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Abstract
Objective

To improve image quality for low-count bone scintigraphy whole-body images using deep learning and
evaluate their applicability in clinical practice.

Methods

Five hundred fifty patients were included in the study. Low-count Original images (75%, 50%, 25%, 10%,
and 5% counts) were generated from Reference images (100% counts) using Poisson resampling.
Patients were randomly divided into training (500) and evaluation (50) groups. Output (DL-filtered)
images were obtained after training with U-Net using Reference images as teacher data. Gaussian-filtered
images were generated for comparison. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM)
to the Reference image were calculated to determine image quality. Artificial neural network (ANN) value,
bone scan index (BSl), and number of hotspots (Hs) were computed using BONENAVI analysis for
patients with and without bone metastases, to assess diagnostic performance. Accuracy of bone
metastasis detection and area under the curve (AUC) were calculated. Original, Gaussian-filtered, and DL-
filtered images were compared with Reference images.

Results

PSNR and SSIM for DL-filtered images were highest in all count percentages. BONENAVI analysis values
for DL-filtered images did not differ significantly regardless of the presence or absence of bone
metastases. BONENAVI analysis values for Original and Gaussian-filtered images differed significantly at
<25% counts in patients without bone metastases. In patients with bone metastases, BSI and Hs for
Original and Gaussian-filtered images differed significantly at < 10% counts, whereas ANN values did not.
Accuracy of bone metastasis detection was highest for DL-filtered images in all count percentages; AUC
did not differ significantly. Accuracy of Original and Gaussian-filtered images worsened with decreasing
count percentage; AUC differed significantly for Original images at < 50% counts and for Gaussian-filtered
images at <25% counts.

Conclusions

Our deep learning model improved image quality and bone metastasis detection accuracy for low-count
bone scintigraphy whole-body images, suggesting its applicability in clinical practice.

1. Introduction

Bone scintigraphy evaluates various bone lesions, including tumors, arthritis, metabolic bone disease,
infection, and trauma, and is frequently used to diagnose metastatic bone tumors [1-4]. However,
patients with pain due to bone metastases often cannot tolerate prolonged immobility. The usefulness of
single-photon emission computerized tomography (SPECT) imaging has been reported, and examination

Page 2/20



throughput improvement is required to incorporate SPECT imaging into the diagnosis pipeline [5-7].
Furthermore, there is concern regarding increased radiation dose, as examinations for follow-up are
performed periodically. In nuclear medicine, examination time requires shortening and the amount of
radioactivity administered must be reduced, and both factors have the same physical essence regarding
their contribution to image quality [8]. However, these factors increase image noise due to a decreased
number of acquired counts, resulting in a deterioration of diagnostic performance, owing to image quality
degradation.

Smoothing filters used to reduce image noise have the tradeoff of degrading resolution. Additionally,
many studies have reported improving nuclear medicine image quality using deep learning [9—15]. These
reports mainly used tomographic imaging techniques, such as SPECT and positron emission
tomography. For planar images, Ito et al. [16] reported improved image quality of low-count images for
thoracic static images in bone scintigraphy. Whole-body imaging is the most valuable imaging technique
in bone scintigraphy because it depicts bone lesions throughout the body in a single image. However, as
whole-body imaging takes longer than static imaging, it is necessary to reduce the imaging time. The
clinical usefulness of computer-aided diagnosis (CAD) software used for diagnosing and following bone
metastases has been reported, further heightening the value of whole-body images [17-19].

The present study aimed to develop a deep learning model to improve the image quality of low-count
bone scintigraphy whole-body images and evaluate its clinical applicability. We aimed to improve the
model’s accuracy using clinical images, rather than phantoms, for training.

2. Materials And Methods

The Ethics Review Committee of Chiba University Hospital approved the present retrospective study. All
imaging data used for analysis were necessary for clinical diagnosis, and no examinations were
performed for this study. The Ethics Review Committee waived written consent.

Patients

A total of 550 patients (49 males and 501 females; median age, 63 years; range, 33—-88 years) on whom
bone scintigraphy was performed for clinical diagnosis were included. Of these patients, 500 and 50 were
randomly selected for training and obtaining evaluation data, respectively. The breakdown of patient
diseases in training and evaluation data is shown in Table 1. The diagnosis of the presence of bone
metastases was determined by a radiologist using bone scintigraphy, computed tomography, magnetic
resonance imaging, blood tests, and clinical findings.
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Table 1
Breakdown of patient diseases in training and evaluation data

Disease Training data Evaluation data
with bone withoutbone  Total with bone without bone  Total
metastasis metastasis metastasis  metastasis
Breast cancer 43 383 426 10 32 42
Lung cancer 9 40 49 3 2 5
Prostate cancer 10 4 14 1 0 1
Thyroid cancer - 1 1 1 - 1
Rectum cancer 2 2 4 - - -
Hepatocellular 2 2 4 1 - 1
carcinoma
Appendiceal 1 - 1 - - -
cancer
Plasmacytoma 1 - 1 - - -
Total 68 432 500 16 34 50

Data acquisition

All patients were examined 3—4 hours after receiving 699-785 MBq of 99mTc-MDP injection solution
(PDRadiopharma Inc., Tokyo, Japan). Anterior and posterior whole-body imaging was performed using a
gamma camera (NM/CT 870 DR hybrid SPECT/CT scanner; GE Healthcare, Chicago, IL) with a low-energy
high-resolution-sensitivity collimator. Whole-body imaging was performed with a matrix size of 1024 x
256, pixel size of 2.21 mm, 15% energy window centered at the photopeak energy (140.5 keV), and bed
speed of 13.3 cm/min.

Low-count image preparation

Low-count Original images were created from all Reference images in patient data (100% counts) using

the Poisson resampling method [20] application installed in Xeleris 4DR (GE Healthcare, Chicago, IL). The
Poisson resampling method arbitrarily subtracts image counts and adds Poisson noise corresponding to
the number of counts. Original images with 75%, 50%, 25%, 10%, and 5% counts were created per patient.

Network architecture and training

We have developed a deep learning model based on U-Net [21]. U-Net was developed forimage
segmentation; however, it also has models that were developed for noise reduction [22-24]. The structure
of our deep learning model is shown in Fig. 1. In our model, unsharp masking [25—-28] was incorporated
before the final output. The unsharp masking sharpens the Output image by adjusting the difference

Page 4/20



between the Output' image and the smoothed Output' image and adding it to the Output' image. The
formula for unsharp masking is shown below.

p p
Juij =dij+90 Z Z Wi, (dij — it jim)

I=—pm=—p

Where f  is the pixel value of the Output image at position (i, j), dj; is the pixel value of the Output' image
at position (i, j), & is a parameter to adjust the degree of sharpening, and w,, is a Gaussian filter; 6 was
set to 15. Mean square error (MSE) was used as the loss function for learning. ReLU was the activation

function. Adam was the optimizer, and the learning rate was 1.0 x 10~ °. The batch size was 64, and the
number of epochs was 1000.

Data analysis

Gaussian-filtered images were obtained by applying a Gaussian filter to the Original image at each count
percentage. The size of the Gaussian filter was set to 7 mm, as this setting has been reported to have the
best correlation with the Reference image [29]. The present study compared the results of the Original
image, Gaussian-filtered image, and Deep learning-filtered (DL-filtered) image, i.e., our model’s output
image.

First, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) with the Reference image were
calculated for the Original, Gaussian-filtered, and DL-filtered images.

PSNR and SSIM were calculated using the following equations.
PSNR = 10log, (747 ) ldb]

Where | is the maximum count of Reference images.

(Zuxuy + C’l) (201.1/ + 02)
(2 + 2 + Ch) (024 02 + Co)

SSIM (x,y) =

Where x is the Reference image, y is the target image for comparison, pi, and p, are the mean pixel values
of x and y, respectively, and o, and o, are the standard deviations of the pixel values of x and y,
respectively. o,, is the covariance of the pixel values of x and y. C; and C, are constants, expressed as
C,=(K41)% and C,=(K,l)?, with K; and K, set to 0.01 and 0.03, respectively, to avoid division due to minimal
values. PSNR and SSIM were compared among Original, Gaussian-filtered, and DL-filtered images.

Furthermore, Reference, Original, Gaussian-filtered, and DL-filtered images were analyzed using
BONENAVI software (PDR Pharma, Tokyo). The bone segments analyzed were whole-body bones (skull,
cervical spine, thoracic spine, lumbar spine, humerus, thorax, pelvic bone, and femur), except for bones of
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the peripheral limbs. The artificial neural network (ANN) value, bone scan index (BSI), and hot spot
number (Hs) were calculated. The minimum and maximum ANN values were calculated as 0 and 1,
respectively; ANN value indicates the confidence level of bone metastasis with a threshold value of 0.5
based on factors such as the shape, location, and count of high accumulated areas [17, 19]. The
percentage of bone segment areas with high-risk bone metastasis accumulation sites are shown as BSI
and the number as Hs. The analysis values of the Reference image were compared with those of the
Original, Gaussian-filtered, and DL-filtered images.

The sensitivity, specificity, and diagnostic accuracy were calculated based on ANN value of >0.5
indicating the presence of bone metastasis. In addition, receiver operating characteristic (ROC) analysis
was performed, and the area under the curve (AUC) was compared.

Statistical analysis

PSNR and SSIM with the Reference image were evaluated using the Steel-Dwass test. ANN values, BS|,
and Hs were evaluated using the Steel test, via comparison with those of the Reference image as the
control. These values were statistically analyzed using JMP Pro (version 16.1.0; SAS Institute, Cary, NC).
DelLong's test was used to evaluate the AUC calculated using ROC analysis. Statistical analyses were
performed using EZR (Saitama Medical School Hospital, Saitama, Japan), a GUI of R (The R Foundation
for Statistical Computing, Vienna, Austria). Statistical significance was set at p<0.05 for all analyses.

3. Results

Figures 2 and 3 show an example of each image's output for a patient without bone metastasis and a
patient with bone metastasis, respectively. The Original image's noise increased as the count percentage
decreased. The Gaussian-filtered image suppressed the noise; however, the 10% and 5% count images
also suppressed the bone accumulation signal. The DL-filtered images restored image counts,
suppressed noise, and preserved bone morphology. The presence of bone metastases in patients with
bone metastases could be recognized even in the 5% count images.

The PSNR results are shown in Table 2. The PSNR of the Original and Gaussian-filtered images reduced
as the count percentage decreased but was relatively preserved for the DL-filtered images. PSNR of the
Gaussian-filtered images was lower than that of the Original images at any count percentage, with
significant differences at the 75% and 50% counts. The PSNR of DL-filtered images was significantly
higher than that of Original and Gaussian-filtered images at any count percentage.
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Table 2

PSNR of Original, Gaussian-filtered, and DL-filtered images as a reference to the Reference image.

Count
percentage

75%

50%

25%

10%

5%

Mean + SD

Original

79.14
3.19

73.41 %
3.29

69.99 +
3.32

68.44 +
3.33

67.98 +
3.33

Gaussian-
filtered

77.2+2.381
72.77
3.14

69.69 +
3.24

68.24 +
3.27

67.81+
3.28

DL-
filtered

85.03 +
2.56

80.00 +
5.23

80.70 £
4.36

79.27
3.68

80.44 +
3.75

P-value
Original

vs. Gaussian-
filtered

<0.01

<0.01

0.35

0.50

0.56

P-values denoting significant differences are shown in bold.

Gaussian-
filtered

vs. DL-
filtered
<0.01
<0.01
<0.01

<0.01

<0.01

Original
vs. DL-
filtered
<0.01
<0.01
<0.01

<0.01

<0.01

The results of SSIM are shown in Table 3. SSIM of the Gaussian-filtered images was lower than that of
the Original images at any count percentage, with a significant difference at 75%. The SSIM of DL-filtered
images was significantly higher than that of Original and Gaussian-filtered images at any count

percentage.
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Table 3

SSIM of Original, Gaussian-filtered, and DL-filtered images as a reference to the Reference image.

Count
percentage

75%

50%

25%

10%

5%

Mean £ SD

Original

0.99997 +
0.00003

0.99987 +
0.00014

0.99971 +
0.00033

0.99957 +
0.00048

0.99952 +
0.00053

Gaussian-
filtered

0.99996 +
0.00003

0.99986 +
0.00014

0.99969 +
0.00033

0.99956 +
0.00048

0.99951 +
0.00054

DL-filtered

0.99999 +
0.00001

0.99997 +
0.00006

0.99996 +
0.00021

0.99995+
0.00030

0.99996 +
0.00029

P-values denoting significant differences are shown in bold.

P-value

Original
VS.
Gaussian-
filtered
<0.01
0.19

0.42

0.51

0.56

Gaussian-
filtered

vs. DL-
filtered
<0.01
<0.01
<0.01

<0.01

<0.01

Original
vs. DL-
filtered
<0.01
<0.01
<0.01

<0.01

<0.01

Table 4 shows ANN values, BSI, and Hs results in patients without bone metastases. Original and
Gaussian-filtered images overestimated all analytical values as the count percentage decreased; in
particular, there was a significant difference with the analytical value of Reference images at <25% of

counts. DL-filtered images tended to overestimate all analytical values as the count percentage

decreased; however, there were no significant differences compared to the analytical value of Reference

images.
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Table 4

Comparison with Reference images of ANN values, BSI, and Hs in patients without bone metastases.

Count
percentage

100%

75%

50%

25%

10%

5%

P-values denoting significant differences are shown in bold.

Image type

Reference
Original
Gaussian-
filtered
DL-filtered
Original
Gaussian-
filtered
DL-filtered
Original
Gaussian-
filtered
DL-filtered
Original
Gaussian-
filtered
DL-filtered
Original
Gaussian-

filtered
DL-filtered

Mean £ SD

ANN
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| NN wW o N O NN ww ww NN WN NN NN
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— 0
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0O | OO | 00 (00| 00| 00| 00| 00| 00| 00 00| 0000 00| 00| OO0

ww
N —

BSI

I+

1+

N |00 | 00 00 00 00 OO0 OO0 | OO | OO | OO
= 0V UuN =N 00V "0 oO0o®m ~O OO Nm®
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W w9 o Nb N oph 00bh VO N NW BN oW g W BN W

O
I+

I+

oo w w b [ N4, ] o O ~Nw [ X4,
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Hs

247+4.78

2.74+5.43

2.21+3.62

3.24+6.44

4.00+6.13

291+4.44

3.50+5.34

10.24 +

10.99

7.68+10.61

3.94+6.44

47.5+26.07

51.21+
42.24

3.32+5.00
76.71 %
51.17

103.21+
51.84

2.38+3.82

P-value

ANN

0.95
>

0.99
0.88
0.79
0.54

0.90

<
0.01

0.01
0.96

A

0.01
<
0.01
0.99
<
0.01

<
0.01
0.82

BSI

0.99
0.98
>

0.99
0.74
0.83

0.88

<
0.01
<
0.01
0.47
<
0.01
<
0.01
0.94
<
0.01
<
0.01

>
0.99

Hs

>
0.99
0.86

>
0.99
0.34

>
0.99
0.8
<
0.01
<
0.01
0.72
<
0.01
<
0.01
0.99
<
0.01

<
0.01
0.98
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The results of ANN values, BSI, and Hs in patients with bone metastases are shown in Table 5. The ANN
values of the Original, Gaussian-filtered, and DL-filtered images were not substantially different from
those of the Reference image at any count percentage. For < 10% counts, the BSI and Hs of the Original
and Gaussian-filtered images were overestimated and significantly different from the Reference image.

BSI and Hs of DL-filtered images were not substantially different from Reference images at any count
percentage.
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Table 5

Comparison with Reference images of ANN values, BS|, and Hs in patients with bone metastases.

Count
percentage

100%

75%

50%

25%

10%

5%

P-values denoting significant differences are shown in bold.

Image type

Reference
Original
Gaussian-
filtered
DL-filtered
Original
Gaussian-
filtered
DL-filtered
Original
Gaussian-
filtered
DL-filtered
Original
Gaussian-
filtered
DL-filtered
Original
Gaussian-

filtered
DL-filtered

Mean = SD

ANN BSI
01+ 1.37¢+
11 1.58
01+ 1.34+
11 1.58
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Hs

11.25+
13.63

1225+
14.69

0.44+9.45
1293+
16.15

1231+
13.74

10.75+
10.76

1531+
16.65

17.63 %
17.98

1493 +
14.03

13.50 +
15.50

4594 +
25.25

4575+
31.82

9.94+9.28
65.38 +
52.79

69.38 +
43.92

8.56 +
10.94

P-value

ANN

0.99
0.71

>

0.99
0.97
0.47
0.93
0.95
0.37
0.94
0.87
0.10
0.65
>

0.99
0.74

0.71

BSI

0.99
>

0.99
0.97
>

0.99
0.80
0.60
0.80
0.55
0.89
0.02
0.01
0.98

0.01

<
0.01

>
0.99

Hs

0.99
0.99

>
0.99
0.94

>

0.99
0.80
0.33
0.85

0.89

<
0.01
<
0.01
0.99
<
0.01

<
0.01
0.96
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The sensitivity, specificity, accuracy, and AUC for bone metastasis detection are shown in Table 6. All
images showed 100% sensitivity for bone metastasis detection. Specificity and accuracy decreased with
decreasing count percentage for Original and Gaussian-filtered images but were maintained for DL-
filtered images. Original and Gaussian-filtered images significantly differed from the AUC of the
Reference image at < 50% counts for the Original image and <25% for the Gaussian-filtered image.
However, no significant difference was observed for the DL-filtered image.

Table 6
Comparison with Reference images of sensitivity, specificity, accuracy, and AUC for detection of bone
metastases.
Count Image type Sensitivity Specificity Accuracy AUC P-
percentage (%) (%) (%) value
100% Reference 100 85.3 90.0 099 -
75% Original 100 76.5 84.0 097 0.18
Gaussian- 100 76.5 84.0 098 042
filtered
DL-filtered 100 85.3 90.0 098 0.53
50% Original 100 67.6 78.0 0.89 0.02
Gaussian- 100 64.7 76.0 097 0.33
filtered
DL-filtered 100 82.4 88.0 097 045
25% Original 100 35.3 56.0 0.84 0.03
Gaussian- 100 38.2 58.0 0.92 0.03
filtered
DL-filtered 100 82.4 88.0 096 0.33
10% Original 100 59 36.0 0.87 0.02
Gaussian- 100 2.9 34.0 0.81 <0.01
filtered
DL-filtered 100 82.4 88.0 096 0.35
5% Original 100 59 36.0 0.65 <0.01
Gaussian- 100 2.9 34.0 0.68 <0.01
filtered
DL-filtered 100 73.5 82.0 095 0.27
P-values denoting significant differences are shown in bold.

4. Discussion
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The present study developed a deep-learning model to improve the image quality of low-count whole-
body bone scintigraphy. The DL-filtered images output by our model showed better results in PSNR and
SSIM than the Original and Gaussian-filtered images. It showed that the diagnostic performance was
assured even at a 5% count. We demonstrated the benefit of our developed model, with respect to image
quality and diagnostic performance.

In deep learning, a reduction in dimensionality due to encoding deteriorates the output image's resolution.
In the present study, incorporating unsharp masking in the model improved resolution and helped depict
bone morphology.

The PSNR and SSIM of the DL-filtered image were significantly higher than those of otherimages. PSNR
was improved by signal restoration and noise reduction using deep learning, and SSIM was improved by
preserving bone morphology using unsharp masking. Therefore, combining deep learning and unsharp
masking led to good performance. On the other hand, the Gaussian-filtered image had lower PSNR and
SSIM than the Original image and did not contribute to improved image quality. Ito et al. also showed the
same result for the Gaussian-filtered image [16]. Furthermore, Ardenfors et al. [30] noted the risk of signal
loss due to smoothing. In the present study, part of the bone signal was lost in Gaussian-filtered images
with < 10% counts, and mottled accumulation textures were observed.

DL-filtered images did not differ significantly from Reference images in terms of ANN values, BSI, and Hs
at any count percentage, regardless of the presence or absence of bone metastases. In addition, DL-
filtered images had higher accuracy in detecting bone metastases than other images and did not differ
significantly from Reference images in AUC. Therefore, our model suggests that even low counts may not
affect bone metastasis diagnosis.

Original and Gaussian-filtered images significantly affected ANN values, BSI, and Hs at <25% counts for
patients without bone metastases. They significantly affected BSl and Hs at < 10% counts for patients
with bone metastases. This was because the noise in the Original images, which increases with lower
counts, and the accumulated texture in the Gaussian-filtered images, which becomes more mottled with
lower counts, misidentified normal bone as bone metastases. However, the ANN values of the Original
and Gaussian-filtered images of patients with bone metastases were not significantly different at any
count percentage. This is because high count accumulation at bone metastasis sites improved their
recognition. Another reason is that the ANN value is expressed as a value between 0 and 1, with an upper
limit. If noise or mottled accumulation of texture due to low counts is misidentified as bone metastases,
the ANN value approaches 1; thus, it was unlikely to make a difference in patients with bone metastases
whose ANN values in the Reference images were initially close to 1. Therefore, it cannot be argued that
the ANN values of patients with bone metastases are unaffected by low-count Original and Gaussian-
filtered images.

The sensitivity of the Original and Gaussian-filtered images for detecting bone metastases was 100% at

all count percentages; however, the specificity and accuracy decreased considerably with lower count

percentages. In other words, false diagnosis of patients without bone metastases was increased with
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lower count percentages. The AUC of the Original and Gaussian-filtered images was smaller with
decreasing count percentage; in particular, it significantly differed from the Reference image for the
Original image with < 50% counts and the Gaussian-filtered image with <25% counts. Minarik et al.
visually evaluated the presence of bone metastases for Gaussian-filtered and DL-filtered images with 50%
counts and reported no significant difference from the diagnostic performance of the Reference image
[29]. The present study’s results supported their findings and further demonstrated the limitations of
Original and Gaussian-filtered images by evaluating lower-count percentage images.

Minarik et al. [29] showed the image quality improvement of the deep learning model for 10% counts;
however, the current study showed the image quality improvement and the assurance of diagnostic
accuracy for the even lower count of 5%. However, the reliability of the output image is vital forimage
generation by deep learning models, and it is necessary to check whether false information, such as false
accumulation or false accumulation loss, is added to the output image. Minarik et al. [29] reported that
false accumulation was identified in the 10% count of DL-filtered images. The present study visually
identified slight local accumulation differences in the 5% count DL-filtered images. For example, the
posterior image of patients without bone metastases showed a slight enhancement of the lower cervical
spine (Fig. 2b). The anterior image of patients with bone metastases obscured the accumulation on the
right side of the sacroiliac joint (Fig. 3a). The diagnostic performance did not differ significantly from the
Reference image; however, it may not be optimal to apply this model to images with only 5% counts.

The interpretation of bone scintigraphy depends on the personal knowledge and experience of the rater.
However, CAD software, such as BONENAVI, enables quantitative evaluation and reduces inter-rater
variance regardless of the rater's experience [18, 31]. Evaluation criteria for bone scintigraphy may
influence the interpretation of results. For example, the visual evaluation by two raters in Minarik et al.
[29] used the presence or absence of bone metastases as an evaluation criterion. Although assessing the
presence or absence of bone metastases is necessary for the stage diagnosis, it is insufficient for bone
metastases follow-up. The results of the present study, supported by the quantitative assessment by
BONENAVI analysis, further extend the evidence from Minarik et al.'s visual assessment [29].

In clinical practice, it takes effort to acquire low-count images. Some gamma cameras allow retrospective
adjustment of acquisition counts but are limited by the model of the gamma camera in possession [16].
A previous study that directly acquired low-count clinical images with research-specific short-time
imaging protocols had a limited number of patients [8]. The approach of mixing different types of
images, such as phantom images, into the training images has also been proposed to increase the
number of training images [29]. In the present study, it was possible to train the model with many clinical
images using the Poisson resampling method, which allows the count percentage to be adjusted
retrospectively.

There are several limitations to the present study. First, the dataset used to build the deep learning model
was acquired with a single type of gamma camera and dominated by breast cancer patients. The image
quality obtained depends on the performance of the gamma camera, and the characteristics of bone
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metastases, such as osteogenic and osteolytic types, differ depending on the disease. A multicenter
study will be necessary to improve further generalization. Second, BONENAVI analysis was used to
evaluate diagnostic performance. BONENAVI analysis can reduce errors associated with the reader;
however, the physician’s diagnosis is also vital in clinical practice. For clinical use, additional evaluation
by the physician should be performed.

5. Conclusion

Our deep learning model has demonstrated good image quality improvement and diagnostic
performance for low-count bone scintigraphy, suggesting its applicability to clinical practice. Our model
may be used to shorten examination time and reduce the amount of radioactivity administered.
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Figure 1

Architecture of our deep learning model based on U-Net.
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Figure 2

Anterior (a) and posterior (b) bone scintigraphy images of a patient without bone metastases. From top
to bottom: Original, Gaussian, and DL-filtered images. From left to right: Reference image (100%), Original
image with 75%, 50%, 25%, 10%, and 5% counts of the Reference image.
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Figure 3

Anterior (a) and posterior (b) bone scintigraphy images of a patient with bone metastases. From top to
bottom: Original, Gaussian, and DL-filtered images. From left to right: Reference image (100%), Original
image with 75%, 50%, 25%, 10%, and 5% counts of the Reference image.
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