
An E�cient Blockchain-Based Framework For File
Sharing
Wanzong Peng

Harbin Institute of Technology
Tongliang Lu ( azqsx098@qq.com)

PLA78156
Zhongpan Wang

Chongqing University

Article

Keywords:

Posted Date: April 24th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2815114/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2815114/v1
mailto:azqsx098@qq.com
https://doi.org/10.21203/rs.3.rs-2815114/v1
https://creativecommons.org/licenses/by/4.0/

An Efficient Blockchain-Based Framework For File

Sharing

Wanzong Peng1, Tongliang Lu2,*, and Zhongpan Wang3

1Harbin Institute of Technology, Harbin, 150001, China
2PLA78156, Chongqing, 400000, China
3Chongqing University, Chongqing, 400044, China
*azqsx098@qq.com

ABSTRACT

File sharing is the foundation of the Internet. But the traditional centralized service architecture will result in huge infrastructure

costs and maintenance costs. Due to the lack of effective file management system, a lot of sensitive information is out of

control and loss of confidentiality document has occur from time to time. In order to address the difficulty of tamper detection

and the lack of supervision in the entire process of file transmission in the current Internet environment, this paper designs a

block-chain-based system architecture for secure sharing of electronic documents. An efficient Blockchain model is used in

our framework, and with the help of distributed storage system and asymmetric encryption technology, file sharing can be

controlled, reliable and traceable in the transmission process.Referring to existing consensus mechanism, e.g., Delegated

Proof of Stake (DPoS) and Practical Byzantine Fault Tolerance (PBFT), we propose a new consensus for efficient and secure

file sharing.

Introduction

In recent years, the security of network files has been paid more and more attention. The traditional electronic file transfer

process mostly uses centralized mode, data security depends entirely on the capabilities of large companies. The traditional

file transfer system mainly uses C/S mode to provide services, and uploads all electronic files to the server for centralized

management. This mode can cause problems, e.g., heavy load on the central server, high overhead of system resources, high

cost of deployment and maintenance. As for P2P file sharing system, which is applied on the premise of trust between users,

but is vulnerable to illegal access and malicious attacks, resulting in the disclosure of sensitive information. Therefore, it is

essential to provide a high-performance and secure file transfer system.

With the popularity of cryptocurrency all over the world, blockchain technology has attracted tremendous interest from

both academia and industry1, 2 and applied in a host of fields,including healthcare, Internet of Things (IoT), and cloud storage3.

Blockchain technology provides us with new ideas on how to reliably transfer files. It has both decentralized characteristics and

reliable security. With the idea of blockchain, we can achieve file transfer more efficiently, save a lot of server resources,reliably

track the source and monitor the lifecycle of file.

Related Work

After the emergence of blockchain, people considered using it for cloud storage4.The most application method was simple

and centralized.Then Benet created IPFS5.It is is a peer-to-peer distributed file system, and more and more people begin to

use blockchain technology for file transfer by it6–9.But they generally use existing blockchain systems such as Ethereum or

Hyperledger Fabric for implementation, which is often not efficient enough.

In IoT, There has been increasing interest in high-performance information sharing blockchain. Dorri et al.10 propose a

lightweight blockchain architecture for IoT. Xu et al.11 propose DIoTA, a decentralized ledger-based framework to authenticate

IoT devices and data generated from them. And people are also starting to use the next generation blockchain for data sharing:

Directed Acyclic Graph (DAG) Distributed Ledgers, e.g., IOTA12, Nano13.

Methods

Function

The main aim of our system is to share file safely. So we design two main functions to validate blockchain effects.

• Upload

The user encrypts the local file with a randomly generated symmetric encryption key (as "the file key") and uploads it to

IPFS to obtain the file hash (i.e. the IPFS content identifier, which is used to obtain the file). Of course, we can also

use other storage platform(e.g., cloud storage platform). Each user need generate a "blockchain wallet", simplified as

an asymmetric key here. The file key is encrypted with the user’s public key and stored in the blockchain transaction

together with the file hash and file related information. The process is depicted in Algorithm 1.

Algorithm 1: Upload file

input : f ileIn f o, f ile

1 // Fernet is a symmetric-key algorithm

2 f ileKey← Fernet.generatekey()

3 eFile← Fernet.encrypt(f ile, f ileKey)

4 eFileKey← RSA.encrypt(f ileKey,PublickKeyuser)

5 f ileHash← IPFS.add(eFile)

6 transaction← Transaction(f ileIn f o,eFileKey, f ileHash)

7 Sign(transaction,PrivateKeyuser)

8 receiveNode← GetNearbyNode()

9 Send(transaction,receiveNode)

• Transfer

File Hash is equivalent to a file on the blockchain. During download, the file owner retrieves the file hash and key from

the blockchain, downloads the file from IPFS through the file hash, and decrypts the key with a private key to decrypt the

file. During circulation, first decrypt the file key using the owner’s private key, then encrypt the file key by the recipient’s

public key, and then store the encrypted file key and file hash in the transaction. The process is depicted in Algorithm 2.

Algorithm 2: Transfer file

input : f ileHash,eFileKey,PublickKeyreceiver

1 f ileKey← RSA.decrypt(eFileKey,PrivateKeyuser)

2 if download file then

3 f ile← IPFS.get(f ileHash)

4 f ile← Fernet.decrypt(f ile, f ileKey)

5 else

6 newFileKey← RSA.encrypt(f ileKey,PublickKeyreceiver)

7 end

8 transaction← Transaction(PublickKeyuser,PublickKeyreceiver, f ileHash,newFileKey or eFileKey)

9 Sign(transaction,PrivateKeyuser)

10 receiveNode← GetNearbyNode()

11 Send(transaction,receiveNode)

Framework

For efficient transfer, we need a novel blockchain that can achieve high concurrency and security. Therefore, we borrowed from

the general chain block storage structure and consensus algorithms (PoW, DPoS, etc.) widely used in cryptocurrency systems

for sequential generation of single blocks and proposed our framework.

File Transaction Chain

This chain treats transactions as direct processing objects for file flow. When a transaction is validated, it is stored in the

following structure: To facilitate traceability, the file is used as a root block to form an array; The user group is attached to the

corresponding file, where each user points to the user who shares the file to him to form a chain structure; Transactions are

sorted chronologically and attached to the corresponding users as an array. The overall structure is shown in Fig.1.Information

stored in each section:

• File:file name and file hash.

2/9

• User:user’s public key and the encrypted file key.

• Transaction:Address of both parties, transaction type, timestamp, transaction information, signature of validation node

group, signature of transaction creator and transaction hash value.

Figure 1. The data structure of File Transaction Chain.

File Info Chain

This is a traditional blockchain like the Ethereum blockchain, which is used to store system information such as voting, node

reputation, and efficiency.

Normal-Case Operation

There are 5 main steps for whole system’s lifecycle. The lifecycle is shown in Algorithm 3.

1) Vote to select the leadership group. Nodes vote based on efficiency and reputation of each node. The number of votes

owned by the node is determined by the rating of the nodes on FIC(File Info Chain). Nodes broadcast the voting results

as a transaction to all nodes, and after obtaining all voting results, calculate the node ranking. The top 1/5 nodes are

selected as the leadership group.

2) Divide node groups by the leadership group. The members of the leadership group rotate as chair according to the

ranking order. Based on the information blocks on FIC, each node is rated and divided into 6 groups with almost the

same total score (the number of groups is adjusted reasonably according to the node size and transaction volume).

3/9

3) Create block on FIC. According to the PBFT algorithm14, the chair packages and broadcasts the voting results, node

grouping information, and other system information(e.g., efficiency information, reputation information).When 2/3 of the

leadership group nodes confirm the result, blocks are created on FIC. If more than one-third of the members do not agree

with the grouping, they need to go back to the second step until a grouping is formed.

4) Conduct transactions. Each group forms an independent P2P network, and adjacent groups establish peer-to-peer network

channels to form a ring network structure. One user of the previous group of nodes request transactions through a random

node in the next group.After receiving the transaction, the node (receiving node) in the transaction processing group

broadcasts the transaction within the group. After more than 2/3 of the nodes in the group validate their signatures, the

receiving node attaches all signature authentication to the transaction and broadcasts it to the group and the leadership

group. The leadership group forms a P2P network channel with each group. After receiving it, the leadership group

nodes broadcast the transactions to each group, and each node inserts the transactions into the transaction array of the

initiating user in chronological order based on the corresponding files on File Transaction Chain. Any transaction that

have failed validation in one-third of the validation nodes will be discarded and notified to the transaction initiator and

leadership group.

5) Supervise transactions. The leadership group evaluates the efficiency of each node based on the speed of transactions and

initiates transactions containing efficiency information; Randomly select transactions for validation, label transactions

based on the results, and initiate transactions containing node reputation information. These transactions will be validated

by the leadership group in the next time of grouping and the production blocks will be added to FIC. Loop steps 4-5, and

repeat steps 2-3 every 10 minutes. After rotating as the chair at all leadership group nodes, start from step 1 again.

Evaluation

To validate the progressiveness of this framework, we need to analyze the time consumption. The total process time between

two votes is T, which can be analyzed in two aspects: communication consumption and computational consumption.

Communication Consumption

Assuming that when a large number of nodes are evenly distributed in a network and there is no congestion caused by

broadcasting, the average communication time RTT is considered as a fixed value.There are two types of Communication

consumption.

1 Vote and divide. Each node needs to broadcast its own voting results to all nodes, and the chair will divide nodes and

broadcast once, taking a total of 2 RTT.

2 Process and supervise transactions, create block on FIC. When each group conducts transaction processing, the transaction

is initiated, and the receiving node receives it and broadcasts it to all nodes within the group for signature. Then, each

node sends result to the receiving node for integration, and the receiving node broadcasts signed transaction to the group

and leadership group, taking a total of 4 RTT. While other groups conduct the transaction, the leadership group conducts

transaction supervision. In extreme cases, all leadership group nodes record, validate, and broadcast the results to all

nodes, with a broadcast time of RTT. FIC block generation adopts the PBFT algorithm, which takes 5 RTT in 5 stages.

The leadership group took a total of 6 RTT, which is longer than transaction processing.

Overall, in the lifecycle of a leadership group, each node mainly spends time processing transactions. In part 1 some single

communications consume less time and have fewer occurrences, and communication consumption is mainly considered in part

2.

Computational Consumption

If we have a total of n nodes, γ leadership group nodes, α transactions and β groups, we can get algorithm complexity of the

entire system.

1 Leadership group management. Dividing node requires traversing FIC and scoring each node, with a complexity of O(n).
The time consumption of the transaction supervision part is linearly related to the number of transactions, and in the

extreme case, γ leadership group nodes record and validate α transactions with a complexity of O
(

α
γ

)

. Each transaction

can be completed by traversing the transaction chain once per node, and the time consumption can be ignored. The block

generation adopts the PBFT algorithm with a complexity of O
(

γ2
)

. We set average coefficient as C1, the leadership

group calculates consumption is:

T1 =C1×

(

α
γ +n+ γ2

)

4/9

Algorithm 3: Nodes lifecycle

1 nodesIn f o← GetNodesInfoFromFIC()

2 votes← Vote(nodesIn f o)

3 in f oTransaction← Transaction(votes,PublickKeynode)

4 Sign(in f oTransaction,PrivateKeynode)

5 Broadcast(in f oTransaction)

6 Wait until get all nodes votes

7 Calculate ranking

8 if rank in the top quintile then

9 // do as leader

10 groupIn f oTrans← GroupNodes(nodesIn f o)

11 Broadcast(groupIn f oTrans)

12 transIn f oTrans← SuperviseTransaction()

13 Broadcast(transIn f oTrans)

14 CreateFileInfoBlock()

15 else

16 // do as normal node

17 Get group info

18 net← CreateP2PNetwork()

19 // process transactions

20 transaction← ListenTransaction()

21 if transaction is from user then

22 receiveNode← GetNodeByGroupInfo()

23 Send(transaction,receiveNode)

24 else

25 validate(transaction)

26 Sign(transaction,PrivateKeynode)

27 if no other signature in transaction then

28 // broadcast in group

29 net.broadcast(transaction)

30 Wait until received 2/3 nodes signature

31 net.send(transaction,leaderNode)

32 else

33 receiveNode← GetFirstSigner(transaction)

34 net.send(transaction,receiveNode)

35 end

36 // add transactions to FTC

37 transaction← ListenLeaderGroup()

38 FTC.add(transaction)

39 end

40 end

5/9

2 Transaction processing. β groups are conducted simultaneously, and the transaction is validated and signed by all nodes

within the group after being broadcasted by the receiving node. Then, each node sends it back to the receiving node for

integration, with a complexity of O
(

α
β

n−γ
β

)

. We set average coefficient as C2 and the transaction processing time of

each group is:

T2 =C2×

(

α
β

n−γ
β

)

Generally, α is much greater than γ . By the above two equations, we can find that the more the number of nodes in the

leadership group, the less transaction each node in the leadership group handle, the smaller the time consumption, and the

greater the degree of decentralization. However γ Increasing will result the number of group nodes
n−γ

β
in a too small number,

which cannot guarantee the credibility of the transaction; Moreover, the leadership group nodes have lost their transaction

ability, and users can only create transactions through other non leading nodes. Due to the limited processing capacity of

non leading nodes, excessive number of leadership group nodes can lead to transaction congestion. So we need to select the

appropriate number of groups and leader nodes based on the total number of nodes to ensure the overall system is reliable

and efficient. Compare the main parts of T1 and T2, α
γ and

α(n−γ)
β 2 .Beacuse γ < n and β can be ignored compared to nγ ,so

β 2 + γ2
< nγ , α

γ <
α(n−γ)

β 2 .

And C1 is mainly caused by the program for transaction validation and recording, C2 is mainly caused by the program

for transaction validation and signature, and the consumption of signature algorithms is much greater than that of recording

algorithms. So C2 >C1 and T2 > T1.

Experiment

Focus on analyzing T2 through system simulation experiments. Our experiment environment is that each server runs multiple

nodes within the local LAN, and the nodes communicate point-to-point through TCP to achieve "0 latency" communication.

We use six computers, which is Intel core i5 at 3.6 GHz, 16GB of RAM running Microsoft Windows 11 64-bit version on

500GB hard drive. On each server, there are 30 nodes running through different ports, totaling 300 nodes. The leadership group

takes 60 nodes. We request fixed number of transactions in each normal node. After leader group nodes validate all transactions,

we collect and calculate the average time spent on each transaction. The results are shown in Figure 2.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250 300 350

Ti
m

e（
m

s）

Number of transactions accepted by each node

Figure 2. Verification and signature time consumption for each transaction.

6/9

The number of nodes within a group has a significant impact on transaction efficiency. The average number of transactions

initiated by each node per second is TPS. We set different TPS for evaluate processing capacity of groups of different sizes, we

collect the time of each group finish requests of one second. Blockage occurs when the total time consumed exceeds 1 s. The

result is shown in Table 1.

TPS 120 nodes 80 nodes 60 nodes 48 nodes 40 nodes 35 nodes

10 1.394 1.046 0.800 0.637 0.526 0.489

15 2.055 1.592 1.217 0.986 0.794 0.758

20 2.721 2.161 1.628 1.301 1.087 0.974

25 3.526 2.641 1.975 1.619 1.587 1.184

Table 1. Transaction computational time consumption(s).

To compare with the performance of other directed acyclic graph blockchains(e.g., IOTA), we refer to the experimental

settings in other test15, the number of groups was increased to 30, and there are 8 nodes every group. We test average processing

speed of each group from 5 to 150 TPS per second in 300 seconds.The result is shown in Figure 3.

0

10

20

30

40

50

60

70

80

90

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

交
易
处
理
量
（
re
q/
s）

TPS（req/s）

Figure 3. Verification and signature time consumption for each transaction.

Among the three implementations of IOTA, NANO, and Byteball in the paper15, NANO can achieve a maximum throughput

of 60 transactions per second. Our system can achieve 85 transactions per second for each group, and our global throughput

needs to be multiplied by the number of groups. Compared to the state-of-the-art method, our method has made some progress.

Results

In this paper, to address the fundamental issue of file transfer, we proposes a new blockchain-based framework for file transfer.

Firstly, we have proposed the core functions of the entire system based on security requirements. Then, in order to efficiently

complete the task, we designed a dual-chain blockchain structure and designed the entire system lifecycle based on the PBFT

algorithm and sharding concept16. Finally, we verify the feasibility and efficiency of the framework through analysis and

quantitative experiments of the system. The difference between the proposed framework and existing solutions lies in two

aspects. Firstly, we adopt a relatively centralized consensus approach through the leadership group to ensure efficient operation

7/9

of the system while ensuring security. The second is that transaction processing is highly parallel in each group, which solves

the problem of low efficiency in existing blockchain file transfer solutions.

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable

request.

References

1. Wylde, V. et al. Cybersecurity, data privacy and blockchain: A review. SN Comput. Sci. 3, 127 (2022).

2. Taylor, P. J., Dargahi, T., Dehghantanha, A., Parizi, R. M. & Choo, K.-K. R. A systematic literature review of blockchain

cyber security. Digit. Commun. Networks 6, 147–156, DOI: https://doi.org/10.1016/j.dcan.2019.01.005 (2020).

3. Salman, T., Zolanvari, M., Erbad, A., Jain, R. & Samaka, M. Security services using blockchains: A state of the art survey.

IEEE Commun. Surv. & Tutorials 21, 858–880, DOI: 10.1109/COMST.2018.2863956 (2019).

4. Sharma, P., Jindal, R. & Borah, M. D. Blockchain technology for cloud storage: A systematic literature review. ACM

Comput. Surv. 53, DOI: 10.1145/3403954 (2020).

5. Benet, J. IPFS - Content Addressed, Versioned, P2P File System. arXiv e-prints arXiv:1407.3561, DOI: 10.48550/arXiv.

1407.3561 (2014). 1407.3561.

6. Chen, Y., Li, H., Li, K. & Zhang, J. An improved p2p file system scheme based on ipfs and blockchain. In 2017 IEEE

International Conference on Big Data (Big Data), 2652–2657, DOI: 10.1109/BigData.2017.8258226 (2017).

7. Vimal, S. & Srivatsa, S. K. A new cluster p2p file sharing system based on ipfs and blockchain technology. J. Ambient

Intell. Humaniz. Comput. DOI: 10.1007/s12652-019-01453-5 (2019).

8. Nyaletey, E., Parizi, R. M., Zhang, Q. & Choo, K.-K. R. Blockipfs - blockchain-enabled interplanetary file system for

forensic and trusted data traceability. In 2019 IEEE International Conference on Blockchain (Blockchain), 18–25, DOI:

10.1109/Blockchain.2019.00012 (2019).

9. Liu, M., Palaoag, T. & Zhang, W. An e-resource sharing solution based on blockchain technology. In Proceedings

of the 2021 4th International Conference on Blockchain Technology and Applications, ICBTA ’21, 101–106, DOI:

10.1145/3510487.3510502 (Association for Computing Machinery, New York, NY, USA, 2022).

10. Dorri, A., Kanhere, S. S. & Jurdak, R. Towards an optimized blockchain for iot. In 2017 IEEE/ACM Second International

Conference on Internet-of-Things Design and Implementation (IoTDI), 173–178 (2017).

11. Xu, L. et al. Diota: Decentralized-ledger-based framework for data authenticity protection in iot systems. IEEE Netw. 34,

38–46, DOI: 10.1109/MNET.001.1900136 (2020).

12. Müller, S. et al. Tangle 2.0 leaderless nakamoto consensus on the heaviest dag. IEEE Access 10, 105807–105842, DOI:

10.1109/ACCESS.2022.3211422 (2022).

13. Le Mahieu, C. Nano: A feeless distributed cryptocurrency network. https://content.nano.org/whitepaper/Nano_Whitepaper_

en.pdf.

14. Castro, M. & Liskov, B. Practical byzantine fault tolerance. In Proceedings of the Third Symposium on Operating Systems

Design and Implementation, OSDI ’99, 173–186 (USENIX Association, USA, 1999).

15. Dong, Z., Zheng, E., Choon, Y. & Zomaya, A. Y. Dagbench: A performance evaluation framework for dag distributed

ledgers. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), 264–271, DOI: 10.1109/CLOUD.

2019.00053 (2019).

16. Liu, Y. et al. Building blocks of sharding blockchain systems: Concepts, approaches, and open problems. Comput. Sci.

Rev. 46, DOI: 10.1016/j.cosrev.2022.100513 (2022).

Author contributions statement

Wanzong Peng conceived the framework and experiment, Tongliang Lu conducted the experiment, Zhongpan Wang analysed

the results. All authors reviewed the manuscript.

8/9

https://doi.org/10.1016/j.dcan.2019.01.005
10.1109/COMST.2018.2863956
10.1145/3403954
10.48550/arXiv.1407.3561
10.48550/arXiv.1407.3561
1407.3561
10.1109/BigData.2017.8258226
10.1007/s12652-019-01453-5
10.1109/Blockchain.2019.00012
10.1145/3510487.3510502
10.1109/MNET.001.1900136
10.1109/ACCESS.2022.3211422
https://content.nano.org/whitepaper/Nano_Whitepaper_en.pdf
https://content.nano.org/whitepaper/Nano_Whitepaper_en.pdf
10.1109/CLOUD.2019.00053
10.1109/CLOUD.2019.00053
10.1016/j.cosrev.2022.100513

Additional information

Competing interests

The authors declare no competing interests.

9/9

	References

