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Abstract The Internet of Things (IoT) technology is one of the most important emerging technologies in today's world, 

and it is one of the most important and hot topics in information technology research. The Internet of Things (IoT) refers to 

the concept of connecting smart things to monitor, control, or exchange data over the Internet. These smart things could be 

tiny devices, with limited battery capacity and power supplies. These devices' high energy consumption shortens their 

lifespan, affecting the entire IoT network. The Internet Engineering Task Force (IETF) developed the main routing 

protocols used in the IoT, such as the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL), and standardized 

it in RFC6550, as one of the IoT's core routing protocols, and it is the only standard protocol that assists the routing process 

in Low Power and Lossy Networks (LLNs) of IoT applications. An approach that addresses the challenges of IoT networks 

and exploits new flexible network architectures, such as Software-Defined RPL networks, there is a considerable gap in 

adapting objective functions (OFs) for routing and controlling control messages for RPL operations, which enhance the 

energy efficiency of the IoT networks. This paper proposes a unique software-defined RPL system with optimized RPL 

operations for heterogeneous IoT environments to enhance energy efficiency. The proposed work performed adaptive OF 

selection and routing, for that purpose the proposed work formulated three categories of objective functions (OF1, OF2, 

OF3) namely TriOF. The optimal OF is selected based on the status of the network using the Killer Whale Optimization 

(KWO) algorithm. It improved the performance of adaptive OF selection and enhanced the network energy efficiency. We 

evaluate the outcomes through a series of simulated experiments using the Network Simulator (NS3). The proposed model 

approach results in a reduced number of control messages, control overhead, packet delivery ratio, and packet loss rate. 

Compared to the contrast works, energy consumption is reduced by 40% and 60%, respectively. 

Keywords Internet of Things, RPL, Software-Defined Networks, Adaptive Objective Function, Energy Efficiency.

1 Introduction 

The Internet of Things (IoT) is a developing paradigm with 

numerous real-world applications [1],[2]. IoT uses the 

internet to connect millions of smart devices such as tiny 

sensors, smart gadgets, and so on. IoT connectivity enables 

many smart environments such as smart cities, smart 

industries, e-healthcare, and so on [3]. As the Internet of 

Things expands, energy efficiency issues continue to arise 

[4]. The primary reason for these challenges is that IoT 

creates large-scale heterogeneous environments with various 

types of nodes, which have limitations such as limited energy 

and computational resources, limited bandwidth, and low-

quality radio communication. 

    The Software-Defined Networking (SDN) paradigm 

emerged as a promising approach for implementing 

alternative routing control strategies, thereby expanding the 

set of IoT applications that can be delivered by enabling 

global protocol strategies and network programmability [5], 

[6]. SDN is an important solution for solving energy 

consumption issues that existed in IoT. Thus, IoT is 

integrated with SDN to solve the energy efficiency of the 

network [3], [7]. SDN uses logically centralized software, 

hosted in network nodes called SDN controllers, to control 

the behavior of a network by reducing the network 

configuration and management complexity. In simple, SDN 

differs from the traditional network in the way that it 

separates the control plane and data plane. The model of 

SDN-IoT is presented in Figure 1. In SDN, the data plane 

consists of OpenFlow switches which are the forwarding 

devices, and the control plane consists of controllers which 
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maintain the global view of the network [8]. The SDN 

network can be constructed with single or multiple 

controllers in the control plane [9]. When it comes to IoT, the 

multi-controller SDN model is effective since the network is 

large in scale [10]. 

Fig. 1 SD-RPL Integrated Network. 

In software defined RPL (SD-RPL) network, the data is 

generated by the IoT devices, aggregated by the IoT 

gateways, and forwarded through the SDN switches to the 

SDN controller. Here, routing between the IoT devices and 

the gateways plays a significant role in data collection. For 

that, the RPL routing protocol specifies objective-based 

parent selection that is specifically designed for IoT 

communication [11], [12]. For efficient routing of IoT data, 

RPL protocol is used by constructing the Destination-

Oriented Directed Acyclic Graph (DODAG). The DODAG 

is defined as, the rooting of the directed acyclic graph in a 

specific destination [13],[14]. Here the data from IoT devices 

is gathered by the root node (Gateway) in which the parent 

selection is performed by defining an objective function 

(OF). This OF can be defined based on different metrics [15]. 

For analyzing the objective function performance several 

metrics are calculated. Some important metrics are selected 

to analyze the performance such as Expected Transmission 

Count (ETX), Hop Count (HC), and energy consumption of 

nodes. By these metrics the performance analysis of the 

objective function is calculated and depends upon the results 

i.e., optimal OF is selected with high performance to select 

the optimal parent. [16]. The fuzzy logic is also used in 

parent selection which can take into account more than one 

parameter for parent selection [17]. IoT devices are limited to 

batteries and hence energy-based metrics also play a vital 

role in parent selection. The data transmission toward the 

root is succeeded only when the parent selection is efficient. 

The following factors are important in SDN-IoT networks 

while using RPL protocol, 

•The IoT devices are resource-constrained which is 

employed limited batteries and processors hence to make 

those devices live for a longer time, the energy utilization 

should be better. 

•The data transmission is required to be optimal towards 
the end device without excessive re-transmission counts. 

    Statistically, the number of devices connected to IoT 

networks rapidly increases yearly. IoT networks with many 

Heterogeneous devices capture information and deliver it to 

backend servers. IoT devices are resource-constrained, and 

they lose energy for each process. The critical problems 

stated for energy consumption in SDN-IoT networks are the 

main motivations behind this work. RPL handles parent 

selection by using the objective function for forwarding the 

captured data to the root, which is always based on the 

objective function. While the IoT networks are 

heterogeneous, the properties of each node will not be 

similar, so the objective functions must be selected based on 

the current behavior of the IoT devices. 

    Based on this motivation, this research work aims at 

maximizing the energy efficiency of the RPL-based SDN-

IoT network by achieving efficient transmission of data and 

high packet delivery ratio by defining multiple Objective 

Functions, selecting optimal OF and routing based on the 

network status, and considering various routing metrics. 

1.1 Major Contributions 

To achieve the objectives of this work, we have presented the 

following major contributions to RPL-based SDN-IoT 

networks. 

• An SDN-IoT network is designed and assisted by RPL-

based routing operations. The network is constructed to 

minimize energy consumption for resource-constrained IoT 

environments. 

• The optimal objective function is adaptive based on the 

current network status. The KWO algorithm is executed 

with multiple criteria to select the optimal objective 

function. Here, we have three categories of objective 

functions (Tri-OF) that can be dynamically selected for 

parent selection as follows, 

OF(1): Composed of residual energy, transmitter and 

receiver energy, and energy consumption for data 

transmission. 

OF(2): Composed of mobility, load, and delivery ratio. 

OF(3): Composed of ETX, link stability, and queue factor. 

By applying these major contributions, the proposed work 

minimizes energy consumption in the network exponentially. 

1.2 Paper Organization 

The rest of this paper is organized as follows: Section 2 

reviews significant literature works carried out on software-

defined RPL networks and summarizes the research gap. 

Also, the research problems formulated in this work are 



 

highlighted in this section. Section 3 explains the proposed 

system in detail. Sections 4 and 5 lists the simulation 

parameters and evaluate the performance of the proposed 

system, and results are compared in terms of performance 

metrics with the existing works. In section 6, we have 

concluded the contributions and highlighted the future 

research directions. 

2 Related Works 

This section reviews the significant existing works presented 

on optimal routing in RPL-IoT networks. 

RPL-based dynamic data gathering uses learning automata, 

and it is named LA-RPL [18]. In this work, two objective 

functions (OFs) were defined, the first was used for graph 

construction, and the second for learning automata. The first 

OF is based on the node degree, and the second OF defines 

the number of data packets. The first OF enabled the 

maintenance of the topology, and the second was for 

transmission. Here, both OFs use a single parameter which is 

insufficient for the heterogeneous IoT environment. A 

learning automaton for OF (LA-OF) was proposed using the 

expected transmission count [19]. In this learning automata, 

both online and offline phases are executed by computing the 

ETX as the states. According to the actions, rewards, and 

penalties for them are given. As a result of this, only the 

packet transmission-based parameter ETX is used. learning 

automaton was used to learn the network and update the 

parameters automatically upon ETX. This work mainly uses 

the Objective function Zero (OF0) which is inefficient to 

achieve better transmission performance. 

The fuzzy logic technique was introduced to define the 

objective function using context-oriented parameters, i.e., 

COOF [20]. This OF considers the expected transmission 

count, queue fluctuation index, and residual energy index. 

Based on these three constraints, nine rules were established, 

and using this fuzzy parent was selected. From the fuzzy 

rules, the quality of the parent was determined as excellent, 

very good, good, fair, and bad. Then, data transmission was 

carried out through excellent parent nodes if available. The 

defined OF is not suitable for all instances, and using fuzzy 

could be made only when the parameters range between the 

specified values. If it is new, then the decision will not be 

efficient. Mobility-aware RPL (MARPL) was presented in an 

IoT environment to aid with the mobility of nodes and reduce 

packet loss [21]. MARPL performs three processes mobility 

detection, parent prediction, and trickle adjustment. The 

neighbors in RPL were determined based on the received 

signal strength value. Then the parent was selected based on 

the rank parameter that was updated concerning mobility. 

However, mobility is the significant parameter, it is only 

taken into consideration, even if a node with low mobility 

will also have lesser energy. In such situations, the preferred 

parent will fail in transmission. 

RPL improvement was achieved for congestion control and 

energy efficiency [22]. For performing RPL operations, a 

new metric was formulated as the linear combination of 

ETX, delay, and node’s residual energy. For parent selection, 

a two-level process in which the first level selects parents 

based on ETX and the second level uses residual energy as 

the tiebreaker metric. To avoid congestion, the control 

mechanism was presented based on time-bound (i.e.), a 

threshold value was set to control the broadcast. This method 

first uses a single metric (hop count) for selecting the optimal 

parent then uses energy as a tiebreaker which results in 

higher data loss due to the lack of current network status. In 

the heterogeneous IoT environment, RPL was presented to 

handle the heterogeneous traffic [23]. For that, queue and 

workload-based RPL (QWL-RPL) were presented to collect 

the heterogeneous traffic. The parent selection was 

performed based on buffer rate and workload which are in a 

linear combination. The absence of link and network-

oriented metrics increases data loss.  

Table 1 Summary of related works. 

Methods Presented Research gap 
LA-RPL [18] 

LA-OF [19] 

COOF [20] 

MARPL [21] 

Two-Level RPL [22] 

QWL-RPL [23] 

• Lack of significant parameters 

degrades data transmission performance 

• Using the same OF for all network 

conditions is not suitable  

• Mainly increases time and energy 

consumption 

In Table 1, the related works are summarized, and the major 

research issues are listed. From the analysis, there is still a 

research gap that exists in achieving energy efficiency in 

RPL-based SDN-IoT. 

2.1 Problem Definition 

A cross-layer control of data flows (CORAL) was an SDN-

inspired RPL routing protocol that works upon the ETX 

parameter [24]. DODAG Information Objective (DIO) 

broadcast was handled by doubling the message time at 

regular intervals. This work fails in attaining better 

performance in parent selection. a single OF (ETX) is 

considered which is not optimal, because the node could be 

poor at the energy level and other conditions. A versatile out-

of-band (VERO-SD) controls the network topology and uses 

the Dijkstra algorithm for shortest path selection [25]. The 

congestion management was enabled by a threshold-based 

approach. In this work, only a single controller is used which 

decides path selection. In RPL-IoT most of the devices 

require selecting a path and hence using only one controller 

takes a longer time. Due to this, the transmission delay 

occurs and even the packets may be dropped. The routing in 

the controller is performed by the Dijkstra algorithm which is 

a blind search algorithm that is not able to find the shortest 

path in all the instances. In the case of sensitive data, then it 

cannot reach its destination at a prompt time. The dynamic 

threshold is determined based on the communication range 

which is not the only constraint to defining the broadcast 

threshold. Since not all the broadcasts are within the time 

they will fail. 

 

 



 

3 System Model 

In this section, we present the overall process of the proposed 

system.  

 Fig. 2 Proposed TriOF Model. 

The proposed model integrates IoT and the SDN 

environment for energy-efficient processing. This 

architecture is composed of n number of IoT sensors 𝑁1, 𝑁2, . . , 𝑁𝑛, m number of IoT gateways [𝐺1, 𝐺2, . . , 𝐺𝑚], l 

number of OpenFlow switches [𝑆1, 𝑆2, . . , 𝑆𝑙] and multiple k 

numbers of controllers [𝐶1, 𝐶2, . . , 𝐶𝑘]. The IoT sensors are 

responsible for capturing the data and forwarding it to the 

root node. In this work, RPL is used, which constructs 

DODAG in which an objective function is defined to select 

the parent as a forwarder. The sensed data is forwarded 

toward the root, i.e., the IoT gateway, in this proposed work. 

The overall architecture of the model is illustrated in Figure 

2. After the construction of DODAG, the routing is 

performed by using the objective function. In this work, Tri-

OF is introduced (i.e.) three categories of OFs are 

formulated. At each time, the source node 𝑁𝑆𝑟𝑐 selects an OF 

based on the current network status. In RPL-based networks, 

OF plays an important role, and each node needs to compute 

OF each time. Considering more parameters in a single OF 

increases computational overhead, and the OF requirements 

vary over the network states. Thus, an adaptive OF selection 

procedure is presented with the aid of an optimization 

algorithm. Data forwarding is performed in two steps. In the 

first step, the 𝑁𝑆𝑟𝑐 determines the optimal OF for current 

parent selection. We have proposed KWO, which is the bio-

inspired algorithm for optimal OF selection in each route 

selection. KWO is inspired by the behavior of killer whales 

[26] which works better than other benchmark optimization 

algorithms. Mainly, KWO resolves local optimal solution 

problems by searching population in clusters called 

Matriline. At first, the solutions (𝑂𝐹1, 𝑂𝐹2, 𝑂𝐹3) are 

initialized as population. In each matriline, a leader whale is 

selected to search for the optimal solution. All other whales 

presented in that matriline are considered members. The 

leader whale is responsible for finding prey (optimal OF) 

direction, and the members need to chase the prey by 

updating their locations. In this work, each matriline is 

considered a DODAG, and optimal OF is selected for all 

DODAGs by searching within the search space. The 

proposed KWO algorithm involves the following steps, 

1) In the first step, all members in the matriline scan the 

prey and the leader selects potential prey for chasing. The 

potentiality of the prey is evaluated in terms of fitness 

function (ℱ𝑛). For 𝑖𝑡ℎ prey (𝑃𝑖), the 𝐹𝑛𝑖 is computed as 

follows, 

                        𝐹𝑛𝑖 = {𝐸(𝔻), 𝔸ℕ, ℒ}                                 (1) 

Fitness is evaluated as the function of DODAG energy level 

(𝐸(𝔻)), the number of active nodes (𝔸ℕ), and the last even 

detection time difference (ℒ). Each OF has a certain effect 

on the fitness function. If 𝐸(𝔻) and 𝔸ℕ are low, then the 

difference between the latest event detection time and the 

current time is computed. The ℒ is also low. Then the 

DODAG demands energy-efficient OF to minimize energy 

consumption. In this way, the potential prey is selected by 

the head. 

2) Next, the member whales move the position following 

the selected potential prey. First, the position of the prey is 

modeled based on the depth of the prey (𝔇𝑃), depth of the 

leader (𝔇𝐿) and the angle of the horizontal range (𝜃). This 

angle is determined from the following expression, 

                            𝜃 = sin−1 (𝔇𝑃−𝔇𝐿𝑅𝑃,𝐿 )                                (2) 

Here, 𝑅𝑃,𝐿 denotes the range between the prey and the 

leader. Once the position of the prey is determined, then all 

members move toward the prey’s position. This movement 
of members is formulated as follows,  {𝑣𝐿⃗⃗⃗⃗ ← 𝑣𝐿⃗⃗⃗⃗ + 𝑈⃗⃗ (0, 𝜎1) ⊗ (Pbest ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑥𝐿⃗⃗⃗⃗ ) + 𝑈⃗⃗ (0, 𝜎2) ⊗ (Pg⃗⃗  ⃗ − 𝑥𝐿⃗⃗⃗⃗ )𝑥𝐿⃗⃗⃗⃗ ← 𝑥𝐿⃗⃗⃗⃗ + 𝑣𝐿⃗⃗⃗⃗ . 𝑡 ,           (3) 

The movement is modeled from the current position of a 

killer whale (𝑥𝐿), previous best position (Pbest) and velocity 

(𝑣𝐿) at a given time 𝑡. By following this model, all 

members move toward the prey.  

3) In this step, the best solution search is continued. The 

matriline creates a search pattern based on previous prey. In 

this step, the leader computes 𝐹𝑛 for searched prey. If this 

prey has more potential than the previous prey, then the 

leader changes the entire movement toward new potential 

prey. Else, the members continue to chase the old prey.  

4) If the stopping criteria have been met, then the optimal 

solution determined in steps 2 & 3 is provided as the best 

solution. Else, both steps are executed repeatedly to obtain 

the optimal solution. 

At the end of KWO, the optimal OF that is suitable for the 

current network state. The three objective functions are 

formulated as follows, 

                       𝑂𝐹1 = 𝐸𝑟𝑒 − ∑𝐸𝑇𝑥, 𝐸𝑟𝑥, 𝐸𝑐                        (4) 

The 𝑂𝐹1 is computed based on residual energy (𝐸𝑅𝑒), 

transmission energy (𝐸𝑇𝑥), reception energy (𝐸𝑅𝑥) and 

energy consumption (𝐸𝐶). The transmitter and receiver 

energy are modeled as follows, 

                       𝐸𝑇𝑥 = 𝔅(𝐸𝑒𝑙𝑒𝑐 + 𝜖𝑎𝑚𝑝 ∗ 𝑑2)                     (5) 



 

                       𝐸𝑟𝑥 = 𝔅(𝐸𝑑𝑎 + 𝐸𝑒𝑙𝑒𝑐)                                (6) 

Here, 𝔅 is the number of bits per packet, 𝑑 is the distance 

between the source and candidate parent node, 𝐸𝑑𝑎 defines 

energy consumed for data aggregation and 𝜖𝑎𝑚𝑝 is the 

multi-path fading signal amplification coefficient. In this 

work, 𝑂𝐹1 is mainly formulated to assure energy efficiency. 

If 𝑂𝐹1 is selected as the optimal objective function, then the 

node which has a higher 𝐸𝑅𝑒 and lower 𝐸𝑇𝑥, 𝐸𝑅𝑥, 𝐸𝐶 is 

selected as the optimal parent node. Similarly, 𝑂𝐹2 is 

formulated as follows, 

                                  𝑂𝐹2 = 𝐷𝑅𝑀+𝐿𝑑                                     (7) 

The second OF is formulated when the DODAG has 

sufficient energy for further operations. This objective 

mainly focuses on maximizing the data delivery rate. Thus, 

a node with a high delivery ratio (𝐷𝑅) and low mobility 

(𝑀), and load (𝐿𝑑) is selected as the optimal parent node. 

The third OF is formulated as follows, 

                                   𝑂𝐹3 = 𝜓𝐸𝑇𝑋+𝛼                                  (8)  

This OF is formulated based on link stability (𝜓), ETX, and 

queue factor (𝛼). The 𝑁𝑆𝑟𝑐 first finds the optimal OF for 

current data transmission.  

Pseudocode for KWO-based parent selection 

Initialize {OF1, OF2, OF3} 

Initialize Population 

Form matriline 

For each prey (𝑃𝑖) 
Compute 𝐹𝑛𝑖 
Find potential prey                              // By Leader  

Chase potential prey                            // By Members 

Determine Prey Position (𝜃) 

Update the position of Whales 𝑥𝐿     

Move to new prey (𝑃𝑛𝑒𝑤) 

Compute 𝐹𝑛𝑛𝑒𝑤 

Compare 𝐹𝑛𝑖&&𝐹𝑛𝑛𝑒𝑤 

If (𝐹𝑛𝑛𝑒𝑤 > 𝐹𝑛𝑖) 
Set 𝑃𝑛𝑒𝑤 →Potential. 

Update position 

Else  

Continue with 𝑃𝑖 
End If 

While Stopping Criterion Met 

Return (OFcurrent) 
End While 

End For 

If (OFcurrent = OFPrevious) 

Extract history 

Set Previous Parents as Optimal 

Else 

Select Optimal Parent as per OF1/OF2/OF3 

Transmit data 

End If 

End 

In the first step, the optimal OF is selected by 𝑁𝑆𝑟𝑐 is 

compared with the previous best OF. For that, 𝑁𝑆𝑟𝑐 extracts 

the history of prior OFs. Then, it compares the current OF 

with the previous OF to speed up the parent selection 

process. If the last OF and the current OF are the same, then 

the 𝑁𝑆𝑟𝑐 considers previous optimal parents as current 

optimal parents and checks whether the previous parents 

are available. If the previous parents are available, data 

transmission is performed through these optimal parents. In 

the next step, the following processes are performed,  

• If the current and previous OFs are the same and parents 

are unavailable, the source selects optimal parents for 

current data transmission.  

• If the current and previous OFs are not the same, the 

source node selects optimal parents according to the 

current OF for data transmission. 

The pseudocode for proposed adaptive OF selection and 

parent selection explains the step-by-step procedure of 

proposed RPL operations. In this manner, an optimal route is 

selected between 𝑁𝑆𝑟𝑐 and corresponding 𝐺. After 

aggregating data from all sensor nodes in the DODAG, 𝐺 

forwards the data through OpenFlow switches deployed in 

the data plane. 

4 Simulation Results and Analysis 

In this section, we evaluate the performance of the proposed 

model through extensive simulations. Also, the performance 

is compared with the existing works. 

4.1 Simulation Environment 

The proposed model is experimentally analyzed for 

evaluating the performance. For that, the proposed network is 

modeled in Network Simulator NS3 which runs on the 

Ubuntu operating system. NS3 is suitable for simulating 

various types of networks and network protocols. Thus, NS3 

is used for simulations. All algorithms have been written in 

C++ and the modules are built in the Python programming 

language. The simulation parameters used in the network 

model are listed in Table 2. By using these parameters, the 

network is constructed and simulated. 

Table 2 Simulation Parameters. 

Parameter Value 

Simulation Area 1000*1000 m 
Number of IoT Nodes 100 
Number of Gateways 3 
Number of OpenFlow Switches 15 
Number of Controllers 3 
Initial Energy of IoT Nodes 15 Joules (Maximum) 
Flow Table Size 1000 KB 
Packet Size 512 KB (Maximum) 
Number of Packets Generated 100 
Data Rate 1.1 Mbps 
Simulation Time 100 Minutes 

Modules  

IoT_Module 

Flow_Monitor_Module 

WiFi_Module 

OpenFlow_Module 



 

KWO 

Configuration 

Number of Matriline 10-50 
Initial Population 100 
Number of Leaders  10 
Maximum Iteration 100 

In the simulation, TCP and UDP traffic types are generated 

by the IoT nodes. As the network is heterogeneous, each 

node moves with different mobility and generates data in 

different sizes. 

4.2 Comparative Analysis 

After simulation, the results are observed for comparative 

analysis. For that, we observe significant performance 

measures such as the number of control messages exchanged, 

control message overhead, average energy consumption, 

packet delivery ratio, and packet loss rate. Since the work 

focuses on the RPL aspect and SDN aspect, comparisons are 

made with RPL-based works including VERO-SD [25] and 

CORAL [24]. 

Table 3 Comparison of previous works. 
Existing 

Work 

Network 

Model 
OF Demerits 

CORAL 

[24] 

RPL-based 

SDN-IoT 
ETX 

• Increases data loss and 

energy consumption. 

• Not able to handle large-

scale network 

VERO-SD 

[25] 

RPL-based 

SDN-IoT 

Dijkstra 

RPL 

routing 

• High E2E delay 

• Non-optimal route 

increases data loss 

In Table 3, the existing works are compared with the 

proposed model. From the analysis, existing works have 

some demerits which degrade the performance. These 

demerits reflect as the results in performance metrics. 

4.2.1 Comparison of Control Messages 

The prime objective of the proposed system is to minimize 

energy consumption by minimizing unwanted control packet 

overhead. RPL-based operations require a greater number of 

control packets in DODAG formation and stabilization. 

Thus, control message analysis plays a vital role in the 

proposed work. The control message analysis is carried out 

based on two vital metrics the number of control packets 

exchanged and the control message overhead. 

In Figure 3, the number of control messages in DODAG 

construction is compared in terms of the number of IoT 

nodes. An increase in the number of IoT nodes requires many 

control messages to be exchanged. The reason is that when 

the network is large then the broadcasting message will be 

high. Even with 100 nodes, our proposed model uses only 61 

control messages while the VERO-SD method required 89 

messages, and the CORAL method requires 101 messages. 

In the VERO-SD approach, the broadcast limit is defined 

based on a threshold value. However, the threshold value is 

insufficient to define the broadcast limit. Similarly, CORAL 

doubles the broadcast limit at regular time intervals. Due to 

these reasons, a large  

 

Fig. 3 Number of Control Messages Exchanged. 

many control packets are exchanged in the existing works. At 

the same time, the proposed work uses adaptive decision 

which controls the broadcast. 

4.2.2 Comparison of Control Overhead 

In Figure 4, the control message overhead is compared 

concerning simulation time. The control overhead is defined 

as the ratio between the total number of transmitted packets 

and the total number of transmitted control packets. In the 

proposed model, the control overhead is minimized by 0.52 

when n=100. For the same n value, existing VERO-SD  

achieve 0.96 and CORAL achieves overhead as 1 (i.e.) a 

greater number of control packets are exchanged throughout 

the network. However, exchanging many control packets is 

not suitable for the IoT network since it reduces the 

reliability of the entire network.  

 

Fig. 4 Comparison of control overhead. 

On the other hand, exchanging excess control packets 

consumes more energy in each IoT node. 

In the proposed model, the DIO broadcast is broadcasted 

when there is a greater number of nodes needed to receive 

the control message. In VERO-SD, the broadcast control is 

carried based on a threshold value, but the threshold value is 

determined non-optimally. Due to this factor, the overhead is 

0.8 even when n=10. Similarly, CORAL fixes a time interval 
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and doubles the DIO broadcast in a regular interval which 

increases the overhead exponentially to 0.92 for n=10. From 

the analysis, the proposed approach minimizes the overhead 

which will further minimize energy consumption. 

4.2.3 Comparison of Energy Consumption 

Energy consumption is defined as the amount of energy 

consumed by the network on average. Energy consumption 

includes energy consumed for data transmission, reception, 

and environmental sensing. 

In Figure 5, the energy consumption is compared concerning 

the number of IoT nodes. The average energy consumption 

of the network is increased with an increase in simulation 

time. At the simulation time of 10 minutes, the energy 

consumption of our model is 6J and it is increased to 18J at 

the end of the simulation (i.e.) 100 minutes. That is 18J 

energy is dissipated throughout the network. 

Fig. 5 Comparison of energy consumption. 

At the same time, 30J energy is dissipated in VERO-SD, and 

40J energy is dissipated in CORAL, which is near twice the 

time higher than the proposed work. In IoT devices, energy 

dissipation is mainly caused by sensing and transmitting the 

data. Besides, RPL-based networks dissipate energy for 

DODAG construction and control packet exchanges. Thus, 

optimizing control packet overhead and frequent 

retransmission minimizes energy dissipation. However, the 

existing approaches fail to assure minimized energy 

dissipation due to high control packet overhead. 

CORAL uses ETX as the metric, which leads to selecting an 

energy-minimized node as a parent many times (i.e.), energy 

consumption at a particular node is increased exponentially. 

Also, control packets are transmitted without optimal limiting 

function. This leads to 40J energy consumption in the 

network. On the other hand, VERO-SD uses single OF and 

threshold-based broadcast control, which fails to achieve 

optimal routing and broadcast minimization. Therefore, the 

energy consumption of the CORAL and VERO-SD 

approaches is higher than the proposed work since the 

proposed work minimizes the control message exchange and 

selects the optimal route by adaptive OF selection procedure. 

4.2.4 Analysis of Data Transmission 

Data transmission efficiency is analyzed in terms of packet 

delivery ratio and packet loss rate. The packet delivery ratio 

is defined as the ratio between the total number of packets 

transmitted from the source and the total number of packets 

received by the destination.  

Fig. 6 Comparison of packet delivery ratio. 

Similarly, the packet loss rate measures the total number of 

packets lost during data transmission. In Figure 6 and Figure 

7, the packet delivery ratio and packet loss rate are compared, 

respectively.  

 

Fig. 7 Comparison of packet loss rate. 

Here, the PDR achieved by the proposed work is between 

90% to 100% (i.e.) a reasonable number of packets reached 

the destination without any loss. Also, the packet loss rate is 

minimized to 2%. The proposed work optimizes the overall 

data transmission using the optimal parent selection based on 
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the optimal OF for the current network status, which 

enhances the data transmission. Each parameter involved in 

the TriOF assists in improving data transmission. Thus, 

100% of packets reach the destination without any loss. 

On the other hand, VERO-SD uses the Dijkstra algorithm for 

routing, which relies on a single OF. CORAL uses ETX 

metric for optimal routing. However, both methods lack 

parameter consideration which leads to a huge packet loss. 

Also, both works use SDN without proper management. 

Thus, overloading at the data or control plane reflects the 

data loss in VERO-SD and CORAL methods. 

 
Table 4 Summary of  Comparison analysis with 100 nodes. 

Work 
Control 

Messages 

Control 

Overhead 

Energy 

Consumption 

CORAL [24] 101 1 40J 

VERO-SD [25] 89 0.96 30J 

Proposed 61 0.52 18J 

 

Table 4 summarized the comparison analysis of the previous 

works compared with the proposed model with 100 nodes 

and the energy consumption is measured at the end of the 

simulation (i.e.) 100 minutes. 

5 Results & Discussion 

The results show that the proposed model outperforms all 

energy efficiency aspects in terms of diverse performance 

metrics. Each of the proposed contributions helps in 

improving the Energy efficiency performance of the 

software-defined IoT networks. The major research 

highlights are in SD-RPL, the parent selection, first, the OF 

is decided using killer whale optimization with energy, active 

nodes, and last event time, it predicts the optimal OF for each 

region. Then the selection OF will be incorporated with the 

computation of the OF parameters defined into energy-based, 

load-based, and link-based metrics. 

6 Conclusion 

In this paper, a software-defined RPL network model is 

designed and simulated to improve the energy efficiency of 

IoT networks. Optimal routing is enabled by the formulation 

of TriOF in which each OF focuses on the different network 

conditions. Each time, the OF is adaptively selected by using 

the KWO algorithm based on multiple metrics. The proposed 

model achieves better performance in energy efficiency. It is 

also evaluated in the NS3 simulator based on performance 

metrics such as the number of control messages, control 

overhead, and energy consumption. In all aspects, the 

proposed work shows better performance.  

In the future, the proposed model will be extended with data 

and control plane load balancing approach to minimize 

retransmission in the IoT sensor plane and give a better 

improvement in energy efficiency. Thus, achieving energy 

efficiency through data and control plane load balancing 

provisioning is the better future research direction of this 

proposal. 
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