecules

have better novelty, diversity, and affinity. A further analysis of molecular structure

and molecular docking of Mpro inhibitors has confirmed that LS-MolGen has the

capability to generate both novel and active compounds.

Methods and materials
Data preparation

Above 1.9 million small molecules represented in canonical SMILES format were

downloaded from the ChEMBL database (version 31) [24]. For all SMILES strings,

data preprocessing is necessary, including standardization of charge, removing small

fragments and metals, removing duplicates and invalid SMILES. Filtered by molec-

ular weight in the range from 150 to 650 Daltons, molecular heavy atoms within

https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_31/
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C, N, O, S, F, Cl, Br, and filtered via medicinal chemistry filters (MCFs) and

PAINS filters, a benchmarking dataset with 1.5 million molecular structures were

constructed.

In this work, we selected human epidermal growth factor receptor (EGFR, PDB

ID: 2RGP, Uniprot ID: P00533) and the SARS-CoV-2 main protease (Mpro, PDB

ID: 7L12, Uniprot ID: P0DTD1) as two test targets. 2005 ligands which had binding

bioactivity within 100 nM, i.e., pChEMBL value (pX, including pKi, pKd, pIC50,

or pEC50) no smaller than 7 toward the EGFR target were extracted from the

benchmarking dataset. And 127 inhibitors targeting Mpro were extracted from the

reported paper [25] and the benchmarking dataset with pIC50 no smaller than

5. These known ligands will be used for fine-tuning the generative models in the

transfer learning process.

Architecture of LS-MolGen method

A brief overview of the entire architecture of LS-MolGen model is illustrated in

Figure 1d, which consists of three essential sub-models. The first model is an initial-

stage model for pre-training of the general knowledge called the prior model (Figure

1e), based on the recurrent neural network (RNN). The second model is a transfer

model (Figure 1f), based on the same architecture as the prior model, for trans-

fer learning of the general knowledge to the focused knowledge via sharing the

prior networks and reweighting the layers. The last one is an agent model (Fig-

ure 1g) fine-tuned by reinforcement learning guided by molecular docking for the

structure-based rational exploration of chemical space. Here, the docking score that

estimates the strength of the interaction between target and ligand is obtained from

LeDock (http://www.lephar.com), which exhibits an outstanding performance in

a recent comprehensive evaluation of docking programs on a diverse set of 2002

protein-ligand complexes [26]. Hence, LS-MolGen is a ligand-and-structure dual-

driven model which makes full use of the knowledge of both known active ligands

and protein structure to generate molecules with high binding affinity and novelty.

Pre-training

Each molecule in benchmarking dataset represented in SMILES format was split

into a series of tokens and then all tokens were collected to construct the SMILES

vocabulary, resulting in final vocabulary containing 101 tokens. Two additional

tokens, GO and EOS, may be added to denote the beginning and end of a SMILES

respectively. Novel valid SMILES sequences could be generated through property

grammar which was learned from numerate SMILES in benchmarking dataset.

The prior model is consist of a standard RNN model, whose architecture is pro-

vided in Fig. 1e. It contains six layers: one input layer, one embedding layer, three

recurrent layers, and one output layer. Molecules, represented by a sequence of to-

kens, can be received as features by the input layer. In the embedding layer, each

token was encoded into a 128-dimensional embedding vector. For a recurrent layer,

a gated recurrent unit (GRU) [27] was used as the recurrent cell with 512 hidden

neurons.

The output at each position was the probability that determined which token in

the vocabulary would be chosen to grow the SMILES string. Maximum likelihood

https://www.rcsb.org/structure/2rgp
https://www.uniprot.org/uniprotkb/P00533/entry
https://www.rcsb.org/structure/7L12
https://www.uniprot.org/uniprotkb/P0DTD1/entry
http://www.lephar.com
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estimation was employed as following loss function to train the RNN:

NLL (s) = −
n
∑

i=1

logP (xi | x<i) (1)

Transfer learning

To guide the generative model toward areas with similar or high binding affinity to

known ligands in the chemical space, we subjected it to a transfer learning scenario

while aiming to learn the distribution of the bioactive ligands. It is achieved by

directly transferring the parameters of the prior model [13], which is computation-

ally cost-effective. This model requires a pre-trained prior model with a generative

capacity and the potential to sample compounds from a rather vast chemical space.

And the prior is subjected to transfer learning with a smaller set of known bioactive

ligands. The loss function during transfer learning is the same as pre-training.

Reinforcement learning

We introduced molecular docking score as a component of scoring function into

reinforcement learning to guide the agent model exploring novel sub-areas in the

chemical space, for example, enhancing the ability of the agent for scaffold hopping

that cannot be fully captured by the focused transfer model. The agent in RL is an

exploration model which shares identical architecture and vocabulary with the prior

model. Essentially, the agent was initialized with the pre-trained prior network at

the beginning of the RL. We adopted the RL algorithm in REINVENT2.0 [7] to

build a customized scoring function for the molecular optimization:

Score (A) =

{

max (ds,k)
k

unsatisfy DF

0 satisfy DF
(2)

ds is the docking score. A scaffold similarity diversity filter (DF) [7] is used to

evaluate whether the SMILES string has been sampled before or whether it satisfies

the DF policy. The Score will be set to 0 if the DF filters determine that the sampled

compound already exists or if there are too many compounds of the same scaffold

and their number exceeds our predefined threshold. And k is a rescale parameter

for scoring function normalized to [0, 1].

The scoring function is combined with the likelihood of transfer and used to form

the augmented likelihood:

logP (A)Augmented = logP (A)Transfer + σ · Score (A) (3)

The scoring function is multiplied by σ which is a scalar coefficient used for scaling

up the scoring function output to the same order of magnitude as the likelihood.

Analogously, the loss is calculated as the squared difference between the likelihood

of agent and the augmented likelihood:

loss =
[

logP (A)Augmented − logP (A)Agent

]2

(4)
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Thus, after the agent samples a batch of SMILES, the reward is contributed from

several components: docking score, diversity filter, and the likelihood from transfer

model.

Docking protocol and Pharmacophore matching

The co-crystal structures of the target-ligand complexes were downloaded from

the RCSB Protein Data Bank (https://www.rcsb.org/). Protein preparation was

processed by Lepro (http://www.lephar.com/), and LeDock program was utilized

to conduct docking where five binding poses were generated and RMSD threshold

was set at 1 Å. The web server of Pharmit [28] was used to match pharmacophores

and select molecules. Eventually, PyMOL [29] was applied to draw figures.

Evaluation metrics for generative model

MOSES [30] is a main benchmark in the field of de novo molecular generation,

but it may not quietly suitable for target-focused molecular generative model. Con-

sequently, this study provides more acceptable benchmark metrics to access the

overall quality of generated molecule dataset G based on training set T or known

ligand set L, of course, some of which are borrowed from MOSES.

Validity: a measure of the proportion of generated molecular SMILES that can

be successfully parsed and validated by RDKit, which is often used to evaluate the

quality and correctness of generated molecules, and can help identify generation

methods that produce chemically plausible structures.

Uniqueness: the proportion of the unique and valid structures generated.

Diversity: the proportion of unique scaffold of generated molecules which pro-

vides insight into the richness and variety of the generated structures.

Novelty: the proportion of unique scaffold of generated molecules that are not in

test set T or the known ligand set L, which provides insight into the originality and

distinctiveness of the generated molecules.

Recovery: the proportion of molecular fragments in the known ligand set L cov-

ered by fragments from generated set G, which should not be too high or too low.

High recovery suggests lack of novelty, while low recovery indicates poor use of

existing fragments.

Active rate: the proportion of generated molecules with high binding affinity

(docking score < -7 kcal/mol) against target protein, and can give the insight into

the potential effectiveness of the generated structures as potential drug candidates.

Here, the threshold of -7 kcal/mol refers to the cutoff pChEMBL value of known

bioactive ligands introduced in the data preparation section.

Success rate: the proportion of generated molecules that both satisfy maximum

similarity to molecules in T < 0.7 and docking score < -7 kcal/mol, which is con-

sidered to be a more practical metric to evaluate the potential efficacy and novelty

of generated molecules.

1 Results and discussion
1.1 Model performance

We assembled these seven metrics: validity, uniqueness, diversity, novelty recovery,

active rate, and success rate, to comprehensively assess model performance and

https://www.rcsb.org/
http://www.lephar.com/
http://pharmit.csb.pitt.edu/index.php
https://rdkit.org/
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identify potential strengths and limitations compared with other previously pro-

posed generative models [10, 11, 12, 2, 21, 19, 22], emphasizing the assessment of

both the binding affinity and novelty. Taking the human epidermal growth factor

receptor (EGFR) as the first test case, we re-trained all these baseline models and

trained LS-MolGen to de novo design inhibitors of EGFR.

Referencing the proposed pipeline in MOSES [30], for the ligand-based generative

model, we used the models and hyperparameters available in the platform, such as

the AAE [10], VAE [11], and LatentGAN [12]. For structure-based model, REIN-

VENT [2], Pocket2Mol [21], and MolDQN [19] were re-trained with the same hy-

perparameters reported in their papers. And for ligand-and-structure-based model,

except the method proposed here, we re-trained another model, SBMolGen [22], for

comparison. Training data was the benchmarking dataset constructed in this work

and the collected known ligands.

For a fair comparison of their performance, we trained and sampled 5,000

molecules for six times independently from each model, and applied the evalua-

tion metrics mentioned above for a comprehensive benchmark as shown in Table

1. The proposed LS-MolGen model performs preferentially over other generative

models with similar or high percentage of validity and uniqueness SMILES strings.

In terms of diversity, novelty, active rate, and success rate, the values of our method

are better than all other methods. And compare to structure-based model such as

MolDQN, the running time of generating 5000 molecules is much shorter (4.6 hours

vs 2 days, see Table S1 in Supporting Information (SI)). The focus knowledge from

transfer learning and special explore strategy (docking score and diversity filter)

in reinforcement learning helped LS-MolGen exhibiting superior performance in ef-

ficiently generating new molecules with high affinity, large diversity, and novelty.

As expected, ligand-based methods generate molecules with similar high affinity

(high active rate) as the known bioactive ligands, but low novelty that most of

their structures were similar to the known ligands, and structure-based methods

generate molecules more diverse but still lacking in overall success rate.

Figure 2a indicates that the exploration by the Agent is working during the rein-

forcement learning process. The score is contributed from docking score, diversity

filter, and the likelihood of known ligands, and the continuously rising score demon-

strates the model’s ability to effectively explore chemical space for novel and active

molecules. To better understand the chemical space of the generated molecules, we

evaluated the chemical space coverage by calculating the Morgan fingerprint [31]

used as a t-distributed Stochastic Neighbor Embedding (t-SNE) visualization. As

Figure 2b shown in the t-SNE plot, the generated molecules not only cover the

chemical space with the known EGFR inhibitors but also extend it to the new

chemical space. Figure 2c exhibits that the generated molecules have higher affinity

compared to the known bioactive ligands. Furthermore, we compared the distri-

bution of properties (molecular weight, QED, and SA score). As shown in Figure

2d-f, the properties distributions of generated molecules are close to that of known

ligands. Considering the above quantitative evaluations, the model we developed,

LS-MolGen, demonstrates satisfactory results by generating both novel and active

molecules and outperforming other methods in the potential for drug design.
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Ablation experiment for LS-MolGen

We conducted an ablation experiment to assess the performance of our proposed

LS-MolGen framework in generating molecules targeting EGFR. The results of

this experiment are summarized in Table 2, where the LS-MolGen framework is

dissected into its key components—Prior, Prior+Transfer, Prior+Agent, and the full

model (Prior+Transfer+Agent)—in order to evaluate the individual and combined

contributions of these components on the overall performance.

In the ablation study, the comprehensive LS-MolGen model outperformed its indi-

vidual components, achieving optimal scores for Validity and Active rate, and high

scores for Uniqueness, Diversity, Novelty, and Success rate. These findings highlight

the necessity of integrating all components within the LS-MolGen framework to

enhance molecular generation, particularly the Agent model, which plays a pivotal

role in promoting novelty and diversity. Accordingly, our investigation demonstrates

the potential of the LS-MolGen model in furthering the progress of molecular design

research.

Molecule design using LS-MolGen

Generating potential inhibitors of SARS-CoV-2 main proteinase (Mpro).

To evaluate whether LS-MolGen generated compounds could be novel and potent

molecular candidates, we used Mpro as the second test case. Mpro is a potential

target for discovery of therapeutic agents for treatment of COVID-19. Several Mpro

inhibitors were collected from ChEMBL [24] and the reported paper [25], and the

co-crystal structure of Mpro complexed with an inhibitor is obtained from RCSB

PDB (ID: 7L12). The goal was to generate more novel and potential inhibitors

of Mpro. With these known bioactive inhibitors and the structure of Mpro, LS-

MolGen was applied to generate 5,000 compounds, whose properties distributions

and chemical space were illustrated in Figure S2. Compound 1 (PF-0835231) (IC50

= 8 nM) [32], compound 2 (IC50 = 30 nM) [24] and compound 3 (IC50 = 128

nM) [25] were revealed as potent inhibitors of SARS-CoV-2 Mpro. By matching

the pharmacophore of the inhibitor, the most matching compound is selected from

the generated molecules (compounds 4-6 in Figure 3). As it depicted, the similarity

between inhibitors and the corresponding generated compounds is low, and the

molecular scaffold is completely new, which realizes scaffold hopping. This result

demonstrates that LS-MolGen is capable of generating potential molecules that

differ from known bioactive inhibitors.

Figure 4 depicts the docked poses of compounds 4, 5, and 6, with docking scores

of -9.71, -9.02, and -9.45 kcal/mol, respectively. In comparison, the redocking scores

of compounds 1, 2, and 3 were -8.24, -7.12, and -9.34 kcal/mol, respectively. It was

noted that the redocking scores of compounds 1 and 2 were much worse compared

to their bioactivities due to their covalent inhibitor nature, which cannot be cap-

tured by molecular docking. Importantly, the generated molecules displayed more

potent binding affinity compared to the known inhibitors, validated by both molec-

ular docking and MM-GBSA (see details in SI), further demonstrating LS-MolGen’s

ability to generate molecular candidates with similar or improved binding affinity.

In addition, the pockets occupied by the three molecules and their binding modes

are largely consistent, which is in accordance with the known inhibitor binding pat-

terns. It is noteworthy that while these three molecules have conserved interactions



Li et al. Page 8 of 12

with the Glu-166 residue in the pocket, the other interactions differ. For example,

compound 4 interacts with Cys-145 in a manner similar to the covalent binding

mechanism of PF-0835231, the interaction of compound 5 extends to the farther

Gln-192 residue, and compound 6 forms a hydrogen bond with Phe-140. These

findings highlight the ability of LS-MolGen to discover novel interactions with the

target protein and leverage it to generate novel and potent compounds. Of course, a

further experimental study is necessary to determine the potency of these designed

compounds in inhibiting Mpro.

Conclusion
In this study, we have developed LS-MolGen, a novel molecular generative model

for de novo drug design that generates molecules bases on the knowledge from

both bioactive ligands and structure of target protein. LS-MolGen consists of three

essential sub-modules, which are representation learning, transfer learning and rein-

forcement learning. Representation learning was responded for learning the general

grammar rules of SMILES string, transfer learning focused on the chemical space

of bioactive ligands, and reinforcement learning was used to explore the potential

chemical space. The inception with docking score and a diversity filter in RL guided

Agent to discover active and novel compounds.

In the case study of EGFR, our model shows better performance to several other

state-of-the-art molecule generative model. The high values of metrics of novelty,

diversity, active rate and success rate, as well as the chemical space analysis and

the distribution of docking scores, demonstrates that LS-MolGen is of capable gen-

erating both novel and high-affinity molecules. We explored the potential inhibitors

design of SARS-CoV-2 Mpro as another case study. The results show that LS-

MolGen was able to de novo design promising compounds with novel scaffold and

high molecular docking score, which captures important pharmacophore features of

known inhibitors.

Considering the docking score that reflects the interactions between the ligand

and the target was used as the reward score in the reinforcement learning, of course

it can be changed to other scores, such as ADMET scores or similarity scores, to

address a variety of design needs. To summarize, LS-MolGen proof the concept

of ligand-and-structure-based generative model performance better and provide a

promising new tool for target-specific molecular generation.
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Figure 1 The concept of molecular generative models, and the architecture of LS-MolGen
approach. (a) The concept of ligand-based method, (b) structure-based method, and (c)
ligand-and-structure-based method. Illustration in a, b, and c, the green region represents the
available chemical space, the yellow region represents the chemical space of known bioactive
ligands, and the blue arrow represents the exploration of chemical space. (d) The pipeline of the
LS-MolGen approach. (e) The architecture of the prior model with RNN. (f) The illustration of
transfer learning model. (g) Exploration of chemical space of reinforcement learning combined
with molecular docking.
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Figure 2 Quantitative evaluations of LS-MolGen. (a) Evolution of the explored molecular average
score in the reinforcement learning loop. (b) Chemical space of generated molecules and bioactive
ligands of EGFR visualized by t-SNE dimensionality reduction. (c) Distribution of molecular
docking score to EGFR. (d-f) Distributions of properties, including molecular weight, QED, and
SA score.
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Table 1 The evaluation metrics of molecules generated by the baseline models and LS-MolGen. Each model generated 5,000 molecules for six times independently, and 30,000
molecules were generated from each model eventually.

Model Validity Uniqueness Diversity Novelty Recovery Active rate Success rate

L-baseda
AAE [10] 0.950± 0.003 0.523± 0.005 0.248± 0.004 0.104± 0.004 0.621± 0.014 0.869± 0.004 0.131± 0.004

VAE [11] 0.988± 0.002 0.426± 0.005 0.180± 0.004 0.043± 0.002 0.828± 0.012 0.897± 0.004 0.082± 0.003

LatentGAN [12] 0.731± 0.004 0.697± 0.003 0.655± 0.011 0.591± 0.011 0.134± 0.002 0.642± 0.004 0.505± 0.005

S-basedb
REINVENT [2] 0.992± 0.021 0.990± 0.020 0.720± 0.158 0.595± 0.159 0.134± 0.030 0.904± 0.234 0.826± 0.237

Pocket2Mol [21] 1.000± 0.000 1.000± 0.000 0.488± 0.043 0.475± 0.043 0.092± 0.041 0.778± 0.175 0.778± 0.176

MolDQN [19] 1.000± 0.000 1.000± 0.000 0.415± 0.007 0.414± 0.007 0.005± 0.000 0.495± 0.005 0.495± 0.005

L-S-basedc
SBMolGen [22] 1.000± 0.000 0.999± 0.000 0.867± 0.002 0.687± 0.003 0.070± 0.001 0.351± 0.002 0.346± 0.002

LS-MolGen 1.000± 0.000 0.997± 0.005 0.979± 0.0070.979± 0.0070.979± 0.007 0.966± 0.0150.966± 0.0150.966± 0.015 0.202± 0.037 0.999± 0.0020.999± 0.0020.999± 0.002 0.950± 0.0090.950± 0.0090.950± 0.009

a L-based denotes ligand-based models; b S-based denotes structure-based models; c L-S-based denotes ligand-and-structure-based models.
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Figure 3 Three example inhibitors of Mpro and generated compounds that match their
pharmacophores. The first column is the docked pose and pharmacophoric groups of the inhibitor,
the second and third columns are 2D molecular structure of the inhibitor and the matched
generated compound respectively (scaffold highlighted), the fourth column is the molecular
pharmacophores supposition, and the last column is the RMSD of supposition and similarity
between inhibitor and generated compound.
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Figure 4 Docked poses of generated compounds. Hydrogen bond was represented as a red dashed
line. Docking protocols were performed by LeDock.

Table 2 Performance Comparison of Different Model Variants in EGFR Ablation Experiment

Model Validity Uniqueness Diversity Novelty Recovery Active rate Success rate

Prior 0.936 0.936 0.882 0.564 0.088 0.421 0.338
Prior+Transfer 0.895 0.890 0.376 0.191 0.5060.5060.506 0.811 0.150
Prior+Agent 1.0001.0001.000 0.9980.9980.998 0.9810.9810.981 0.9740.9740.974 0.158 0.901 0.857
LS-MolGen 1.0001.0001.000 0.997 0.979 0.966 0.203 1.0001.0001.000 0.9870.9870.987
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Figure 1

The concept of molecular generative models, and the architecture of LS-MolGen approach. (a) The
concept of ligand-based method, (b) structure-based method, and (c) ligand-and-structure-based method.
Illustration in a, b, and c, the green region represents the available chemical space, the yellow region
represents the chemical space of known bioactive ligands, and the blue arrow represents the exploration
of chemical space. (d) The pipeline of the LS-MolGen approach. (e) The architecture of the prior model
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reinforcement learning combined with molecular docking.



Figure 2

Quantitative evaluations of LS-MolGen. (a) Evolution of the explored molecular average score in the
reinforcement learning loop. (b) Chemical space of generated molecules and bioactive ligands of EGFR
visualized by t-SNE dimensionality reduction. (c) Distribution of molecular docking score to EGFR. (d-f)
Distributions of properties, including molecular weight, QED, and SA score.
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Three example inhibitors of Mpro and generated compounds that match their pharmacophores. The �rst
column is the docked pose and pharmacophoric groups of the inhibitor, the second and third columns are
2D molecular structure of the inhibitor and the matched generated compound respectively (scaffold
highlighted), the fourth column is the molecular pharmacophores supposition, and the last column is the
RMSD of supposition and similarity between inhibitor and generated compound.
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Docked poses of generated compounds. Hydrogen bond was represented as a red dashed line. Docking
protocols were performed by LeDock.
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