1 Yang, R. T., Hernandez-Maldonado, A. J. & Yang, F. H. Desulfurization of Transportation Fuels with Zeolites Under Ambient Conditions. Science 301, 79-81 (2003).
2 Bonneau, P. R., Jr, R. F. J. & Kaner, R. B. Rapid solid-state synthesis of materials from molybdenum disulphide to refractories. Nature 349, 510-512 (1991).
3 Brunet, S., Mey, D., Pérot, G., Bouchy, C. & Diehl, F. On the hydrodesulfurization of FCC gasoline: a review. Applied Catalysis A: General 278, 143-172, doi:10.1016/j.apcata.2004.10.012 (2005).
4 Amoatey, P., Omidvarborna, H., Baawain, M. S. & Al-Mamun, A. Emissions and exposure assessments of SOX, NOX, PM10/2.5 and trace metals from oil industries: A review study (2000–2018). Process Safety and Environmental Protection 123, 215-228, doi:10.1016/j.psep.2019.01.014 (2019).
5 Zipper, C. E. & Gilroy, L. Sulfur Dioxide Emissions and Market Effects under the Clean Air Act Acid Rain Program. J Air Waste Manag Assoc 48, 829-837, doi:10.1080/10473289.1998.10463731 (1998).
6 Kumar, S., Srivastava, V. C. & Nanoti, S. M. Extractive Desulfurization of Gas Oils: A Perspective Review for Use in Petroleum Refineries. Separation & Purification Reviews 46, 319-347, doi:10.1080/15422119.2017.1288633 (2017).
7 Mallidis, I., Despoudi, S., Dekker, R., Iakovou, E. & Vlachos, D. The impact of sulphur limit fuel regulations on maritime supply chain network design. Annals of Operations Research 294, 677-695, doi:10.1007/s10479-018-2999-4 (2018).
8 Alshammari, Y. M. & Benmerabet, M. Global scenarios for fuel oil utilisation under new sulphur and carbon regulations. (2017).
9 Tanimu, A. & Alhooshani, K. Advanced Hydrodesulfurization Catalysts: A Review of Design and Synthesis. Energy & Fuels 33, 2810-2838, doi:10.1021/acs.energyfuels.9b00354 (2019).
10 Xu, R., Chou, L.-C. & Zhang, W.-H. The effect of CO2 emissions and economic performance on hydrogen-based renewable production in 35 European Countries. International Journal of Hydrogen Energy 44, 29418-29425, doi:10.1016/j.ijhydene.2019.02.167 (2019).
11 Liu, D., Li, B., Wu, J. & Liu, Y. Sorbents for hydrogen sulfide capture from biogas at low temperature: a review. Environmental Chemistry Letters 18, 113-128, doi:10.1007/s10311-019-00925-6 (2019).
12 Lincke, M. et al. Chemoadsorption for Separation of Hydrogen Sulfide from Biogas with Iron Hydroxide and Sulfur Recovery. Chemical Engineering & Technology 43, 1564-1570, doi:10.1002/ceat.202000032 (2020).
13 Liang, Z., Li, T., Kim, M., Asthagiri, A. & Weaver, J. F. Low-temperature activation of methane on the IrO2(110) surface. Science 356, 299-303 (2017).
14 BP Statistical Review of World Energy. (BP Energy Economics, 2019).
15 Davis, C. BP Bearish on Natural Gas Prices, LNG Exports to 2021. (2019).
16 Díaz-Urrutia, C. & Ott, T. Activation of methane: A selective industrial route to methanesulfonic acid. Science 363, 1326-1329 (2019).
17 Roytman, V. A. & Singleton, D. A. Comment on “Activation of methane to CH3 industrial route to methanesulfonic acid”. Science 363, 1326-1329, doi:10.1002/anie.200350976 (2019).
18 Jia, S. Y. et al. Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized [email protected](Cr) hybrid material. Journal of hazardous materials 262, 589-597, doi:10.1016/j.jhazmat.2013.08.056 (2013).
19 Zhang, C. et al. Synthesis, Characterization, and Evaluation of Activated Carbon Spheres for Removal of Dibenzothiophene from Model Diesel Fuel. Industrial & Engineering Chemistry Research 53, 4271-4276, doi:10.1021/ie403773f (2014).
20 Rabarihoela-Rakotovao, V., Brunet, S., Perot, G. & Diehl, F. Effect of H2S partial pressure on the HDS of dibenzothiophene and 4,6-dimethyldibenzothiophene over sulfided NiMoP/Al2O3 and CoMoP/Al2O3 catalysts. Applied Catalysis A: General 306, 34-44, doi:10.1016/j.apcata.2006.03.029 (2006).
21 Samoc, A. Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared. Journal of Applied Physics 94, 6167-6174, doi:10.1063/1.1615294 (2003).
22 Ishizuka, T., Takanohashi, T., Ito, O. & Iino, M. Effects of additives and oxygen on extraction mixed solvent for Argonne premium coal samples yield. Fuel 72, 579-580 (1992).
23 Fukuda, H. & Oda, M. Copolymerization of Ketene Cyclic N,O-Acetals with Carbon Disulfide: Evidence for Formation of Zwitterionic Intermediates by Means of 1H NMR Spectroscopy. Macromolecules 29, 3043-3045 (1996).
24 Signhal, G. H., Espino, R. L., Sobel, J. E. & Huff, G. A. Hydrodesulfurization of Sulfur Heterocyclic Compounds. Journal of Catalysis 67, 457-458 (1981).
25 Choudhary, V. R., Kinage, A. K. & Choudhary, T. V. Low-Temperature Nonoxidative Activation of Methane over H-Galloaluminosilicate (MFI) Zeolite. Science 275, 1286-1288 (1997).
26 Maugh, T. H., 2nd. Methane C-h bonds activated. Science 222, 315, doi:10.1126/science.222.4621.315 (1983).
27 He, P., Jarvis, J., Liu, L. & Song, H. The promoting effect of Pt on the co-aromatization of pentane with methane and propane over Zn-Pt/HZSM-5. Fuel 239, 946-954, doi:10.1016/j.fuel.2018.11.079 (2019).
28 He, P. et al. Co-aromatization of methane with propane over Zn/HZSM-5: The methane reaction pathway and the effect of Zn distribution. Applied Catalysis B: Environmental 250, 99-111, doi:10.1016/j.apcatb.2019.03.011 (2019).
29 Sharifvaghefi, S., Yang, B. & Zheng, Y. New insights on the role of H2S and sulfur vacancies on dibenzothiophene hydrodesulfurization over MoS2 edges. Applied Catalysis A: General 566, 164-173, doi:10.1016/j.apcata.2018.05.033 (2018).
30 Guo, K., Ding, Y., Luo, J. & Yu, Z. Nickel Cobalt Thiospinel Nanoparticles as Hydrodesulfurization Catalysts: Importance of Cation Position, Structural Stability, and Sulfur Vacancy. ACS Appl Mater Interfaces 10, 19673-19681, doi:10.1021/acsami.8b03588 (2018).
31 He, P., Gatip, R., Yung, M., Zeng, H. & Song, H. Co-aromatization of olefin and methane over Ag-Ga/ZSM-5 catalyst at low temperature. Applied Catalysis B: Environmental 211, 275-288, doi:10.1016/j.apcatb.2017.04.052 (2017).
32 Li, Q. et al. Catalytic co-aromatization of methane and heptane as an alkane model compound over Zn-Ga/ZSM-5: A mechanistic study. Applied Catalysis B: Environmental 236, 13-24, doi:10.1016/j.apcatb.2018.05.006 (2018).
33 Paál, Z., Koltai, T. & late) Károly, M. Sulfur uptake and exchange, HDS activity and structure of sulfided, Al2O3 supported MoOx, PdMoOx and PtMoOx catalysts. Physical Chemistry Chemical Physics 3, 1535-1543, doi:10.1039/b009047f (2001).
34 Sushkevich, V. L., Popov, A. G. & Ivanova, II. Sulfur-33 Isotope Tracing of the Hydrodesulfurization Process: Insights into the Reaction Mechanism, Catalyst Characterization and Improvement. Angewandte Chemie 56, 10872-10876, doi:10.1002/anie.201704027 (2017).
35 Shen, B. et al. Atomic Spatial and Temporal Imaging of Local Structures and Light Elements inside Zeolite Frameworks. Adv Mater 32, e1906103, doi:10.1002/adma.201906103 (2020).