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Abstract
Context

The experimental values of variation of glass transition temperature (Tg) with the pressure are relatively
dispersed due to the diversity of microstructure encountered in Cis-1,4-Polybutadiene (PB) and the
diversity of technics used for its measurement. Fortunately, atomistic simulations allow to get valuable
information for very well controlled chemistry and structures using very well-de�ned protocol of
acquisition. That’s why, atomistic modelling will be used to evaluate the variation of Tg with the pressure
for a well-de�ned amorphous oligomer of cis-1,4 PB.

Method

Atomistic dilatometry was performed on model of amorphous cis-1,4 PB with a molecular weight of 5402
g.mol− 1. The analysis was carried out by reporting with respect to the temperature, the speci�c volume,
the coe�cient of thermal expansion, the total energy, and the constant volume heat capacity averaged
over 7 independent con�gurations. Tait equation was used to �t the evolution of the speci�c volume for
temperatures between 10 K and 700 K and pressure of 0, 60 and 100 MPa.

Results

The speci�c volume evolution with temperature and pressure of the melt is predicted to be within 2% of
error with the experimental values extrapolated for a similar molecular weight with a very well reproduced
coe�cient of thermal expansion. The best predictions of Tgs are obtained using the Tait equation �t with
a Tg predicted at 162 K at zero pressure and a linear dependence with pressure given a slope of 0.22
K/MPa. As recently observed for PEO and PS, the different calculated properties show hysteresis between
the heating and cooling curves.

Introduction
Polybutadiene (PB) is mainly known as one of the key components employed in tire manufacturing.
However, its domain of applicability is relatively wide including coating[1], thermoset additives[2],
adhesives[3] and sealing[4]. Consequently, due to its technological importance, the behavior of PB under
pressure, and principally its effect on the glass transition temperature (Tg), was extensively studied[5–
11]. However, the values of dTg/dP are relatively dispersed. A such inconsistency can be explained both
by the diversity of microstructures encountered in PB and the diversity of technics used to evaluate the
Tg. The dependence of Tg on contents of cis-1,4-, trans-1,4 and 1,2-units in PB have been demonstrated in
several studies[12–16]. However, the establishment of a quantitative relationship between the
microstructure and evaluated Tg remains challenging[15, 17]. The fact that the microstructures not only
modify the properties of the amorphous region but also the crystallinity can explain this di�culty. In
addition, for the same microstructure the properties could depend on the distribution of the repeat unit.
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Thanks to atomistic simulations, the Tg for amorphous models can be evaluated for oligomers of very
well controlled compositions. As example, Sharma et al.[18] evaluated Tg for both cis and trans 1,4-
models of PB composed of 32-mers from speci�c volume versus temperatures curves obtained between
100 K to 300 K at a cooling rate of 10 K/ns for united (UA) and all atoms (AA) force�eld (FF). Over the
same range of temperatures and at a cooling rate of 20 K/ns, Dossi et al.[19] studied the effect of
microstructure on pentamers and decamers of hydroxyl terminated PB using the Dreiding AA force�eld.
However, to our knowledge, even if different studies have been performed under pressure[20–26], none of
them treated of the effect of pressure on Tg. Indeed, Valega Mackenzie et al.[21] studied the mechanical
response of copper/polybutadiene joints under stress mixing embedded atom method and Universal AA-
FF. Shock-induced structural changes and post-chock relaxations were studied on cis-1,4 polybutadiene
melt both using UA-FF [22] and AA-FF force�eld[23]. Hooper et al.[20] used the Tait EOS to �t the PVT
data calculated at 298 K for pressure ranging from ambient to 1000 MPa, on a model composed of 40
random copolymer chains composed of 30 units with a microstructure of 40%, 50% and 10% of 1,4-cis,
1,4-trans and 1,2 vinyl units respectively with a UA-FF. They thus concluded that MD simulations
reproduce well the experimental properties of interest for energetic materials and explosive applications.
On another hand, Tsolou et al. extensively studied the relaxation of cis-1,4-polybutadiene under
pressure[24–26] with a UA-FF described in Ref. [24]. They evaluated PVT data, at temperature ranging
from 195 K to 430 K and pressure from 0.1 MPa to 300 MPa, for a system composed of 32 chains of cis-
1,4 PB of 128 carbon atoms per chain. From the Tait EOS �t they thus derived the thermal expansion
coe�cient for the melt.

Consequently, in this paper, the PVT data for both the glassy and the melt states of 1,4-cis- PB will be
evaluated for temperature ranging from 10 K to 800 K and pressure from ambient to 100 MPa. The
isothermal pressure-volume data will be �tted to the Tait equation allowing interpolation at different
pressures. The glass transition temperatures dependence on pressure will then be derived from these �ts
and compared with values obtained by linear and hyperbolic �ts. Both PVT data and Tg will be compared
with experimental results obtained for similar molecular weight when available.

Method
In the present work, all calculations were performed within the LAMMPS code[27] integrated into the
MedeA computational environment of Materials Design[28]. One hundred con�gurations of polymer
amorphous cells, containing two chains of cis-1,4-Polybutadiene (cPB) with degree of polymerization of
100 (Mn∼5400 g/mol), were generated at 298 K at a density of 0.9 g/cm3. For all simulations the pcff + 
force�eld was used, which is based on the pcff force�eld[29]. The pcff + force�eld was constructed to
work with wide range of polymers[30]. At the second stage, energy minimization was carried out within
the NVT ensemble at 100 K during 50 fs with 0.5 fs integration time step. Seven con�gurations were
selected according two criteria based on the gyration radius (Rg) and end-to-end distance (Ree):
<R²ee>/<R²g > = 6, <R²ee>)/Mn = 0.75 Å²/(a.u.m.). These con�gurations were further equilibrated within
the following stages: 1) NVT ensemble at 513 K during 100 fs with 1 fs time step and Nose-Hoover
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thermostat[31, 32]. 2) NPT ensemble at 513 K and 1 atm. pressure during 10 ns with 0.5 fs time step. For
prepared con�gurations a simulated dilatometry[33] were applied in order to get access to the glass
transition temperature. In particular, each cell was relaxed within the NVT ensemble at 800 K during 100
ps with 1 fs time step, then, within the NPT ensemble at 800 K and 1 atm. pressure during 200 ps with 1
fs time step. Then, in two consecutive stages, the system was �rstly cooled down from 790 K to 10 K with
a 15 K steps during 5300 ps. Then, the reverse protocol was applied to reach 790 K. At each step, an
equilibration within NPT ensemble was performed at 1 atm. during 100 ps with a 1 fs time step. The
same protocol was then used for P = 60 and 100 MPa.

All the data were averaged over selected con�gurations, and the speci�c volume, as well as coe�cient of
thermal expansion (CTE, α), total energy (Etot) and heat capacity (Cv) evolution with temperature were
plotted at different pressures. Different methods were used to evaluate the dependence of the glass
transition temperature (Tg) with the pressure.

Firstly, Tg was evaluated individually for each pressure using hyperbola �t[34]. In the rubbery (T > Tg) and
glass (T < Tg) states, the dependence of the speci�c volume (Vspec) is expected to vary linearly with
temperature, but at different rates. Tg is then de�ned as the intersection of the straight lines extracted
from the linear �ts in these two regimes. These two regimes are separated by a transition domain whose
enlargement depends on the cooling/heating rate. In fact, this domain is clearly larger (∼ 150 K) than the
experimental one (3–5 K), and thus lead to a signi�cant uncertainty in the determination of Tg as the
intercept of the two linear �ts. Watts and Bacon[35] suggested the use of hyperbola to give an accurate
way to such transition. In this work, the speci�c volume (Vspec) was �tted according to the following
expression:

 (Eq. 1)

The transition domain between the linear regions is determined by the curvature parameter , whereas T0

and V0 de�ne the center of the hyperbola. The glass transition temperature (Tg) is assumed here to be
equal to T0.

Secondly, coe�cient of thermal expansion (CTE, Equation 2) and heat capacity (

Equation 3) evolution with temperatures were �tted with a sigmoid function and Tg was

assumed as the point in the middle of the sigmoid.

Finally all  data were �tted with Tait equations for amorphous polymer expressed as[36, 37]:

 (Eq. 4)
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g and r being for T < Tg and T > Tg region respectively. The nine parameters were �tted to the values of
speci�c volume (Vspec) averaged for each temperature and pressures on the two thermal cycles and the
seven con�gurations. The temperature ranges used for the �t were from 10 to 140 K and from 400 K to
700 K for the glassy T < Tg and rubbery T > Tg regions respectively. Tg was evaluated as the intersection
between the two Tait equations.

Results and discussion
Evolution of calculated density with temperature was �rstly compared with experimental data for the melt
over temperature range from 300 K to 475 K, Fig. 1. In the melt, experimental sample and numerical
model are in the same state and results depend slightly of the cooling/heating rate. Consequently, data
are directly comparable. Calculated values are averaged over the con�gurations and the cooling/heating
cycles.

Experimental data are explicitly given in Ref.[38] for Mn = 1000 and 3000 g.mol− 1, so to compare with our
data at Mn = 5402 g.mol− 1 a linear �t, based on extrapolation of experimental data, was performed.
Linear �t is well suited to model experimental data as shown by values of R² presented in Table 1.

V0,g,r (T) = b1g,r + b2g,r (T − b5)

Bg,r (T) = b3g,rexp (−b4g,r (T − b5))
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Table 1
Parameters of Vspec = aT + b �t from experimental

data[38] with (*) extrapolation and calculated(**) for
Mn = 5402 g.mol-1

Mn

(g.mol-1)

a

(10− 4 cm3.g-1.K-1)

b

(cm3.g-1)

R²

  0 MPa    

1000 9.05 0.882 0.9988

3000 8.34 0.880 0.9985

5402* 7.50 0.876  

5402** 8.00 0.869 0.999

  60 MPa    

1000 6.60 0.924 0.9999

3000 6.25 0.913 0.9985

5402* 5.82 0.90  

5402** 6 0.897 0.9996

  100 MPa    

1000 5.74 0.933 0.9999

3000 5.49 0.920 0.9999

5402* 5.20 0.903  

5402** 6 0.905 0.9986

To get parameters at Mn = 5402 g.mol− 1 a linear dependence of a and b parameters with Mn was used at
�rst approximation. Independently of the pressure, calculated data overestimate of less than 2% these
extrapolated data providing a current precision as expected for a good atomic force�eld.

Among the different methods employed to evaluate the glass transition temperature, hyperbolic or linear
�t of the speci�c volume (Vspec) vs. temperature curve is the most commonly used. The evolutions of the
speci�c volume averaged over the cooling or heating cycles and con�gurations with temperature are
provided as a function of the temperature between 10 K and 600 K for three different pressures 0 MPa, 60
MPa and 100 MPa in Fig. 2.

As expected, speci�c volume follows linear evolutions with temperature within two domains at low and
high temperatures. Over both these temperature regions, the values of the speci�c volume extracted from
the cooling and the reheating processes differ by less than 0.0025 cm3.g− 1 as visible on the right axis. At
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low temperature, cooling and heating data start to diverge to reach a maximum. At high temperature,
statistic noise is more important, but data seems also to converge. Similar peaks were observed for
models of PS and PEO using united-atom TraPPE force�eld[39]. A such behavior validate the
expectations on transition zone predicted by Moynihan[40, 41] after the analysis of experimental
observations performed on inorganic glasses. The peaks seem to shift towards higher temperatures with
the increase of pressure, see Fig S.I. 1 for a better visualization. However, the statistic noise is too
important to apport a de�nitive conclusion about the position of the maximum of the peaks.
Nevertheless, from these curves it’s clear that the transition zone spread over ∼220 K from ∼140 K to
∼360 K.

Hyperbolic initial and �t parameters are presented in Table S.I. 1. Strangely the curvature parameters are
quite smaller ranging from 0 K to 111 K than 220 K discussed above. In addition, the trend of Tg with
pressure is different than expected since calculated Tg decrease with an augmentation of the pressure.
This behavior is observed both for cooling and heating cycle.

Coe�cient of thermal expansion evolution with temperature was presented in. Figure 3.

Sigmoidal functions were �tted to the raw data to smooth the statistical noise. Hysteresis loops are
present for all pressures. As expected, during the transition the CTE values obtained during the re-heating
are lower than those obtained during the cooling. The values of CTE calculated for the melt are in good
agreement with the experimental data measured for cis-PB Mn = 3000 g.mol− 1in Ref. [38]. The values of
Tg evaluated from these curves are assessed to be given by the temperature in the middle of the sigmoid
and are given for cooling (α_C) and heating (α_H) in the equations present in Fig. 3. Here again no clear
dependence of Tg with pressure can be extract from these data.

Similar analysis can also be performed on energetic properties as shown by Soldera[42]. The total
energies evaluated during the thermal cycles are displayed in Fig. 4. In addition, the variation of energy
between cooling and heating cycles for a given temperature is also presented on the right axis.

Hysteresis loops are also observed during the thermal cycle and can be clearly identi�ed looking at the
variation of energy. As for the speci�c volume, the data at low and high temperature are independent on
the thermal history with variation inferior to 15 kJ.cell− 1. From 160 K to 420 K the variation is larger,
reaching a peak around 279 K. The peaks seem to shift towards higher temperatures with the increase of
pressure, see Figure S.I. 2 for a better visualization. However, as for the speci�c volume, the statistic noise
is too important to apport a de�nitive conclusion about the position of the maximum of the peaks.

Heat capacity evolution with temperature was presented in Fig. 5.

As for CTE, hysteresis loops can also be observed from raw data of Cv, with an overshooting appearing
during the re-heating as expected [40, 41]. Sigmoidal functions were �tted to raw data. The values of heat
capacity converge to 4.73 ± 0.02 J.g− 1.K− 1 and 5.05 ± 0.03 J.g− 1.K− 1 for low and high temperature
domain respectively. These values overestimate the experimental values as expected from calculations
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performed with all atoms force�eld[43]. However, ΔCv = 0.32 J.g− 1.K− 1 calculated at the glass transition

agree well with recent value of ΔCp = 0.31 J.g− 1.K− 1 measured for amorphous cis-PB[44]. The values of
Tg evaluated from these curves are assumed to be given by the temperature in the middle of the sigmoid
and are given for cooling (Cv_C) and heating (Cv_H) in the equations present in Fig. 3. Here again no clear
dependence of Tg with pressure can be extract from these data.

Figure 6 represents the evolution of the calculated Vspec with temperature, at three different pressures (0
MPa, 60 MPa and 100 MPa), and the Tait equation �tting for low and high temperature regimes and
interpolation for different pressures (20 MPa, 40 MPa and 80 MPa).

The �t resulted in an AAD% of 0.3% independently of the thermal cycle. The �tted parameters are listed in,
Table S.I. 2.

The Tg is then de�ned as the temperature for which Vspec(Tait < Tg) = Vspec (Tait > Tg) for each
pressure[45]. The evolution of Tg thus determined in function of the pressure is given in Fig. 7. In this
case Tg follows a linear trend with pressure (Tg (P) = 0.2457xP + 161.9, R² = 0.965).

Discussion
Several methods were used in this study to evaluate the glass transition temperature (Tg) of amorphous
cis-1,4 PB. Comparison with experimental data measured at ambient pressure is �rstly done before
discussing the pressure dependence of Tg. When comparison with experimental data is performed
several parameters are important to take into account. It’s well known that Tg depends on molecular
weight, polydispersity, architecture, crystallinity, technic of determination and thermal history. In our case
we deal with pure monodisperse, amorphous cis-PB with Mn = 5402 g.mol− 1 per dilatometry and
calorimetry on samples cooled/heated at a rate of 75 109 K.s− 1. Bogoslovov et al.[46] �tted a data set of
36 Tg measured for molecular weights spreading over 4 decades with Fox-Flory relations providing
Tg(Mn) = 174.4–12.4 / Mn given an expected Tg of 172 K for Mn = 5402 g.mol− 1. However, the value of
Tg(∞) seems high relatively to 164 K measured for 97.5%cis:2%trans:0.5%vinyl and Mn = 139000
g/mol[15]

Cooling/heating rate used in laboratory and atomistic simulation differs of several orders of magnitude.
Currently, fast experimental cooling rate means 100 K/s[47] relatively to 109-1012 K/s commonly used in
atomistic modeling. Consequently, WLF correction, as described by Soldera et Metatla[48], has to be
applied to get comparable data. Universal parameters were used for the WLF correction calculation[48].

The different Tg evaluated in this study before (aTg) after (pTg) WLF correction are given in Table 2.
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Table 2
Calculated atomistic glass transition temperature (aTg) and predicted (pTg) after WLF correction

obtained in this study with different methods in comparison to experimental values expected for cis-PB
(Mn = 5402 g.mol-1)

  Dilatometry Tait CTE Cv

  heating cooling heating cooling heating cooling heating cooling

aTg 259 258 274 274 248 228 224 195

pTg 146 146 162 162 135 116 111 83

Experimental. 162[15], 172[46]

Evaluation of aTg by sigmoidal �tting of CTE and Cv provides the most important variation of Tg
depending on the thermal history. That’s also the method providing the lowest values of aTg. Averaging
over a higher number of con�gurations should improve the accuracy of the calculated data and thus
provide a better �t with more coherent values of aTg. Without surprise, the values of aTg evaluated using
the Tait �t are independent of the thermal history. That’s due to the fact that only the values outside the
transition zone are taking into account for the �tting. In these low and high temperatures regime zone, the
values of Vspec obtained during cooling/heating are quite close as visible on Fig. 2. It’s more surprising
that the variation of Tg with thermal history was not caught by dilatometry �tting with hyperbola. All pTg
underestimate the experimental Tg. This difference could be explained by different factors both based on
the numerical and experimental determination. Firstly, the experimental data set used to get the
dependence of Tg with Mn was not consistent with 5 monodisperse and three polydisperse PB with Tg
measured with different technics (capacitance changes, calorimetry, Raman scattering and mechanical
spectroscopy). Moreover, lower molecular weight polybutadiene contained up to 20% of vinyl group which
is known to shift Tg towards higher values[15] and no information about crystallinity was provided.
Secondly, in addition to the error due to the numerical �t, WLF prediction could be improved by calculating
the parameters speci�c to cis-PB. Predictions of Tg by atomistic simulation for PB have already been
done in the past[49–53]. Characteristics of the simulations and pTg are given in Table S.I. 3. Linear �t of
Vspec vs T was the method employed to determine the Tg in all these studies with aTg = pTg ranging from
179 K to 228 K, WLF correction was never applied. It’s interesting to notice that the temperature used for
the bilinear �ts ranges from 25 K to 400 K. From this study, it appears that the transition zone spreads
from ∼100 K to ∼400 K. Consequently, the values of Vspec in the high temperature regime used in these
previous studies were certainly still in the transition zone, where a linear behavior is not expected.

The dependences of the glass transition temperature (Tg) with pressure (P), dTg/dP evaluated
experimentally for different polybutadiene microstructures are listed in Table 3 with our calculated. value.
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Table 3
Pressure shift of glass temperature from literature and this work

Microstructure Mn (g/mol) Crystallinity dTg/dP (K/MPa) reference

95% cis-1,4 PB unknown unknown 0.13 [5]

41%cis:52%trans:7%vinyl 8000 unknown 0.18 [8]

unknown 9000 unknown 0.0798 [9]

unknown 20000 unknown 0.064 [9]

55% 1,2 PB + 45% 1,4 PB unknown unknown 0.17 [54]

unknown 8000 unknown 0.11 [55]

100% Cis-1,4 PB 5402 amorphous 0.24 This work

From these experimental values, a variation of 100 MPa leads to a change of Tg of around 10 K. A so
small variation could be di�cult to observe with atomistic simulation due to the fast cooling/heating rate
commonly used. That’s why the pressure dependence of Tg evaluated with classical method (dilatometry,
CTE and Cv) is not observed over the pressure range used for this study as visible on Fig. 7. On contrary,
using the values of Tg predicted by the Tait equation, the augmentation of Tg with the pressure is well
reproduced.

From the experimental extreme values of Tg(1502 g/mol, 0 MPa) and of dTg/dP extracted from the
Table 2 and Table 3 respectively, it’s possible to calculate a domain presenting the evolution of Tg with
pressure. This grey domain limited by the dashed line is visible in Fig. 7. The predicted values are within
this domain for pressure below 150 MPa. To improve the prediction at high pressure, new calculations
seem to be necessary.

Conclusion
In this study, the effect of thermal cycling on dilatometric and energetic properties of amorphous cis-1,4
polybutadiene has been investigated using atomistic molecular dynamics with the pcff + force�eld.
Evolutions of the speci�c volume, thermal expansion coe�cient, total energy and constant volume heat
capacity have been monitored in function of the temperature during the cooling and the heating at
constant rate for three different pressures. Hysteresis of relaxation has been observed for all properties
and pressures. These descriptors can generally be used to evaluate the glass transition temperature.
Better agreement with experimental results was obtained for glass transition temperature evaluated with
a hyperbolic �t of dilatometry curves but without reproducing the pressure dependence. Tait equation has
been used to �t P-V-T data and correctly predict the pressure dependence of the glass transition
temperature. From these different results it appears that this method associated with the pcff + force�eld
are able to deal with cis-1,4 polybutadiene. To get a clear idea about the effect of microstructure on
properties of polybutadiene, trans-1,4 and vinyl moieties have now to be investigated.
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Figures

Figure 1
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Evolution of the speci�c volume (Vspec) as a function of the temperature. Error bars of calculated values
are within square symbol. Dashed line, extrapolated from experimental data[38].

Figure 2

Evolution of the speci�c volume as a function of the temperature during the cooling (blue), the heating
(red) on the left axis and absolute difference between the speci�c volume evaluated during the cooling
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and the heating on the right axis, for cis-PB model (Mn = 5402 g.mol-1).

Figure 3

Coe�cient of thermal expansion (a) evolution in respect of temperature for cis-PB Mn = 5200 g.mol-1

calculated during cooling/heating cycle. Experimental data are calculated from speci�c volume given for
cis-PB Mn = 3000 g.mol-1in [38].
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Figure 4

Evolution of the total energy as a function of the temperature during cooling (blue) and heating (red) on
the left axis and difference between the total energy evaluated during the cooling and the heating on the
right axis for for cis-PB Mn = 5200 g.mol-1.
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Figure 5

Heat capacity (Cv) evolution in respect of temperature for cis-PB Mn = 5200 g.mol-1 calculated during
cooling/heating cycle
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Figure 6

Speci�c volume evolution with temperature as calculated at 0, 60 and 100 MPa during heating and Tait’s
equation �tting at low and high temperature regime.
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Figure 7

Pressure dependence of Tg. Calculated data are given after WLF correction. Exp. limits calculated with
Tg(1502 g/mol, 0 MPa)=162 K and dTg/dP = 0.064 K/ MPa and with Tg(1502 g/mol, 0 MPa)=172 K and
dTg/dP = 0.017 K/MPa
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