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Abstract
Objective

To improve image quality for low-count bone scintigraphy whole-body images using deep learning and
evaluate their applicability in clinical practice.

Methods

Five hundred �fty patients were included in the study. Low-count Original images (75%, 50%, 25%, 10%,
and 5% counts) were generated from Reference images (100% counts) using Poisson resampling.
Patients were randomly divided into training (500) and evaluation (50) groups. Output (DL-�ltered)
images were obtained after training with U-Net using Reference images as teacher data. Gaussian-�ltered
images were generated for comparison. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM)
to the Reference image were calculated to determine image quality. Arti�cial neural network (ANN) value,
bone scan index (BSI), and number of hotspots (Hs) were computed using BONENAVI analysis for
patients with and without bone metastases, to assess diagnostic performance. Accuracy of bone
metastasis detection and area under the curve (AUC) were calculated. Original, Gaussian-�ltered, and DL-
�ltered images were compared with Reference images.

Results

PSNR and SSIM for DL-�ltered images were highest in all count percentages. BONENAVI analysis values
for DL-�ltered images did not differ signi�cantly regardless of the presence or absence of bone
metastases. BONENAVI analysis values for Original and Gaussian-�ltered images differed signi�cantly at
< 25% counts in patients without bone metastases. In patients with bone metastases, BSI and Hs for
Original and Gaussian-�ltered images differed signi�cantly at < 10% counts, whereas ANN values did not.
Accuracy of bone metastasis detection was highest for DL-�ltered images in all count percentages; AUC
did not differ signi�cantly. Accuracy of Original and Gaussian-�ltered images worsened with decreasing
count percentage; AUC differed signi�cantly for Original images at < 50% counts and for Gaussian-�ltered
images at < 25% counts.

Conclusions

Our deep learning model improved image quality and bone metastasis detection accuracy for low-count
bone scintigraphy whole-body images, suggesting its applicability in clinical practice.

1. Introduction
Bone scintigraphy evaluates various bone lesions, including tumors, arthritis, metabolic bone disease,
infection, and trauma, and is frequently used to diagnose metastatic bone tumors [1–4]. However,
patients with pain due to bone metastases often cannot tolerate prolonged immobility. The usefulness of
single-photon emission computerized tomography (SPECT) imaging has been reported, and examination
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throughput improvement is required to incorporate SPECT imaging into the diagnosis pipeline [5–7].
Furthermore, there is concern regarding increased radiation dose, as examinations for follow-up are
performed periodically. In nuclear medicine, examination time requires shortening and the amount of
radioactivity administered must be reduced, and both factors have the same physical essence regarding
their contribution to image quality [8]. However, these factors increase image noise due to a decreased
number of acquired counts, resulting in a deterioration of diagnostic performance, owing to image quality
degradation.

Smoothing �lters used to reduce image noise have the tradeoff of degrading resolution. Additionally,
many studies have reported improving nuclear medicine image quality using deep learning [9–15]. These
reports mainly used tomographic imaging techniques, such as SPECT and positron emission
tomography. For planar images, Ito et al. [16] reported improved image quality of low-count images for
thoracic static images in bone scintigraphy. Whole-body imaging is the most valuable imaging technique
in bone scintigraphy because it depicts bone lesions throughout the body in a single image. However, as
whole-body imaging takes longer than static imaging, it is necessary to reduce the imaging time. The
clinical usefulness of computer-aided diagnosis (CAD) software used for diagnosing and following bone
metastases has been reported, further heightening the value of whole-body images [17–19].

The present study aimed to develop a deep learning model to improve the image quality of low-count
bone scintigraphy whole-body images and evaluate its clinical applicability. We aimed to improve the
model’s accuracy using clinical images, rather than phantoms, for training.

2. Materials And Methods
The Ethics Review Committee of Chiba University Hospital approved the present retrospective study. All
imaging data used for analysis were necessary for clinical diagnosis, and no examinations were
performed for this study. The Ethics Review Committee waived written consent.

Patients

A total of 550 patients (49 males and 501 females; median age, 63 years; range, 33–88 years) on whom
bone scintigraphy was performed for clinical diagnosis were included. Of these patients, 500 and 50 were
randomly selected for training and obtaining evaluation data, respectively. The breakdown of patient
diseases in training and evaluation data is shown in Table 1. The diagnosis of the presence of bone
metastases was determined by a radiologist using bone scintigraphy, computed tomography, magnetic
resonance imaging, blood tests, and clinical �ndings.
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Table 1
Breakdown of patient diseases in training and evaluation data

Disease Training data   Evaluation data

with bone
metastasis

without bone
metastasis

Total   with bone
metastasis

without bone
metastasis

Total

Breast cancer 43 383 426   10 32 42

Lung cancer 9 40 49   3 2 5

Prostate cancer 10 4 14   1 0 1

Thyroid cancer − 1 1   1 − 1

Rectum cancer 2 2 4   − − −

Hepatocellular
carcinoma

2 2 4   1 − 1

Appendiceal
cancer

1 − 1   − − −

Plasmacytoma 1 − 1   − − −

Total 68 432 500   16 34 50

Data acquisition

All patients were examined 3–4 hours after receiving 699–785 MBq of 99mTc-MDP injection solution
(PDRadiopharma Inc., Tokyo, Japan). Anterior and posterior whole-body imaging was performed using a
gamma camera (NM/CT 870 DR hybrid SPECT/CT scanner; GE Healthcare, Chicago, IL) with a low-energy
high-resolution-sensitivity collimator. Whole-body imaging was performed with a matrix size of 1024 x
256, pixel size of 2.21 mm, 15% energy window centered at the photopeak energy (140.5 keV), and bed
speed of 13.3 cm/min.

Low-count image preparation

Low-count Original images were created from all Reference images in patient data (100% counts) using
the Poisson resampling method [20] application installed in Xeleris 4DR (GE Healthcare, Chicago, IL). The
Poisson resampling method arbitrarily subtracts image counts and adds Poisson noise corresponding to
the number of counts. Original images with 75%, 50%, 25%, 10%, and 5% counts were created per patient.

Network architecture and training

We have developed a deep learning model based on U-Net [21]. U-Net was developed for image
segmentation; however, it also has models that were developed for noise reduction [22–24]. The structure
of our deep learning model is shown in Fig. 1. In our model, unsharp masking [25–28] was incorporated
before the �nal output. The unsharp masking sharpens the Output image by adjusting the difference
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between the Output' image and the smoothed Output' image and adding it to the Output' image. The
formula for unsharp masking is shown below.

Where fuij is the pixel value of the Output image at position (i, j), dij is the pixel value of the Output' image
at position (i, j), δ is a parameter to adjust the degree of sharpening, and wlm is a Gaussian �lter; δ was
set to 15. Mean square error (MSE) was used as the loss function for learning. ReLU was the activation
function. Adam was the optimizer, and the learning rate was 1.0 × 10− 6. The batch size was 64, and the
number of epochs was 1000.

Data analysis

Gaussian-�ltered images were obtained by applying a Gaussian �lter to the Original image at each count
percentage. The size of the Gaussian �lter was set to 7 mm, as this setting has been reported to have the
best correlation with the Reference image [29]. The present study compared the results of the Original
image, Gaussian-�ltered image, and Deep learning-�ltered (DL-�ltered) image, i.e., our model’s output
image.

First, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) with the Reference image were
calculated for the Original, Gaussian-�ltered, and DL-�ltered images.

PSNR and SSIM were calculated using the following equations.

 [db]

Where I is the maximum count of Reference images.

Where x is the Reference image, y is the target image for comparison, µx and µy are the mean pixel values
of x and y, respectively, and σx and σy are the standard deviations of the pixel values of x and y,
respectively. σxy is the covariance of the pixel values of x and y. C1 and C2 are constants, expressed as

C1=(K1I)2 and C2=(K2I)2, with K1 and K2 set to 0.01 and 0.03, respectively, to avoid division due to minimal
values. PSNR and SSIM were compared among Original, Gaussian-�ltered, and DL-�ltered images.

Furthermore, Reference, Original, Gaussian-�ltered, and DL-�ltered images were analyzed using
BONENAVI software (PDR Pharma, Tokyo). The bone segments analyzed were whole-body bones (skull,
cervical spine, thoracic spine, lumbar spine, humerus, thorax, pelvic bone, and femur), except for bones of
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the peripheral limbs. The arti�cial neural network (ANN) value, bone scan index (BSI), and hot spot
number (Hs) were calculated. The minimum and maximum ANN values were calculated as 0 and 1,
respectively; ANN value indicates the con�dence level of bone metastasis with a threshold value of 0.5
based on factors such as the shape, location, and count of high accumulated areas [17, 19]. The
percentage of bone segment areas with high-risk bone metastasis accumulation sites are shown as BSI
and the number as Hs. The analysis values of the Reference image were compared with those of the
Original, Gaussian-�ltered, and DL-�ltered images.

The sensitivity, speci�city, and diagnostic accuracy were calculated based on ANN value of > 0.5
indicating the presence of bone metastasis. In addition, receiver operating characteristic (ROC) analysis
was performed, and the area under the curve (AUC) was compared.

Statistical analysis

PSNR and SSIM with the Reference image were evaluated using the Steel-Dwass test. ANN values, BSI,
and Hs were evaluated using the Steel test, via comparison with those of the Reference image as the
control. These values were statistically analyzed using JMP Pro (version 16.1.0; SAS Institute, Cary, NC).
DeLong's test was used to evaluate the AUC calculated using ROC analysis. Statistical analyses were
performed using EZR (Saitama Medical School Hospital, Saitama, Japan), a GUI of R (The R Foundation
for Statistical Computing, Vienna, Austria). Statistical signi�cance was set at p < 0.05 for all analyses.

3. Results
Figures 2 and 3 show an example of each image’s output for a patient without bone metastasis and a
patient with bone metastasis, respectively. The Original image’s noise increased as the count percentage
decreased. The Gaussian-�ltered image suppressed the noise; however, the 10% and 5% count images
also suppressed the bone accumulation signal. The DL-�ltered images restored image counts,
suppressed noise, and preserved bone morphology. The presence of bone metastases in patients with
bone metastases could be recognized even in the 5% count images.

The PSNR results are shown in Table 2. The PSNR of the Original and Gaussian-�ltered images reduced
as the count percentage decreased but was relatively preserved for the DL-�ltered images. PSNR of the
Gaussian-�ltered images was lower than that of the Original images at any count percentage, with
signi�cant differences at the 75% and 50% counts. The PSNR of DL-�ltered images was signi�cantly
higher than that of Original and Gaussian-�ltered images at any count percentage.
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Table 2
PSNR of Original, Gaussian-�ltered, and DL-�ltered images as a reference to the Reference image.

Count
percentage

Mean ± SD   P-value

Original Gaussian-
�ltered

DL-
�ltered

  Original

vs. Gaussian-
�ltered

Gaussian-
�ltered

vs. DL-
�ltered

Original

vs. DL-
�ltered

75% 79.14 ± 
3.19

77.2 ± 2.81 85.03 ± 
2.56

  < 0.01 < 0.01 < 0.01

50% 73.41 ± 
3.29

72.77 ± 
3.14

80.00 ± 
5.23

  < 0.01 < 0.01 < 0.01

25% 69.99 ± 
3.32

69.69 ± 
3.24

80.70 ± 
4.36

  0.35 < 0.01 < 0.01

10% 68.44 ± 
3.33

68.24 ± 
3.27

79.27 ± 
3.68

  0.50 < 0.01 < 0.01

5% 67.98 ± 
3.33

67.81 ± 
3.28

80.44 ± 
3.75

  0.56 < 0.01 < 0.01

P-values denoting signi�cant differences are shown in bold.

The results of SSIM are shown in Table 3. SSIM of the Gaussian-�ltered images was lower than that of
the Original images at any count percentage, with a signi�cant difference at 75%. The SSIM of DL-�ltered
images was signi�cantly higher than that of Original and Gaussian-�ltered images at any count
percentage.
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Table 3
SSIM of Original, Gaussian-�ltered, and DL-�ltered images as a reference to the Reference image.

Count
percentage

Mean ± SD   P-value

Original Gaussian-
�ltered

DL-�ltered   Original

vs.
Gaussian-
�ltered

Gaussian-
�ltered

vs. DL-
�ltered

Original

vs. DL-
�ltered

75% 0.99997 ± 
0.00003

0.99996 ± 
0.00003

0.99999 ± 
0.00001

  < 0.01 < 0.01 < 0.01

50% 0.99987 ± 
0.00014

0.99986 ± 
0.00014

0.99997 ± 
0.00006

  0.19 < 0.01 < 0.01

25% 0.99971 ± 
0.00033

0.99969 ± 
0.00033

0.99996 ± 
0.00021

  0.42 < 0.01 < 0.01

10% 0.99957 ± 
0.00048

0.99956 ± 
0.00048

0.99995 ± 
0.00030

  0.51 < 0.01 < 0.01

5% 0.99952 ± 
0.00053

0.99951 ± 
0.00054

0.99996 ± 
0.00029

  0.56 < 0.01 < 0.01

P-values denoting signi�cant differences are shown in bold.

Table 4 shows ANN values, BSI, and Hs results in patients without bone metastases. Original and
Gaussian-�ltered images overestimated all analytical values as the count percentage decreased; in
particular, there was a signi�cant difference with the analytical value of Reference images at < 25% of
counts. DL-�ltered images tended to overestimate all analytical values as the count percentage
decreased; however, there were no signi�cant differences compared to the analytical value of Reference
images.
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Table 4
Comparison with Reference images of ANN values, BSI, and Hs in patients without bone metastases.

Count
percentage

Image type Mean ± SD   P-value

ANN BSI Hs   ANN BSI Hs

100% Reference 0.22 ± 
0.24

0.18 ± 
0.32

2.47 ± 4.78   − − −

75% Original 0.27 ± 
0.29

0.20 ± 
0.40

2.74 ± 5.43   0.95 0.99 > 
0.99

Gaussian-
�ltered

0.27 ± 
0.32

0.20 ± 
0.34

2.21 ± 3.62   > 
0.99

0.98 0.86

DL-�ltered 0.20 ± 
0.25

0.28 ± 
0.56

3.24 ± 6.44   0.88 > 
0.99

> 
0.99

50% Original 0.31 ± 
0.34

0.30 ± 
0.51

4.00 ± 6.13   0.79 0.74 0.34

Gaussian-
�ltered

0.34 ± 
0.33

0.29 ± 
0.46

2.91 ± 4.44   0.54 0.83 > 
0.99

DL-�ltered 0.21 ± 
0.27

0.37 ± 
0.71

3.50 ± 5.34   0.90 0.88 0.8

25% Original 0.60 ± 
0.28

0.57 ± 
0.75

10.24 ± 
10.99

  < 
0.01

< 
0.01

< 
0.01

Gaussian-
�ltered

0.56 ± 
0.32

0.69 ± 
0.96

7.68 ± 10.61   < 
0.01

< 
0.01

< 
0.01

DL-�ltered 0.25 ± 
0.27

0.41 ± 
0.81

3.94 ± 6.44   0.96 0.47 0.72

10% Original 0.79 ± 
0.15

2.45 ± 
1.65

47.5 ± 26.07   < 
0.01

< 
0.01

< 
0.01

Gaussian-
�ltered

0.88 ± 
0.15

4.63 ± 
4.77

51.21 ± 
42.24

  < 
0.01

< 
0.01

< 
0.01

DL-�ltered 0.26 ± 
0.29

0.40 ± 
0.76

3.32 ± 5.00   0.99 0.94 0.99

5% Original 0.84 ± 
0.21

4.05 ± 
2.85

76.71 ± 
51.17

  < 
0.01

< 
0.01

< 
0.01

Gaussian-
�ltered

0.90 ± 
0.16

15.49 ± 
8.93

103.21 ± 
51.84

  < 
0.01

< 
0.01

< 
0.01

DL-�ltered 0.31 ± 
0.32

0.33 ± 
0.78

2.38 ± 3.82   0.82 > 
0.99

0.98

P-values denoting signi�cant differences are shown in bold.
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The results of ANN values, BSI, and Hs in patients with bone metastases are shown in Table 5. The ANN
values of the Original, Gaussian-�ltered, and DL-�ltered images were not substantially different from
those of the Reference image at any count percentage. For < 10% counts, the BSI and Hs of the Original
and Gaussian-�ltered images were overestimated and signi�cantly different from the Reference image.
BSI and Hs of DL-�ltered images were not substantially different from Reference images at any count
percentage.
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Table 5
Comparison with Reference images of ANN values, BSI, and Hs in patients with bone metastases.

Count
percentage

Image type Mean ± SD   P-value

ANN BSI Hs   ANN BSI Hs

100% Reference 0.91 ± 
0.11

1.37 ± 
1.58

11.25 ± 
13.63

  − − −

75% Original 0.91 ± 
0.11

1.34 ± 
1.58

12.25 ± 
14.69

  > 
0.99

> 
0.99

> 
0.99

Gaussian-
�ltered

0.95 ± 
0.07

1.21 ± 
1.34

9.44 ± 9.45   0.71 > 
0.99

0.99

DL-�ltered 0.91 ± 
0.10

1.53 ± 
1.62

12.93 ± 
16.15

  > 
0.99

0.97 > 
0.99

50% Original 0.82 ± 
0.23

1.34 ± 
1.57

12.31 ± 
13.74

  0.97 > 
0.99

0.94

Gaussian-
�ltered

0.95 ± 
0.07

1.46 ± 
1.36

10.75 ± 
10.76

  0.47 0.80 > 
0.99

DL-�ltered 0.93 ± 
0.09

1.79 ± 
1.65

15.31 ± 
16.65

  0.93 0.60 0.80

25% Original 0.88 ± 
0.23

1.54 ± 
1.63

17.63 ± 
17.98

  0.95 0.80 0.33

Gaussian-
�ltered

0.95 ± 
0.07

1.95 ± 
1.77

14.93 ± 
14.03

  0.37 0.55 0.85

DL-�ltered 0.93 ± 
0.10

1.39 ± 
1.34

13.50 ± 
15.50

  0.94 0.89 0.89

10% Original 0.95 ± 
0.06

2.95 ± 
1.83

45.94 ± 
25.25

  0.87 0.02 < 
0.01

Gaussian-
�ltered

0.98 ± 
0.02

4.50 ± 
3.32

45.75 ± 
31.82

  0.10 0.01 < 
0.01

DL-�ltered 0.94 ± 
0.08

1.13 ± 
0.90

9.94 ± 9.28   0.65 0.98 0.99

5% Original 0.82 ± 
0.32

4.12 ± 
2.91

65.38 ± 
52.79

  > 
0.99

0.01 < 
0.01

Gaussian-
�ltered

0.95 ± 
0.08

11.68 ± 
7.45

69.38 ± 
43.92

  0.74 < 
0.01

< 
0.01

DL-�ltered 0.96 ± 
0.05

1.09 ± 
1.23

8.56 ± 
10.94

  0.71 > 
0.99

0.96

P-values denoting signi�cant differences are shown in bold.
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The sensitivity, speci�city, accuracy, and AUC for bone metastasis detection are shown in Table 6. All
images showed 100% sensitivity for bone metastasis detection. Speci�city and accuracy decreased with
decreasing count percentage for Original and Gaussian-�ltered images but were maintained for DL-
�ltered images. Original and Gaussian-�ltered images signi�cantly differed from the AUC of the
Reference image at < 50% counts for the Original image and < 25% for the Gaussian-�ltered image.
However, no signi�cant difference was observed for the DL-�ltered image.

Table 6
Comparison with Reference images of sensitivity, speci�city, accuracy, and AUC for detection of bone

metastases.
Count
percentage

Image type Sensitivity
(%)

Speci�city
(%)

Accuracy
(%)

AUC P-
value

100% Reference 100 85.3 90.0 0.99 −

75% Original 100 76.5 84.0 0.97 0.18

Gaussian-
�ltered

100 76.5 84.0 0.98 0.42

DL-�ltered 100 85.3 90.0 0.98 0.53

50% Original 100 67.6 78.0 0.89 0.02

Gaussian-
�ltered

100 64.7 76.0 0.97 0.33

DL-�ltered 100 82.4 88.0 0.97 0.45

25% Original 100 35.3 56.0 0.84 0.03

Gaussian-
�ltered

100 38.2 58.0 0.92 0.03

DL-�ltered 100 82.4 88.0 0.96 0.33

10% Original 100 5.9 36.0 0.87 0.02

Gaussian-
�ltered

100 2.9 34.0 0.81 < 0.01

DL-�ltered 100 82.4 88.0 0.96 0.35

5% Original 100 5.9 36.0 0.65 < 0.01

Gaussian-
�ltered

100 2.9 34.0 0.68 < 0.01

DL-�ltered 100 73.5 82.0 0.95 0.27

P-values denoting signi�cant differences are shown in bold.

4. Discussion
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The present study developed a deep-learning model to improve the image quality of low-count whole-
body bone scintigraphy. The DL-�ltered images output by our model showed better results in PSNR and
SSIM than the Original and Gaussian-�ltered images. It showed that the diagnostic performance was
assured even at a 5% count. We demonstrated the bene�t of our developed model, with respect to image
quality and diagnostic performance.

In deep learning, a reduction in dimensionality due to encoding deteriorates the output image's resolution.
In the present study, incorporating unsharp masking in the model improved resolution and helped depict
bone morphology.

The PSNR and SSIM of the DL-�ltered image were signi�cantly higher than those of other images. PSNR
was improved by signal restoration and noise reduction using deep learning, and SSIM was improved by
preserving bone morphology using unsharp masking. Therefore, combining deep learning and unsharp
masking led to good performance. On the other hand, the Gaussian-�ltered image had lower PSNR and
SSIM than the Original image and did not contribute to improved image quality. Ito et al. also showed the
same result for the Gaussian-�ltered image [16]. Furthermore, Ardenfors et al. [30] noted the risk of signal
loss due to smoothing. In the present study, part of the bone signal was lost in Gaussian-�ltered images
with < 10% counts, and mottled accumulation textures were observed.

DL-�ltered images did not differ signi�cantly from Reference images in terms of ANN values, BSI, and Hs
at any count percentage, regardless of the presence or absence of bone metastases. In addition, DL-
�ltered images had higher accuracy in detecting bone metastases than other images and did not differ
signi�cantly from Reference images in AUC. Therefore, our model suggests that even low counts may not
affect bone metastasis diagnosis.

Original and Gaussian-�ltered images signi�cantly affected ANN values, BSI, and Hs at < 25% counts for
patients without bone metastases. They signi�cantly affected BSI and Hs at < 10% counts for patients
with bone metastases. This was because the noise in the Original images, which increases with lower
counts, and the accumulated texture in the Gaussian-�ltered images, which becomes more mottled with
lower counts, misidenti�ed normal bone as bone metastases. However, the ANN values of the Original
and Gaussian-�ltered images of patients with bone metastases were not signi�cantly different at any
count percentage. This is because high count accumulation at bone metastasis sites improved their
recognition. Another reason is that the ANN value is expressed as a value between 0 and 1, with an upper
limit. If noise or mottled accumulation of texture due to low counts is misidenti�ed as bone metastases,
the ANN value approaches 1; thus, it was unlikely to make a difference in patients with bone metastases
whose ANN values in the Reference images were initially close to 1. Therefore, it cannot be argued that
the ANN values of patients with bone metastases are unaffected by low-count Original and Gaussian-
�ltered images.

The sensitivity of the Original and Gaussian-�ltered images for detecting bone metastases was 100% at
all count percentages; however, the speci�city and accuracy decreased considerably with lower count
percentages. In other words, false diagnosis of patients without bone metastases was increased with
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lower count percentages. The AUC of the Original and Gaussian-�ltered images was smaller with
decreasing count percentage; in particular, it signi�cantly differed from the Reference image for the
Original image with < 50% counts and the Gaussian-�ltered image with < 25% counts. Minarik et al.
visually evaluated the presence of bone metastases for Gaussian-�ltered and DL-�ltered images with 50%
counts and reported no signi�cant difference from the diagnostic performance of the Reference image
[29]. The present study’s results supported their �ndings and further demonstrated the limitations of
Original and Gaussian-�ltered images by evaluating lower-count percentage images.

Minarik et al. [29] showed the image quality improvement of the deep learning model for 10% counts;
however, the current study showed the image quality improvement and the assurance of diagnostic
accuracy for the even lower count of 5%. However, the reliability of the output image is vital for image
generation by deep learning models, and it is necessary to check whether false information, such as false
accumulation or false accumulation loss, is added to the output image. Minarik et al. [29] reported that
false accumulation was identi�ed in the 10% count of DL-�ltered images. The present study visually
identi�ed slight local accumulation differences in the 5% count DL-�ltered images. For example, the
posterior image of patients without bone metastases showed a slight enhancement of the lower cervical
spine (Fig. 2b). The anterior image of patients with bone metastases obscured the accumulation on the
right side of the sacroiliac joint (Fig. 3a). The diagnostic performance did not differ signi�cantly from the
Reference image; however, it may not be optimal to apply this model to images with only 5% counts.

The interpretation of bone scintigraphy depends on the personal knowledge and experience of the rater.
However, CAD software, such as BONENAVI, enables quantitative evaluation and reduces inter-rater
variance regardless of the rater's experience [18, 31]. Evaluation criteria for bone scintigraphy may
in�uence the interpretation of results. For example, the visual evaluation by two raters in Minarik et al.
[29] used the presence or absence of bone metastases as an evaluation criterion. Although assessing the
presence or absence of bone metastases is necessary for the stage diagnosis, it is insu�cient for bone
metastases follow-up. The results of the present study, supported by the quantitative assessment by
BONENAVI analysis, further extend the evidence from Minarik et al.’s visual assessment [29].

In clinical practice, it takes effort to acquire low-count images. Some gamma cameras allow retrospective
adjustment of acquisition counts but are limited by the model of the gamma camera in possession [16].
A previous study that directly acquired low-count clinical images with research-speci�c short-time
imaging protocols had a limited number of patients [8]. The approach of mixing different types of
images, such as phantom images, into the training images has also been proposed to increase the
number of training images [29]. In the present study, it was possible to train the model with many clinical
images using the Poisson resampling method, which allows the count percentage to be adjusted
retrospectively.

There are several limitations to the present study. First, the dataset used to build the deep learning model
was acquired with a single type of gamma camera and dominated by breast cancer patients. The image
quality obtained depends on the performance of the gamma camera, and the characteristics of bone
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metastases, such as osteogenic and osteolytic types, differ depending on the disease. A multicenter
study will be necessary to improve further generalization. Second, BONENAVI analysis was used to
evaluate diagnostic performance. BONENAVI analysis can reduce errors associated with the reader;
however, the physician’s diagnosis is also vital in clinical practice. For clinical use, additional evaluation
by the physician should be performed.

5. Conclusion
Our deep learning model has demonstrated good image quality improvement and diagnostic
performance for low-count bone scintigraphy, suggesting its applicability to clinical practice. Our model
may be used to shorten examination time and reduce the amount of radioactivity administered.
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Figure 1

Architecture of our deep learning model based on U-Net.
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Figure 2

Anterior (a) and posterior (b) bone scintigraphy images of a patient without bone metastases. From top
to bottom: Original, Gaussian, and DL-�ltered images. From left to right: Reference image (100%), Original
image with 75%, 50%, 25%, 10%, and 5% counts of the Reference image.
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Figure 3

Anterior (a) and posterior (b) bone scintigraphy images of a patient with bone metastases. From top to
bottom: Original, Gaussian, and DL-�ltered images. From left to right: Reference image (100%), Original
image with 75%, 50%, 25%, 10%, and 5% counts of the Reference image.


